
DFHack Documentation
Release 50.11-r4

The DFHack Team

2023-11-22

CONTENTS

I Quick Links 3

II User Manual 7

1 Introduction and overview 9

2 Quickstart guide 11

3 Installing DFHack 15

4 DFHack Core 19

5 DFHack tools 27

6 User guides 353

7 DFHack development guide 425

8 About DFHack 715

Index of DFHack tools 823

"adventure" tag index - Tools that are useful while in adventure mode. Note that some tools only tagged
with "fort" might also work in adventure mode, but not always in expected ways. Feel free to experiment,
though! 829

"dfhack" tag index - Tools that you use to run DFHack commands or interact with the DFHack library. This
tag also includes tools that help you manage the DF game itself (e.g. quicksave, etc.) 831

"embark" tag index - Tools that are useful while on the fort embark screen or while creating an adventurer.833

"fort" tag index - Tools that are useful while in fort mode. 835

"legends" tag index - Tools that are useful while in legends mode. 839

"armok" tag index - Tools which give the player god-like powers of any variety, such as control over game
events, creating items from thin air, or viewing information the game intentionally keeps hidden. Players
that do not wish to see these tools listed in DFHack command lists can hide them in the “Preferences“
tab of ‘gui/control-panel‘. 841

"auto" tag index - Tools that run in the background and automatically manage routine, toilsome aspects of
your fortress. 843

i

"bugfix" tag index - Tools that fix specific bugs, either permanently or on-demand. 845

"design" tag index - Tools that help you design your fort. 847

"dev" tag index - Tools that are useful when developing scripts or mods. 849

"fps" tag index - Tools that help you manage FPS drop. 851

"gameplay" tag index - Tools that introduce new gameplay elements. 853

"inspection" tag index - Tools that let you view information that is otherwise difficult to find. 855

"productivity" tag index - Tools that help you do things that you could do manually, but using the tool is
better and faster. 857

"animals" tag index - Tools that interact with animals. 859

"buildings" tag index - Tools that interact with buildings and furniture. 861

"graphics" tag index - Tools that interact with game graphics. 863

"interface" tag index - Tools that interact with or extend the DF user interface. 865

"items" tag index - Tools that interact with in-game items. 867

"jobs" tag index - Tools that interact with jobs. 869

"labors" tag index - Tools that deal with labor assignment. 871

"map" tag index - Tools that interact with the game map. 873

"military" tag index - Tools that interact with the military. 875

"plants" tag index - Tools that interact with trees, shrubs, and crops. 877

"stockpiles" tag index - Tools that interact with stockpiles. 879

"units" tag index - Tools that interact with units. 881

"workorders" tag index - Tools that interact with workorders. 883

"unavailable" tag index - Tools that are not yet available for the current release. 885

ii

DFHack Documentation, Release 50.11-r4

DFHack is a memory editing library for Dwarf Fortress that provides a unified, cross-platform environment where tools
can be developed to extend the game. The default distribution contains a variety of tools, including bugfixes, interface
improvements, automation tools, modding tools, and more. There are also a variety of third-party tools available.

CONTENTS 1

https://www.bay12games.com/dwarves/

DFHack Documentation, Release 50.11-r4

2 CONTENTS

Part I

Quick Links

3

DFHack Documentation, Release 50.11-r4

• Downloads

• Installation guide

• Quickstart guide

• Getting help

• Source code (important: read Building DFHack before attempting to build from source.)

5

https://www.github.com/DFHack/dfhack/releases
https://github.com/DFHack/dfhack/tree/develop/

DFHack Documentation, Release 50.11-r4

6

Part II

User Manual

7

CHAPTER

ONE

INTRODUCTION AND OVERVIEW

DFHack is a Dwarf Fortress memory access library, distributed with a wide variety of useful scripts and plugins.

The project is currently hosted on GitHub, and can be downloaded from the releases page - see Installing DFHack for
installation instructions. This is also where the DFHack bug tracker is hosted.

All new releases are announced in the Bay12 forums thread, which is also a good place for discussion and questions.

For users, DFHack provides a significant suite of bugfixes and interface enhancements by default, and more can be
enabled. There are also many tools (such as workflow or autodump) which can make life easier. You can even add
third-party scripts and plugins to do almost anything!

For modders, DFHack makes many things possible. Custom reactions, new interactions, magic creature abilities, and
more can be set through DFHack tools and custom raws. Non-standard DFHack scripts and inits can be stored in the
raw directory, making raws or saves fully self-contained for distribution - or for coexistence in a single DF install, even
with incompatible components.

For developers, DFHack unites the various ways tools access DF memory and allows easier development of new tools.
As an open-source project under various open-source licenses, contributions are welcome.

Contents

• Getting started

• Getting help

1.1 Getting started

See Installing DFHack for details on installing DFHack.

Once DFHack is installed, it extends DF with a console that can be used to run commands. On Windows, this console
will open automatically when DF is started. On Linux and macOS, you will need to run the dfhack script from a
terminal (instead of the df script included with DF), and that terminal will be used by the DFHack console.

• Basic interaction with DFHack involves entering commands into the console. To learn what commands are
available, you can keep reading this documentation or skip ahead and use the ls and help commands.

• Another way to interact with DFHack is to set in-game keybindings for certain commands. Many of the newer
and user-friendly tools are designed to be used this way.

• Commands can also run at startup via init files, or in batches at other times with the script command.

• Finally, some commands are persistent once enabled, and will sit in the background managing or changing some
aspect of the game if you enable them.

9

https://www.github.com/DFHack/dfhack
https://github.com/DFHack/dfhack/releases
https://www.github.com/DFHack/dfhack
https://dfhack.org/bay12

DFHack Documentation, Release 50.11-r4

Note: In order to avoid user confusion, as a matter of policy all GUI tools display the word DFHack on the screen
somewhere while active.

When that is not appropriate because they merely add keybinding hints to existing DF screens, they deliberately use
red instead of green for the key.

1.2 Getting help

DFHack has several ways to get help online, including:

• The DFHack Discord server

• The #dfhack IRC channel on Libera

• GitHub:

– for bugs, use the issue tracker

– for more open-ended questions, use the discussion board. Note that this is a relatively-new feature as
of 2021, but maintainers should still be notified of any discussions here.

• The DFHack thread on the Bay 12 Forum

Some additional, but less DFHack-specific, places where questions may be answered include:

• The /r/dwarffortress questions thread on Reddit

• If you are using a starter pack, the relevant thread on the Bay 12 Forum - see the DF Wiki for a list of these
threads

When reaching out to any support channels regarding problems with DFHack, please remember to provide enough
details for others to identify the issue. For instance, specific error messages (copied text or screenshots) are helpful, as
well as any steps you can follow to reproduce the problem. Sometimes, log output from stderr.log in the DF folder
can point to the cause of issues as well.

Some common questions may also be answered in documentation, including:

• This documentation (online here; search functionality available here)

• The DF wiki

10 Chapter 1. Introduction and overview

https://dfhack.org/discord
https://libera.chat/
https://github.com/DFHack/dfhack/issues/
https://github.com/DFHack/dfhack/discussions
https://dfhack.org/bay12
https://dwarffortress.reddit.com
http://www.bay12forums.com/smf/index.php?board=2.0
https://dwarffortresswiki.org/Utility:Lazy_Newb_Pack
https://dfhack.readthedocs.io
https://dwarffortresswiki.org/

CHAPTER

TWO

QUICKSTART GUIDE

Welcome to DFHack! This guide will help get you oriented with the DFHack system and teach you how to find and
use the tools productively. If you’re reading this in the in-game quickstart-guide reader, hit the right arrow key or click
on the hotkey hint in the lower right corner of the window to go to the next page.

2.1 What is DFHack?

DFHack is an add-on for Dwarf Fortress that enables mods and tools to significantly extend the game. The default
DFHack distribution contains a wide variety of tools, including bugfixes, interface improvements, automation agents,
design blueprints, modding building blocks, and more. Third-party tools (e.g. mods downloaded from Steam Workshop
or the forums) can also seamlessly integrate with the DFHack framework and extend the game far beyond what can be
done by just modding the raws.

DFHack’s mission is to provide tools and interfaces for players and modders to:

• expand the bounds of what is possible in Dwarf Fortress

• reduce the impact of game bugs

• give the player more agency and control over the game

• provide alternatives to toilsome or frustrating aspects of gameplay

• make the game more fun

2.2 What can I do with DFHack tools?

DFHack has been around for a long time – almost as long as Dwarf Fortress itself. Many of the game’s rough edges
have been smoothed with DFHack tools. Here are some common tasks people use DFHack tools to accomplish:

• Automatically chop trees when log stocks are low

• Record blueprint files that allow copy and paste of fort designs

• Import and export lists of manager orders

• Clean contaminants from map squares that dwarves can’t reach

• Automatically butcher excess livestock so you don’t become overrun with animals

• Promote time-sensitive job types (e.g. food hauling) so they are done expediently

• Quickly scan the map for visible ores of specific types so you can focus your mining efforts

11

DFHack Documentation, Release 50.11-r4

Some tools are one-shot commands. For example, you can run unforbid all to claim all (reachable) items on the map
after a messy siege.

Other tools must be enabled once and then they will run in the background. For example, once enabled, seedwatch will
start monitoring your stocks of seeds and prevent your chefs from cooking seeds that you need for planting. Tools that
are enabled in the context of a fort will save their state with that fort, and they will remember that they are enabled the
next time you load your save.

A third class of tools adds information to the screen or provides new integrated functionality via the DFHack overlay
framework. For example, the sort tool adds widgets to the squad member selection screen that allow you to search,
sort, and filter the list of military candidates. You don’t have to run any command to get the benefits of the tool, it
appears automatically when you’re on the relevant screen.

2.3 How can I figure out which commands to run?

There are several ways to scan DFHack tools and find the ones you need right now.

The first place to check is the DFHack logo menu. It’s in the upper left corner of the screen by default, though you can
move it anywhere you want with the gui/overlay configuration UI.

When you click on the logo (or hit the Ctrl-Shift-C keyboard shortcut), a short list of popular, relevant DFHack tools
comes up. These are the tools that have been assigned hotkeys that are active in the current context. For example, when
you’re looking at a fort map, the list will contain fortress design tools like gui/quickfort and gui/design. You can click
on the tools in the list, or note the hotkeys listed next to them and maybe use them to launch the tool next time without
even opening the logo menu.

The second place to check is the DFHack control panel: gui/control-panel. It will give you an overview of which tools
are currently enabled, and will allow you to toggle them on or off, see help text for them, or launch their dedicated
configuration UIs. You can open the control panel from anywhere with the Ctrl-Shift-E hotkey or by selecting it from
the logo menu list.

In the control panel, you can also select which tools you’d like to be automatically enabled and popular commands you’d
like to run when you start a new fort. On the “Preferences” tab, there are settings you can change, like whether you
want to limit DFHack functionality to interface improvements, bugfixes, and productivity tools, hiding the god-mode
tools (“mortal mode”) or whether you want DFHack windows to pause the game when they come up.

Finally, you can explore the full extent of the DFHack catalog in gui/launcher, which is always listed first in the DFHack
logo menu list. You can also bring up the launcher by tapping the backtick key (`) or hitting Ctrl-Shift-D. In the
launcher, you can quickly autocomplete any command name by selecting it in the list on the right side of the window.
Commands are ordered by how often you run them, so your favorite commands will always be on top. You can also
pull full commandlines out of your history with Alt-S or by clicking on the “history search” hotkey hint.

Once you have typed (or autocompleted, or searched for) a command, other commands related to the one you have
selected will appear in the right-hand panel. Scanning through that list is a great way to learn about new tools that you
might find useful. You can also see how commands are grouped by running the tags command.

The bottom panel will show the full help text for the command you are running, allowing you to refer to the usage
documentation and examples when you are typing your command. After you run a command, the bottom panel switches
to command output mode, but you can get back to the help text by hitting Ctrl-T or clicking on the Help tab.

12 Chapter 2. Quickstart guide

DFHack Documentation, Release 50.11-r4

2.4 How do DFHack in-game windows work?

Many DFHack tools have graphical interfaces that appear in-game. You can tell which windows belong to DFHack
tools because they will have the word “DFHack” printed across their bottom frame edge. DFHack provides an advanced
windowing system that gives the player a lot of control over where the windows appear and whether they capture
keyboard and mouse input.

The DFHack windowing system allows multiple overlapping windows to be active at once. The one with the highlighted
title bar has focus and will receive anything you type at the keyboard. Hit Esc or right click to close the window or
cancel the current action. You can click anywhere on the screen that is not a DFHack window to unfocus the window
and let it just sit in the background. It won’t respond to key presses or mouse clicks until you click on it again to give
it focus. If no DFHack windows are focused, you can right click directly on a window to close it without left clicking
to focus it first.

DFHack windows are draggable from the title bar or from anywhere on the window that doesn’t have a mouse-clickable
widget on it. Many are resizable as well (if the tool window has components that can reasonably be resized).

You can generally use DFHack tools without interrupting the game. That is, if the game is unpaused, it can continue
to run while a DFHack window is open. If configured to do so in gui/control-panel, tools will initially pause the game
to let you focus on the task at hand, but you can unpause like normal if you want. You can also interact with the map,
scrolling it with the keyboard or mouse and selecting units, buildings, and items. Some tools will intercept all mouse
clicks to allow you to select regions of the map. When these tools have focus, you will not be able to use the mouse
to interact with map elements or pause/unpause the game. Therefore, these tools will pause the game when they open,
regardless of your settings in gui/control-panel. You can still unpause with the keyboard (spacebar by default), though.

2.5 Where do I go next?

To recap:

You can get to popular, relevant tools for the current context by clicking on the DFHack logo or by hitting Ctrl-Shift-C.

You can enable DFHack tools and configure settings with gui/control-panel, which you can open from the DFHack
logo or access directly with the Ctrl-Shift-E hotkey.

You can get to the launcher and its integrated autocomplete, history search, and help text by hitting backtick (`) or
Ctrl-Shift-D, or, of course, by running it from the logo menu list.

With those three interfaces, you have the complete DFHack tool suite at your fingertips. So what to run first? Here are
a few examples to get you started.

First, let’s import some useful manager orders to keep your fort stocked with basic necessities. Run orders import
library/basic. If you go to your manager orders screen, you can see all the orders that have been created for you.
Note that you could have imported the orders directly from this screen as well, using the DFHack overlay widget at the
bottom of the manager orders panel.

Next, try setting up autochop to automatically designate trees for chopping when you get low on usable logs. Run
gui/control-panel and select autochop in the Fort list. Click on the button to the left of the name or hit Enter to
enable it. You can then click on the configure button (the gear icon) to launch gui/autochop if you’d like to customize
its settings. If you have the extra screen space, you can go ahead and set the gui/autochop window to minimal mode
(click on the hint near the upper right corner of the window or hit Alt-M) and click on the map so the window loses
keyboard focus. As you play the game, you can glance at the live status panel to check on your stocks of wood.

Finally, let’s do some fort design copy-pasting. Go to some bedrooms that you have set up in your fort. Run
gui/blueprint, set a name for your blueprint by clicking on the name field (or hitting the ‘n’ hotkey), typing “rooms”
(or whatever) and hitting Enter to set. Then draw a box around the target area by clicking with the mouse. When you
select the second corner, the blueprint will be saved to your dfhack-config/blueprints subfolder.

2.4. How do DFHack in-game windows work? 13

DFHack Documentation, Release 50.11-r4

Now open up gui/quickfort. You can search for the blueprint you just created by typing its name, but it should be up
near the top already. If you copied a dug-out area with furniture in it, your blueprint will have two labels: “/dig” and
“/build”. Click on the “/dig” blueprint or select it with the keyboard arrow keys and hit Enter. You can rotate or flip
the blueprint around if you need to with the transform hotkeys. You’ll see a preview of where the blueprint will be
applied as you move the mouse cursor around the map. Red outlines mean that the blueprint may fail to fully apply at
that location, so be sure to choose a spot where all the preview tiles are shown with green diamonds. Click the mouse
or hit Enter to apply the blueprint and designate the tiles for digging. Your dwarves will come and dig it out as if you
had designated the tiles yourself.

Once the area is dug out, run gui/quickfort again and select your “/build” blueprint this time. Hit o to generate manager
orders for the required furniture. Apply the blueprint in the dug-out area, and your furniture will be designated. It’s just
that easy! Note that quickfort uses buildingplan to place buildings, so you don’t even need to have the relevant furniture
or building materials in stock yet. The planned furniture/buildings will get built whenever you are able to produce the
building materials.

There are many, many more tools to explore. Have fun!

14 Chapter 2. Quickstart guide

CHAPTER

THREE

INSTALLING DFHACK

• Requirements

• Downloading DFHack

– Beta releases

– Development builds

• Installing DFHack

• Uninstalling DFHack

• Upgrading DFHack

3.1 Requirements

DFHack supports all operating systems and platforms that Dwarf Fortress itself supports, which at the moment is just
64-bit Windows. However, the Windows build of DFHack works well under wine (or Proton, Steam’s fork of wine)
on other operating systems.

DFHack releases generally only support the version of Dwarf Fortress that they are named after. For example, DFHack
50.05 only supported DF 50.05. DFHack releases never support newer versions of DF – DFHack requires data about
DF that is only possible to obtain after DF has been released. Occasionally, DFHack releases will be able to maintain
support for older versions of DF - for example, DFHack 0.34.11-r5 supported both DF 0.34.11 and 0.34.10. For
maximum stability, you should usually use the latest versions of both DF and DFHack.

3.2 Downloading DFHack

Stable builds of DFHack are available on Steam or from our GitHub. Either location will give you exactly the same
package.

On Steam, note that DFHack is a separate app, not a DF Steam Workshop mod. You can run DF with DFHack by
launching either the DFHack app or the original Dwarf Fortress app.

If you download from GitHub, downloads are available at the bottom of the release notes for each release, under a
section named “Assets” (which you may have to expand). The name of the file indicates which DF version, platform,
and architecture the build supports - the platform and architecture (64-bit or 32-bit) must match your build of DF. The
DF version should also match your DF version - see above for details. For example:

• dfhack-50.07-r1-Windows-64bit.zip supports 64-bit DF on Windows

15

https://store.steampowered.com/app/2346660/DFHack
https://github.com/dfhack/dfhack/releases

DFHack Documentation, Release 50.11-r4

Warning: Do not download the source code from GitHub, either from the releases page or by clicking “Download
ZIP” on the repo homepage. This will give you an incomplete copy of the DFHack source code, which will not
work as-is. (If you want to compile DFHack instead of using a pre-built release, please see Building DFHack for
instructions.)

3.2.1 Beta releases

In between stable releases, we may create beta releases to test new features. These are available via the beta release
channel on Steam or from our regular Github page as a pre-release tagged with a “beta” or “rc” suffix.

3.2.2 Development builds

If you are actively working with the DFHack team on testing a feature, you may want to download and install a de-
velopment build. They are available via the testing release channel on Steam or can be downloaded from the build
artifact list on GitHub for specific repository commits.

To download a development build from GitHub:

• Ensure you are logged into your GitHub account

• Go to https://github.com/DFHack/dfhack/actions/workflows/build.yml?query=branch%3Adevelop+event%
3Apush

• Click on the first entry that has a green checkmark

• Click the number under “Artifacts” (or scroll down)

• Click on the “dfhack--build-” artifact for your platform to download

You can extract this package the same as if you are doing a manual install (see the next section).

3.3 Installing DFHack

If you are installing from Steam, this is handled for you automatically. The instructions here are for manual installs.

When you download DFHack, you will end up with a release archive (a .zip file on Windows, or a .tar.bz2 file on
other platforms). Your operating system should have built-in utilities capable of extracting files from these archives.

If you are on Windows, please remember to right click on the file after downloading, open the file properties, and select
the “Unblock” checkbox. This will prevent issues with Windows antivirus programs.

The release archives contain a hack folder where DFHack binary and system data is stored, a stonesense folder that
contains data specific to the stonesense 3d renderer, and various libraries and executable files. To install DFHack, copy
all of the files from the DFHack archive into the root DF folder, which should already include a data folder and a save
folder, among other things. Some redistributions of Dwarf Fortress may place DF in another folder, so ensure that the
hack folder ends up next to the data folder, and you’ll be fine.

16 Chapter 3. Installing DFHack

https://github.com/DFHack/dfhack/actions/workflows/build.yml?query=branch%3Adevelop+event%3Apush
https://github.com/DFHack/dfhack/actions/workflows/build.yml?query=branch%3Adevelop+event%3Apush

DFHack Documentation, Release 50.11-r4

3.4 Uninstalling DFHack

Just renaming or removing the dfhooks library file is enough to disable DFHack. If you would like to remove all
DFHack files, consult the DFHack install archive to see the list of files and remove the corresponding files in the Dwarf
Fortress folder. Any DFHack files left behind will not negatively affect DF.

On Steam, uninstalling DFHack will cleanly remove everything that was installed with DFHack, so there is nothing
else for you to do.

Note that Steam will leave behind the dfhack-config folder, which contains all your personal DFHack-related settings
and data. If you keep this folder, all your settings will be restored when you reinstall DFHack later.

3.5 Upgrading DFHack

Again, if you have installed from Steam, your copy of DFHack will automatically be kept up to date. This section is
for manual installers.

First, remove the hack and stonesense folders in their entirety. This ensures that files that don’t exist in the latest
version are properly removed and don’t affect your new installation.

Then, extract the DFHack release archive into your Dwarf Fortress folder, overwriting any remaining top-level files.

3.4. Uninstalling DFHack 17

DFHack Documentation, Release 50.11-r4

18 Chapter 3. Installing DFHack

CHAPTER

FOUR

DFHACK CORE

Contents

• Command implementation

• Using DFHack commands

– The DFHack console

– Using an OS terminal

• Configuration files

– Init files

– Script paths

• Commandline options

• Environment variables

• Core preferences

• Miscellaneous notes

4.1 Command implementation

DFHack commands can be implemented in any of three ways:

builtin commands are implemented by the core of DFHack. They manage other DFHack tools, interpret
commands, and control basic aspects of DF (force pause or quit).

plugins are stored in hack/plugins/ and must be compiled with the same version of DFHack. They are
less flexible than scripts, but used for complex or ongoing tasks because they run faster.

scripts are Lua scripts stored in hack/scripts/ or other directories in the Script paths. Because they
don’t need to be compiled, scripts are more flexible about versions, and they are easier to distribute.
Most third-party DFHack addons are scripts.

All tools distributed with DFHack are documented here.

19

DFHack Documentation, Release 50.11-r4

4.2 Using DFHack commands

DFHack commands can be executed in a number of ways:

1. Typing the command into the DFHack console (see below)

2. From the OS terminal (see below)

3. Pressing a key combination set up with keybinding

4. From one of several Init files, automatically

5. Using script to run a batch of commands from a file

6. From an in-game command launcher interface like gui/launcher, the hotkeys overlay widget, or gui/quickcmd.

4.2.1 The DFHack console

The command line has some nice line editing capabilities, including history that’s preserved between different runs of
DF - use ↑ and ↓ to go through the history.

To include whitespace in the argument/s to some command, quote it in double quotes. To include a double quote
character, use \".

If the first non-whitespace character is :, the command is parsed in an alternative mode. The non-whitespace characters
following the : are the command name, and the remaining part of the line is used verbatim as the first argument. This
is very useful for the lua command. As an example, the following two command lines are exactly equivalent:

:foo a b "c d" e f
foo "a b \"c d\" e f"

4.2.2 Using an OS terminal

DFHack commands can be run from an OS terminal at startup, using ‘+ args’, or at any other time using the dfhack-run
executable.

If DF/DFHack is started with arguments beginning with +, the remaining text is treated as a command in the DFHack
console. It is possible to use multiple such commands, which are split on +. For example:

./dfhack +load-save region1
"Dwarf Fortress.exe" +devel/print-args Hello! +enable workflow

The first example (*nix), load-save, skips the main menu and loads region1 immediately. The second (Windows)
example prints Hello! in the DFHack console, and enables workflow. Note that the :foo syntax for whitespace in
arguments is not compatible with ‘+ args’.

20 Chapter 4. DFHack Core

DFHack Documentation, Release 50.11-r4

dfhack-run

If DF and DFHack are already running, calling dfhack-run my command in an external terminal is equivalent to
calling my command in the DFHack console. Direct use of the DFHack console is generally easier, but dfhack-run
can be useful in a variety of circumstances:

• if the console is unavailable

– with the init setting PRINT_MODE:TEXT

– while running an interactive command (e.g. liquids or tiletypes)

• from external programs or scripts

• if DF or DFHack are not responding

Examples:

./dfhack-run cursecheck
dfhack-run kill-lua

The first (*nix) example checks for vampires; the second (Windows) example uses kill-lua to stop a Lua script.

Note: dfhack-run attempts to connect to a server on TCP port 5000. If DFHack was unable to start this server,
dfhack-run will not be able to connect. This could happen if you have other software listening on port 5000, or if
you have multiple copies of DF running simultaneously. To assign a different port, see Server configuration.

4.3 Configuration files

Most DFHack settings can be changed by modifying files in the dfhack-config folder (which is in the DF folder).
The default versions of these files, if they exist, are in dfhack-config/default and are installed when DFHack starts
if necessary.

4.3.1 Init files

• dfhack*.init

• onLoad*.init

• onMapLoad*.init

• onMapUnload*.init and onUnload*.init

• init.d/*.lua

DFHack allows users to automatically run commonly-used DFHack commands when DF is first loaded, when a world
is loaded, when a map is loaded, when a map is unloaded, and when a world is unloaded.

Init scripts function the same way they would if the user manually typed in their contents, but are much more convenient.
In order to facilitate savegave portability, mod merging, and general organization of init files, DFHack supports multiple
init files both in the main DF directory and save-specific init files in the save folders.

DFHack looks for init files in two places each time they could be run:

1. The dfhack-config/init subdirectory in the main DF directory and

4.3. Configuration files 21

DFHack Documentation, Release 50.11-r4

2. save/world/init, where {world} is the current save

For each of those directories, all matching init files will be executed in alphabetical order.

Before running matched init scripts in any of those locations, the dfhack-config/init/default.* file that matches
the event will be run to load DFHack defaults. Only the dfhack-config/init directory is checked for this file, not
any save directories. If you want DFHack to load without running any of its default configuration commands, edit the
dfhack-config/init/default.* files and comment out the commands you see there.

When reading commands from the init files or with the script command, if the final character on a line is a backslash
then the next uncommented line is considered a continuation of that line, with the backslash deleted. Commented lines
are skipped, so it is possible to comment out parts of a command with the # character.

dfhack*.init

On startup, DFHack looks for files of the form dfhack*.init (where * is a placeholder for any string, including the
empty string).

These files are best used for keybindings and enabling persistent tools which do not require a world to be loaded.

onLoad*.init

When a world is loaded, DFHack looks for files of the form onLoad*.init, where * can be any string, including the
empty string.

A world being loaded can mean a fortress, an adventurer, or legends mode.

These files are best used for non-persistent commands, such as setting a bugfix-tag-index script to run on repeat.

onMapLoad*.init

When a map is loaded, either in adventure or fort mode, DFHack looks for files of the form onMapLoad*.init, where
* can be any string, including the empty string.

These files are best used for commands that are only relevant once there is a game map loaded.

onMapUnload*.init and onUnload*.init

When a map or world is unloaded, DFHack looks for files of the form onMapUnload*.init or onUnload*.init,
respectively.

Modders often use unload init scripts to disable tools which should not run after a modded save is unloaded.

init.d/*.lua

Any lua script named init.d/*.lua, in the save or main DF directory, will be run when any world or that save is
loaded.

22 Chapter 4. DFHack Core

DFHack Documentation, Release 50.11-r4

4.3.2 Script paths

Script paths are folders that DFHack searches to find a script when a command is run. By default, the following folders
are searched, in order (relative to the root DF folder):

1. dfhack-config/scripts

2. save/world/scripts (only if a save is loaded)

3. hack/scripts

4. data/installed_mods/... (see below)

For example, if teleport is run, these folders are searched in order for teleport.lua, and the first matching file is
run.

Scripts in installed mods

Scripts in mods are automatically added to the script path. The following directories are searched for mods:

../../workshop/content/975370/ (the DF Steam workshop directory)
mods/
data/installed_mods/

Each mod can have two directories that contain scripts:

• scripts_modactive/ is added to the script path if and only if the mod is active in the loaded world.

• scripts_modinstalled/ is added to the script path as long as the mod is installed in one of the searched
mod directories.

Multiple versions of a mod may be installed at the same time. If a mod is active in a loaded world, then the scripts for
the version of the mod that is active will be added to the script path. Otherwise, the latest version of each mod is added
to the script path.

Scripts for active mods take precedence according to their load order when you generated the current world.

Scripts for non-active mods are ordered by their containing mod’s ID.

For example, the search paths for mods might look like this:

activemod_last_in_load_order/scripts_modactive
activemod_last_in_load_order/scripts_modinstalled
activemod_second_to_last_in_load_order/scripts_modactive
activemod_second_to_last_in_load_order/scripts_modinstalled
...
inactivemod1/scripts_modinstalled
inactivemod2/scripts_modinstalled
...

Not all mods will have script directories, of course, and those mods will not be added to the script search path. Mods are
re-scanned whenever a world is loaded or unloaded. For more information on scripts and mods, check out the DFHack
modding guide.

4.3. Configuration files 23

DFHack Documentation, Release 50.11-r4

Custom script paths

Script paths can be added by modifying dfhack-config/script-paths.txt. Each line should start with one of
these characters:

• +: adds a script path that is searched before the default paths (above)

• -: adds a script path that is searched after the default paths

• #: a comment (the line is ignored)

Paths can be absolute or relative - relative paths are interpreted relative to the root DF folder.

Tip

When developing scripts in the dfhack/scripts repo, it may be useful to add the path to your local copy of the repo with
+. This will allow you to make changes in the repo and have them take effect immediately, without needing to re-install
or copy scripts over manually.

Note that script-paths.txt is only read at startup, but the paths can also be modified programmatically at any time
through the Lua API .

4.4 Commandline options

In addition to Using an OS terminal to execute commands on startup, DFHack also recognizes a single commandline
option that can be specified on the commandline:

• --disable-dfhack: If this option is passed on the Dwarf Fortress commandline, then DFHack will be disabled
for the session. You will have to restart Dwarf Fortress without specifying this option in order to use DFHack. If
you are launching Dwarf Fortress from Steam, you can enter the option in the “Launch Options” text box in the
properties for the Dwarf Fortress app. Note that if you do this, DFHack will be disabled regardless of whether
you run Dwarf Fortress from its own app or DFHack’s. You will have to clear the DF Launch Options in order to
use DFHack again. Note that even if DFHack is disabled, stdout.txt and stderr.txt will still be redirected
to stdout.log and stderr.log, respectively.

4.5 Environment variables

DFHack’s behavior can be adjusted with some environment variables. For example, on UNIX-like systems:

DFHACK_SOME_VAR=1 ./dfhack

• DFHACK_DISABLE: if set, DFHack will not initialize, not even to redirect standard output or standard error. This
is provided as an alternative to the --disable-dfhack commandline parameter above for when environment
variables are more convenient.

• DFHACK_PORT: the port to use for the RPC server (used by dfhack-run and RemoteFortressReader among
others) instead of the default 5000. As with the default, if this port cannot be used, the server is not started. See
DFHack remote interface for more details.

• DFHACK_DISABLE_CONSOLE: if set, the DFHack console is not set up. This is the default behavior if
PRINT_MODE:TEXT is set in data/init/init.txt. Intended for situations where DFHack cannot run in a
terminal window.

24 Chapter 4. DFHack Core

https://github.com/DFHack/scripts/tree/master/

DFHack Documentation, Release 50.11-r4

• DFHACK_HEADLESS: if set, and PRINT_MODE:TEXT is set, DF’s display will be hidden, and the console will be
started unless DFHACK_DISABLE_CONSOLE is also set. Intended for non-interactive gameplay only.

• DFHACK_NO_GLOBALS, DFHACK_NO_VTABLES: ignores all global or vtable addresses in symbols.xml, respec-
tively. Intended for development use - e.g. to make sure tools do not crash when these addresses are missing.

• DFHACK_NO_DEV_PLUGINS: if set, any plugins from the plugins/devel folder that are built and installed will not
be loaded on startup.

• DFHACK_LOG_MEM_RANGES (macOS only): if set, logs memory ranges to stderr.log. Note that devel/lsmem
can also do this.

• DFHACK_ENABLE_LUACOV: if set, enables coverage analysis of Lua scripts. Use the devel/luacov script to generate
coverage reports from the collected metrics.

Other (non-DFHack-specific) variables that affect DFHack:

• TERM: if this is set to dumb or cons25 on *nix, the console will not support any escape sequences (arrow keys,
etc.).

• LANG, LC_CTYPE: if either of these contain “UTF8” or “UTF-8” (not case sensitive), DF2CONSOLE()will produce
UTF-8-encoded text. Note that this should be the case in most UTF-8-capable *nix terminal emulators already.

4.6 Core preferences

There are a few settings that can be changed dynamically via gui/control-panel to affect runtime behavior. You can
also toggle these from the commandline using the lua command, e.g. lua dfhack.HIDE_ARMOK_TOOLS=true or by
editing the generated dfhack-config/init/dfhack.control-panel-preferences.init file and restarting DF.

• dfhack.HIDE_CONSOLE_ON_STARTUP: Whether to hide the external DFHack terminal window on startup. This,
of course, is not useful to change dynamically. You’ll have to use gui/control-panel or edit the init file directly
and restart DF for it to have an effect.

• dfhack.HIDE_ARMOK_TOOLS: Whether to hide “armok” tools in command lists.

4.7 Miscellaneous notes

This section is for odd but important notes that don’t fit anywhere else.

• If a DF H hotkey is named with a DFHack command, pressing the corresponding Fx button will run that command,
instead of zooming to the set location. This feature will be removed in a future version. (see Issue 731)

• The binaries for 0.40.15-r1 to 0.34.11-r4 are on DFFD. Older versions are available here. These files will even-
tually be migrated to GitHub. (see Issue 473)

4.6. Core preferences 25

https://github.com/DFHack/dfhack/issues/731
https://dffd.bay12games.com/search.php?string=DFHack&id=15&limit=1000
https://dethware.org/dfhack/download
https://github.com/DFHack/dfhack/issues/473

DFHack Documentation, Release 50.11-r4

26 Chapter 4. DFHack Core

CHAPTER

FIVE

DFHACK TOOLS

DFHack comes with a lot of tools. This page attempts to make it clearer what they are, how they work, and how to find
the ones you want.

Contents

• What tools are and how they work

• Finding the tool you need

• DFHack tools by game mode

• DFHack tools by theme

• DFHack tools by what they affect

• All DFHack tools alphabetically

5.1 What tools are and how they work

DFHack is a Dwarf Fortress memory access and modification framework, so DFHack tools normally access Dwarf
Fortress internals and make some specific changes.

Some tools just make a targeted change when you run them, like unforbid, which scans through all your items and
removes the forbidden flag from each of them.

Some tools need to be enabled, and then they run in the background and make changes to the game on your behalf, like
autobutcher, which monitors your livestock population and automatically marks excess animals for butchering.

And some tools just exist to give you information that is otherwise hard to come by, like gui/petitions, which shows
you the active petitions for guildhalls and temples that you have agreed to.

5.2 Finding the tool you need

DFHack tools are tagged with categories to make them easier to find. These categories are listed in the next few sections.
Note that a tool can belong to more than one category. If you already know what you’re looking for, try the search or
Ctrl-F on this page. If you’d like to see the full list of tools in one flat list, please refer to the annotated index.

Some tools are part of our back catalog and haven’t been updated yet for v50 of Dwarf Fortress. These tools are tagged
as unavailable. They will still appear in the alphabetical list at the bottom of this page, but unavailable tools will not
listed in any of the indices.

27

DFHack Documentation, Release 50.11-r4

5.3 DFHack tools by game mode

• adventure Tools that are useful while in adventure mode. Note that some tools only tagged with “fort” might
also work in adventure mode, but not always in expected ways. Feel free to experiment, though!

• dfhack Tools that you use to run DFHack commands or interact with the DFHack library. This tag also includes
tools that help you manage the DF game itself (e.g. quicksave, etc.)

• embark Tools that are useful while on the fort embark screen or while creating an adventurer.

• fort Tools that are useful while in fort mode.

• legends Tools that are useful while in legends mode.

5.4 DFHack tools by theme

• armok Tools which give the player god-like powers of any variety, such as control over game events, creating
items from thin air, or viewing information the game intentionally keeps hidden. Players that do not wish to
see these tools listed in DFHack command lists can hide them in the Preferences tab of gui/control-panel.

• auto Tools that run in the background and automatically manage routine, toilsome aspects of your fortress.

• bugfix Tools that fix specific bugs, either permanently or on-demand.

• design Tools that help you design your fort.

• dev Tools that are useful when developing scripts or mods.

• fps Tools that help you manage FPS drop.

• gameplay Tools that introduce new gameplay elements.

• inspection Tools that let you view information that is otherwise difficult to find.

• productivity Tools that help you do things that you could do manually, but using the tool is better and faster.

5.5 DFHack tools by what they affect

• animals Tools that interact with animals.

• buildings Tools that interact with buildings and furniture.

• graphics Tools that interact with game graphics.

• interface Tools that interact with or extend the DF user interface.

• items Tools that interact with in-game items.

• jobs Tools that interact with jobs.

• labors Tools that deal with labor assignment.

• map Tools that interact with the game map.

• military Tools that interact with the military.

• plants Tools that interact with trees, shrubs, and crops.

• stockpiles Tools that interact with stockpiles.

• units Tools that interact with units.

28 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• workorders Tools that interact with workorders.

5.6 All DFHack tools alphabetically

5.6.1 3dveins

Tags: fort | gameplay | map

Command: 3dveins

Rewrite layer veins to expand in 3D space.

Existing, flat veins are removed and new 3D veins that naturally span z-levels are generated in their place. The trans-
formation preserves the mineral counts reported by prospector.

Usage

3dveins [verbose]

The verbose option prints out extra information to the console.

Example

3dveins

New veins are generated using natural-looking 3D Perlin noise in order to produce a layout that flows smoothly between
z-levels. The vein distribution is based on the world seed, so running the command for the second time should produce
no change. It is best to run it just once immediately after embark.

This command is intended as only a cosmetic change, so it takes care to exactly preserve the mineral counts reported by
prospect all. The amounts of layer stones may slightly change in some cases if vein mass shifts between z layers.

The only undo option is to restore your save from backup.

5.6.2 RemoteFortressReader

Tags: dev | graphics

Backend for Armok Vision.

Command: RemoteFortressReader_version

Print the loaded RemoteFortressReader version.

5.6. All DFHack tools alphabetically 29

DFHack Documentation, Release 50.11-r4

Command: load-art-image-chunk

Gets an art image chunk by index.

This plugin provides an API for realtime remote fortress visualization. See Armok Vision.

Usage

RemoteFortressReader_version Print the loaded RemoteFortressReader version.

load-art-image-chunk <chunk id> Gets an art image chunk by index, loading from disk if necessary.

5.6.3 adaptation

Tags: unavailable

Command: adaptation

Adjust a unit’s cave adaptation level.

View or set level of cavern adaptation for the selected unit or the whole fort.

Usage

adaptation show him|all
adaptation set him|all <value>

The value must be between 0 and 800,000 (inclusive), with higher numbers representing greater levels of cave adap-
tation.

Examples

adaptation set all 0 Clear the cave adaptation levels for all dwarves.

5.6.4 add-recipe

Tags: adventure | fort | gameplay

Command: add-recipe

Add crafting recipes to a civ.

Civilizations pick randomly from a pool of possible recipes, which means, for example, not all civs get high boots. This
script can help fix that. Only weapons, armor, and tools are currently supported; dynamically generated item types like
instruments are not.

30 Chapter 5. DFHack tools

http://www.bay12forums.com/smf/index.php?topic=146473

DFHack Documentation, Release 50.11-r4

Usage

add-recipe (all|native)
add-recipe single <item token>

Examples

add-recipe native Add all crafting recipes that your civ could have chosen from its pool, but did not.

add-recipe all Add all available weapons and armor, including exotic items like blowguns, two-handed swords,
and capes.

add-recipe single SHOES:ITEM_SHOES_BOOTS Allow your civ to craft high boots.

5.6.5 add-spatter

Tags: adventure | fort | gameplay | items

Add poisons and magical effects to weapons.

Give some use to all those poisons that can be bought from caravans! The plugin automatically enables itself when you
load a world with reactions that include names starting with SPATTER_ADD_, so there are no commands to run to use
it. These reactions will then produce contaminants on items instead of improvements. The contaminants are immune
to being washed away by water or destroyed by cleaners.

You must have a mod installed that adds the appropriate tokens in order for this plugin to do anything.

5.6.6 add-thought

Tags: unavailable

Command: add-thought

Adds a thought to the selected unit.

Usage

add-thought --gui [--unit <id>] Allows you to choose the thought to apply to the selected (or specified) unit
through a series of graphical prompts.

add-thought [--unit <id>] [<options>] Add a thought to the selected (or specified) unit.

5.6. All DFHack tools alphabetically 31

DFHack Documentation, Release 50.11-r4

Examples

add-thought --gui Add a thought to the unit currently selected in the UI.

add-thought --unit 23142 --emotion GRATITUDE --thought GoodMeal --strength 1 Make unit
23142 feel a light sense of gratitude for eating a good meal.

Options

--emotion <id> Specifies an emotion for the unit to associate with the given thought. To see a list of possible
emotions, run :lua @df.emotion_type. If not specified, defaults to -1 (i.e. no emotion).

--thought <id> The thought. To see a list of possible thoughts, run :lua @df.unit_thought_type. If not
specified, defaults to 180, or NeedsUnfulfilled. The id could also be the name of a syndrome. To see
a list of syndromes in your world, run devel/query --table df.global.world.raws.syndromes.all
--search syn_name --maxdepth 1. The id is the numerical index and the syn_name field is the name.

--subthought <id> The subthought identifier. If the thought is the name of a syndrome, then the subthought should
be the syndrome id. If not specified, defaults to 0 (which is what you want for most thought types).

--strength <strength> The strength of the emotion, corresponding to the strength of the need that this emotion
might cause or fulfill. Common values for this are 1 (Slight need), 2 (Moderate need), 5 (Strong need), and 10
(Intense need). If not specified, defaults to 0.

--severity <severity> If the thought is the name of a syndrome, then the severity will be used as the severity of
the syndrome.

5.6.7 adv-fix-sleepers

Tags: unavailable

Command: adv-fix-sleepers

Fix units who refuse to awaken in adventure mode.

Use this tool if you encounter sleeping units who refuse to awaken regardless of talking to them, hitting them, or waiting
so long you die of thirst (Bug 6798). If you come across one or more bugged sleepers in adventure mode, simply run
the script and all nearby sleepers will be cured.

Usage

adv-fix-sleepers

32 Chapter 5. DFHack tools

https://www.bay12games.com/dwarves/mantisbt/view.php?id=6798

DFHack Documentation, Release 50.11-r4

5.6.8 adv-max-skills

Tags: unavailable

Command: adv-max-skills

Raises adventurer stats to max.

When creating an adventurer, raises all changeable skills and attributes to their maximum level.

Usage

adv-max-skills

5.6.9 adv-rumors

Tags: unavailable

Command: adv-rumors

Improves the rumors menu in adventure mode.

In adventure mode, start a conversation with someone and then run this tool to improve the “Bring up specific incident
or rumor” menu. Specifically, this tool will:

• Move entries into a single line to improve readability

• Add a “slew” keyword for filtering, making it easy to find your kills and not your companions’

• Trim repetitive words from the text

Usage

adv-rumors

5.6.10 alias

Tags: dfhack

Command: alias

Configure helper aliases for other DFHack commands.

5.6. All DFHack tools alphabetically 33

DFHack Documentation, Release 50.11-r4

Aliases are resolved immediately after built-in commands, which means that an alias cannot override a built-in com-
mand, but can override a command implemented by a plugin or script.

Usage

alias list Lists all configured aliases

alias add <name> <command> [arguments...] Adds an alias

alias replace <name> <command> [arguments...] Replaces an existing alias with a new command, or adds
the alias if it does not already exist

alias delete <name> Removes the specified alias

Aliases can be given additional arguments when created and invoked, which will be passed to the underlying command
in order.

Example

[DFHack]# alias add pargs devel/print-args example
[DFHack]# pargs text
example
text

5.6.11 allneeds

Tags: fort | units

Command: allneeds

Show the cumulative needs of all citizens.

Provides an overview of the needs of the fort in general, output is sorted to show most unfullfiled needs.

Usage

allneeds

5.6.12 animal-control

Tags: fort | productivity | animals

Command: animal-control

Quickly view, butcher, or geld groups of animals.

34 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Animal control is useful for browsing through your animals and deciding which to butcher or geld based on their stats.

Usage

animal-control [<selection options>] [<command options>]

Examples

animal-control --all View all your animals and whether they are marked for gelding or butchering.

animal-control --race DOG --showstats View extended info on your dogs.

animal-control --markfor gelding --id 1988 Mark the specified unit for gelding.

animal-control --gelded --markfor slaughter Mark all gelded animals for slaughter.

animal-control --gelded --markedfor slaughter --unmarkfor slaughter Unmark all gelded animals
for slaughter.

Selection options

These options are used to specify what animals you want to select. If an option calls for an <action>, valid actions
are slaughter and gelding.

--all Selects all units. This is the default if no selection options are specified.

--id <value> Selects the unit with the specified id.

--race <value> Selects units which match the specified race. This can be the string name or the numeric race id.
Run animal-control --all to see which races you have right now.

--markedfor <action> Selects units which have been marked for the given action.

--notmarkedfor <action> Selects units which have not been marked for the given action.

--gelded Selects units which have already been gelded.

--notgelded Selects units which have not been gelded.

--male Selects male units.

--female Selects female units.

Command options

If no command option is specified, the default is to just list the matched animals with some basic information.

--showstats Displays physical attributes of the selected animals.

--markfor <action> Marks selected animals for the given action.

--unmarkfor <action> Unmarks selected animals for the given action.

5.6. All DFHack tools alphabetically 35

DFHack Documentation, Release 50.11-r4

Column abbreviations

Due to space constraints, the names of some output columns are abbreviated as follows:

• str: strength

• agi: agility

• tgh: toughness

• endur: endurance

• recup: recuperation

• disres: disease resistance

5.6.13 armoks-blessing

Tags: fort | armok | units

Command: armoks-blessing

Bless units with superior stats and traits.

Runs the equivalent of rejuvenate, elevate-physical, elevate-mental, and brainwash on all dwarves currently on the
map. This is an extreme change, which sets every stat and trait to an ideal easy-to-satisfy preference.

Usage

armoks-blessing Adjust stats and personalities to an ideal for all dwarves. No skills will be modified.

armoks-blessing all In addition to the stat and personality adjustments, set all skills for all dwarves to legendary.

armoks-blessing list Prints list of all skills.

armoks-blessing classes Prints list of all skill classes (i.e. named groups of skills).

armoks-blessing <skill name> Set a specific skill for all dwarves to legendary.

armoks-blessing <class name> Set a specific class (group of skills) for all dwarves to legendary.

Examples

armoks-blessing Medical All dwarves will have all medical related skills set to legendary.

armoks-blessing RANGED_COMBAT All dwarves become legendary archers.

36 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.14 assign-attributes

Tags: fort | armok | units

Command: assign-attributes

Adjust physical and mental attributes.

Attributes are divided into tiers from -4 to 4. Tier 0 is the standard level and represents the average values for that
attribute, tier 4 is the maximum level, and tier -4 is the minimum level.

For more information on attributes, please see the wiki.

Usage

assign-attributes [--unit <id>] <options>

Please run:

devel/query --table df --maxdepth 1 --search [physical_attribute_type mental_attribute_
→˓type]

to see the list of valid attribute tokens.

Example

assign-attributes --reset --attributes [STRENGTH 2 AGILITY -1 SPATIAL_SENSE -1]

This will reset all attributes to a neutral value and will then set the following values (the ranges will differ based on
race; this example assumes a dwarf is selected in the UI):

• Strength: a random value between 1750 and 1999 (tier 2);

• Agility: a random value between 401 and 650 (tier -1);

• Spatial sense: a random value between 1043 and 1292 (tier -1).

The final result will be: “She is very strong, but she is clumsy. She has a questionable spatial sense.”

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--attributes [<attribute> <tier> [<attribute> <tier> ...]] The list of the attributes to modify and
their tiers. The valid attribute names can be found in the Attribute (substitute any space with underscores). Tiers
range from -4 to 4. There must be a space before and after each square bracket.

--reset Reset all attributes to the average level (tier 0). If both this option and attributes are specified, the unit
attributes will be reset and then the listed attributes will be modified.

5.6. All DFHack tools alphabetically 37

https://dwarffortresswiki.org/Attribute
https://dwarffortresswiki.org/Attribute

DFHack Documentation, Release 50.11-r4

Tiers

The tier corresponds to the text that DF will use to describe a unit with attributes in that tier’s range. For example, here
is the mapping for the “Strength” attribute:

Tier Description
4 unbelievably strong
3 mighty
2 very strong
1 strong
0 (no description)
-1 weak
-2 very weak
-3 unquestionably weak
-4 unfathomably weak

5.6.15 assign-beliefs

Tags: fort | armok | units

Command: assign-beliefs

Adjust a unit’s beliefs and values.

Beliefs are defined with the belief token and a number from -3 to 3, which describes the different levels of belief
strength, as explained on the wiki.

Usage

assign-beliefs [--unit <id>] <options>

Please run devel/query --table df.value_type to see the list of valid belief tokens.

Example

assign-beliefs --reset --beliefs [TRADITION 2 CRAFTSMANSHIP 3 POWER 0 CUNNING -1]

Resets all the unit beliefs, then sets the listed beliefs to the following values:

• Tradition: a random value between 26 and 40 (level 2);

• Craftsmanship: a random value between 41 and 50 (level 3);

• Power: a random value between -10 and 10 (level 0);

• Cunning: a random value between -25 and -11 (level -1).

The final result (for a dwarf) will be: “She personally is a firm believer in the value of tradition and sees guile and
cunning as indirect and somewhat worthless.”

Note that the beliefs aligned with the cultural values of the unit have not triggered a report.

38 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Personality_trait

DFHack Documentation, Release 50.11-r4

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--beliefs [<belief> <level> [<belief> <level> ...]] The list of the beliefs to modify and their levels.
The valid belief tokens can be found in the Personality_trait (substitute any space with underscores). Levels range
from -3 to 3. There must be a space before and after each square bracket.

--reset Reset all beliefs to a neutral level, aligned with the unit’s race’s cultural values. If both this option and
--beliefs are specified, the unit’s beliefs will be reset and then the listed beliefs will be modified.

Belief strengths

The belief strength corresponds to the text that DF will use to describe a unit’s beliefs:

Strength Effect
3 Highest
2 Very High
1 High
0 Neutral
-1 Low
-2 Very Low
-3 Lowest

Resetting a belief means setting it to a level that does not trigger a report in the “Thoughts and preferences” screen,
which is dependent on the race of the unit.

5.6.16 assign-facets

Tags: fort | armok | units

Command: assign-facets

Adjust a unit’s facets and traits.

Facets are defined with a token and a number from -3 to 3, which describes the different levels of facet strength, as
explained on the wiki

Usage

assign-facets [--unit <id>] <options>

Please run devel/query --table df.personality_facet_type to see a list of valid facet tokens.

5.6. All DFHack tools alphabetically 39

https://dwarffortresswiki.org/Personality_trait
https://dwarffortresswiki.org/Personality_trait

DFHack Documentation, Release 50.11-r4

Example

assign-facets --reset --facets [HATE_PROPENSITY -2 CHEER_PROPENSITY -1]

Resets all the unit facets, then sets the listed facets to the following values:

• Hate propensity: a value between 10 and 24 (level -2);

• Cheer propensity: a value between 25 and 39 (level -1).

The final result (for a dwarf) will be: “She very rarely develops negative feelings toward things. She is rarely happy or
enthusiastic, and she is conflicted by this as she values parties and merrymaking in the abstract.”

Note that the facets are compared to the beliefs, and if conflicts arise they will be reported.

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--facets [<facet> <level> [<facet> <level> ...]] The list of the facets to modify and their levels. The
valid facet tokens can be found in the Personality_trait (substitute any space with underscores). Levels range from
-3 to 3. There must be a space before and after each square bracket.

--reset Reset all facets to a neutral level, aligned with the unit’s race’s cultural values. If both this option and
--facets are specified, the unit’s facets will be reset and then the listed facets will be modified.

Facet strengths

The facet strength corresponds to the text that DF will use to describe a unit’s facets:

Strength Effect
3 Highest
2 Very High
1 High
0 Neutral
-1 Low
-2 Very Low
-3 Lowest

Resetting a facet means setting it to a level that does not trigger a report in the “Thoughts and preferences” screen,
which is dependent on the race of the unit.

5.6.17 assign-goals

Tags: fort | armok | units

Command: assign-goals

Adjust a unit’s goals and dreams.

40 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Personality_trait

DFHack Documentation, Release 50.11-r4

Goals are defined with a goal token and a flag indicating whether the goal has been achieved. For now, this flag should
always be set to false. For a list of possible goals, please run devel/query --table df.goal_type or see the wiki.

Bear in mind that nothing will stop you from assigning zero or multiple goals, but it’s not clear how that will affect the
game.

Usage

assign-goals [--unit <id>] <options>

Example

assign-goals --reset --goals [MASTER_A_SKILL false]

Clears all the selected unit goals, then sets the “master a skill” goal. The final result will be: “dreams of mastering a
skill”.

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--goals [<goal> false [<goal> false ...]] The list of goals to add. The valid goal tokens can be found
in the Personality_trait (substitute any space with underscores). There must be a space before and after each
square bracket.

--reset Clear all goals. If both this option and --goals are specified, the unit’s goals will be cleared and then the
listed goals will be added.

5.6.18 assign-minecarts

Tags: fort | productivity

Command: assign-minecarts

Assign minecarts to hauling routes.

This script allows you to quickly assign minecarts to hauling routes without having to go through the in-game interface.

Note that a hauling route must have at least one stop defined before a minecart can be assigned to it.

5.6. All DFHack tools alphabetically 41

https://dwarffortresswiki.org/Personality_trait
https://dwarffortresswiki.org/Personality_trait

DFHack Documentation, Release 50.11-r4

Usage

assign-minecarts list Print information about your hauling routes, including whether they currently have
minecarts assigned to them.

assign-minecarts all|<route id> [-q|--quiet] Find and assign a free minecart to all hauling routes (or the
specified hauling route). Hauling routes that already have a minecart assigned to them are skipped.

Add -q or --quiet to suppress extra informational output.

Example

assign-minecarts all

5.6.19 assign-preferences

Tags: fort | armok | units

Command: assign-preferences

Adjust a unit’s preferences.

You will need to know the token of the object you want your dwarf to like. You can find them in the wiki, otherwise in
the folder “/raw/objects/” under the main DF directory you will find all the raws defined in the game.

For more information, please see the wiki.

Note the last three types of preferences (“like poetic form”, “like musical form”, and “like dance form”) are not sup-
ported by this script.

Usage

assign-goals [--unit <id>] <options>

Examples

• “likes alabaster and willow wood”:

assign-preferences --reset --likematerial [INORGANIC:ALABASTER PLANT:WILLOW:WOOD]

• “likes sparrows for their . . . ”:

assign-preferences --reset --likecreature SPARROW

• “prefers to consume dwarven wine, olives and yak”:

assign-preferences --reset --likefood [PLANT:MUSHROOM_HELMET_PLUMP:DRINK␣
→˓PLANT:OLIVE:FRUIT CREATURE_MAT:YAK:MUSCLE]

• “absolutely detests jumping spiders:

42 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Preferences

DFHack Documentation, Release 50.11-r4

assign-preferences --reset --hatecreature SPIDER_JUMPING

• “likes logs and battle axes”:

assign-preferences --reset --likeitem [WOOD ITEM_WEAPON:ITEM_WEAPON_AXE_BATTLE]

• “likes strawberry plants for their . . . ”:

assign-preferences --reset --likeplant BERRIES_STRAW

• “likes oaks for their . . . ”:

assign-preferences --reset --liketree OAK

• “likes the color aqua”:

assign-preferences --reset --likecolor AQUA

• “likes stars”:

assign-preferences --reset --likeshape STAR

Options

For each of the parameters that take lists of tokens, if there is a space in the token name, please replace it with an
underscore. Also, there must be a space before and after each square bracket. If only one value is provided, the square
brackets can be omitted.

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--likematerial [<token> [<token> ...]] This is usually set to three tokens: a type of stone, a type of metal,
and a type of gem. It can also be a type of wood, glass, leather, horn, pearl, ivory, a decoration material - coral
or amber, bone, shell, silk, yarn, or cloth. Please include the full tokens, not just a part.

--likecreature [<token> [<token> ...]] For this preference, you can just list the species as the token. For
example, a creature token can be something like CREATURE:SPARROW:SKIN. Here, you can just say SPARROW.

--likefood [<token> [<token> ...]] This usually contains at least a type of alcohol. It can also be a type
of meat, fish, cheese, edible plant, cookable plant/creature extract, cookable mill powder, cookable plant seed,
or cookable plant leaf. Please write the full tokens.

--hatecreature [<token> [<token> ...]] As in --likecreature above, you can just list the species in
the token. The creature should be a type of HATEABLE vermin which isn’t already explicitly liked, but no check
is performed to enforce this.

--likeitem [<token> [<token> ...]] This can be a kind of weapon, a kind of ammo, a piece of armor, a
piece of clothing (including backpacks or quivers), a type of furniture (doors, floodgates, beds, chairs, win-
dows, cages, barrels, tables, coffins, statues, boxes, armor stands, weapon racks, cabinets, bins, hatch covers,
grates, querns, millstones, traction benches, or slabs), a kind of craft (figurines, amulets, scepters, crowns, rings,
earrings, bracelets, or large gems), or a kind of miscellaneous item (catapult parts, ballista parts, a type of siege
ammo, a trap component, coins, anvils, totems, chains, flasks, goblets, buckets, animal traps, an instrument, a toy,
splints, crutches, or a tool). The item tokens can be found here: https://dwarffortresswiki.org/index.php/DF2014:
Item_token If you want to specify an item subtype, look into the files listed under the column “Subtype” of the
wiki page (they are in the “/raw/objects/” folder), then specify the items using the full tokens found in those files
(see examples in this help).

5.6. All DFHack tools alphabetically 43

https://dwarffortresswiki.org/index.php/DF2014:Item_token
https://dwarffortresswiki.org/index.php/DF2014:Item_token

DFHack Documentation, Release 50.11-r4

--likeplant [<token> [<token> ...]] As in --likecreature above, you can just list the tree or plant
species in the token.

--likecolor [<token> [<token> ...]] You can find the color tokens here: https://dwarffortresswiki.org/
index.php/DF2014:Color#Color_tokens or inside the “descriptor_color_standard.txt” file (in the “/raw/objects/”
folder). You can use the full token or just the color name.

--likeshape [<token> [<token> ...]] I couldn’t find a list of shape tokens in the wiki, but you can find them
inside the “descriptor_shape_standard.txt” file (in the “/raw/objects/” folder). You can use the full token or just
the shape name.

--reset Clear all preferences. If the script is called with both this option and one or more preferences, first all the
unit preferences will be cleared and then the listed preferences will be added.

5.6.20 assign-profile

Tags: unavailable

Command: assign-profile

Adjust characteristics of a unit according to saved profiles.

This tool can load a profile stored in a JSON file and apply the characteristics to a unit.

A profile can describe which attributes, skills, preferences, beliefs, goals, and facets a unit will have. The script relies
on the presence of the other assign-... modules in this collection; please refer to the other modules’ documentation
for more information on the kinds of characteristics you can set.

See the “hack/scripts/dwarf_profiles.json” file for examples of the json schema. Please make a new file with your own
additions, though, since the example file will get overwritten when you upgrade DFHack.

Usage

assign-profile [--unit <id>] <options>

Examples

• Loads and applies the profile called “DOCTOR” in the default json file, resetting the characteristics that are
changed by the profile:

assign-profile --profile DOCTOR --reset PROFILE

• Loads and applies a profile called “ARCHER” in a file you (the player) wrote. It keeps all the old characteristics
except the attributes and the skills, which will be reset (and then, if the profile provides some attributes or skills
values, those new values will be applied):

assign-profile --file /dfhack-config/assign-profile/military_profiles.json --
→˓profile ARCHER --reset [ATTRIBUTES SKILLS]

44 Chapter 5. DFHack tools

https://dwarffortresswiki.org/index.php/DF2014:Color#Color_tokens
https://dwarffortresswiki.org/index.php/DF2014:Color#Color_tokens

DFHack Documentation, Release 50.11-r4

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--file <filename> The json file containing the profile to apply. It’s a relative path, starting from the DF root direc-
tory and ending at the json file. It must begin with a slash. Default value: “/hack/scripts/dwarf_profiles.json”.

--profile <profile> The profile inside the json file to apply.

--reset [<list of characteristics>] The characteristics to be reset/cleared. If not present, it will not clear
or reset any characteristic, and it will simply add what is described in the profile. If it’s a valid list of characteris-
tics, those characteristics will be reset, and then what is described in the profile will be applied. If set to the string
PROFILE, it will reset only the characteristics directly modified by the profile (and then the new values described
will be applied). If set to ALL, it will reset EVERY characteristic and then it will apply the profile. Accepted
values are: ALL, PROFILE, ATTRIBUTES, SKILLS, PREFERENCES, BELIEFS, GOALS, and FACETS. There must be
a space before and after each square bracket. If only one value is provided, the square brackets can be omitted.

5.6.21 assign-skills

Tags: fort | armok | units

Command: assign-skills

Adjust a unit’s skills.

Skills are defined by their token and their rank. You can see a list of valid skill tokens by running devel/query
--table df.job_skill or by browsing the wiki.

Usage

assign-skills [--unit <id>] <options>

Example

assign-skills --reset --skills [WOODCUTTING 3 AXE 2]

Clears all the unit skills, then adds the Wood cutter skill (competent level) and the Axeman skill (adequate level).

Options

--unit <id> The target unit ID. If not present, the currently selected unit will be the target.

--skills [<skill> <rank> [<skill> <rank> ...]] The list of the skills to modify and their ranks. Rank
values range from -1 (the skill is not learned) to 20 (legendary + 5). It is actually possible to go beyond 20 (no
check is performed), but the effect on the game may not be predictable. There must be a space before and after
each square bracket.

--reset Clear all skills. If the script is called with both this option and --skills, first all the unit skills will be
cleared and then the listed skills will be added.

5.6. All DFHack tools alphabetically 45

https://dwarffortresswiki.org/Skill_token

DFHack Documentation, Release 50.11-r4

Skill ranks

Here is the mapping from rank value to description:

Rank Rank description
0 Dabbling
1 Novice
2 Adequate
3 Competent
4 Skilled
5 Proficient
6 Talented
7 Adept
8 Expert
9 Professional
10 Accomplished
11 Great
12 Master
13 High Master
14 Grand Master
15+ Legendary

For more information, please see: https://dwarffortresswiki.org/index.php/DF2014:Skill#Skill_level_names

5.6.22 autobutcher

Tags: fort | auto | fps | animals

Command: autobutcher

Automatically butcher excess livestock.

This plugin monitors how many pets you have of each gender and age and assigns excess livestock for slaughter. It
requires that you add the target race(s) to a watch list. Units will be ignored if they are:

• Untamed

• Nicknamed (for custom protection; you can use the rename unit tool individually, or zone nick for groups)

• Caged, if and only if the cage is in a zone (to protect zoos)

• Trained for war or hunting

Creatures who will not reproduce (because they’re not interested in the opposite sex or have been gelded) will be
butchered before those who will. Older adults and younger children will be butchered first if the population is above
the target (defaults are: 2 male kids, 4 female kids, 2 male adults, 4 female adults). Note that you may need to set a
target above 1 to have a reliable breeding population due to asexuality etc. See fix-ster if this is a problem.

46 Chapter 5. DFHack tools

https://dwarffortresswiki.org/index.php/DF2014:Skill#Skill_level_names

DFHack Documentation, Release 50.11-r4

Usage

enable autobutcher Start processing livestock according to the configuration. Note that no races are watched by
default. You have to add the ones you want to monitor with autobutcher watch, autobutcher target or
autobutcher autowatch.

autobutcher autowatch Automatically add all new races (animals you buy from merchants, tame yourself, or get
from migrants) to the watch list using the default target counts. This option is enabled by default.

autobutcher noautowatch Stop auto-adding new races to the watch list.

autobutcher target <fk> <mk> <fa> <ma> all|new|<race> [<race> ...] Set target counts for the spec-
ified races: - fk = number of female kids - mk = number of male kids - fa = number of female adults - ma =
number of female adults If you specify all, then this command will set the counts for all races on your current
watchlist (including the races which are currently set to ‘unwatched’) and sets the new default for future watch
commands. If you specify new, then this command just sets the new default counts for future watch commands
without changing your current watchlist. Otherwise, all space separated races listed will be modified (or added
to the watchlist if they aren’t there already).

autobutcher ticks <ticks> Change the number of ticks between scanning cycles when the plugin is enabled. By
default, a cycle happens every 6000 ticks (about 8 game days).

autobutcher watch all|<race> [<race> ...] Start watching the listed races. If they aren’t already in your
watchlist, then they will be added with the default target counts. If you specify the keyword all, then all races
in your watchlist that are currently marked as unwatched will become watched.

autobutcher unwatch all|<race> [<race> ...] Stop watching the specified race(s) (or all races on your
watchlist if all is given). The current target settings will be remembered.

autobutcher forget all|<race> [<race> ...] Unwatch the specified race(s) (or all races on your watchlist if
all is given) and forget target settings for it/them.

autobutcher [list] Print status and current settings, including the watchlist. This is the default command if auto-
butcher is run without parameters.

autobutcher list_export Print commands required to set the current settings in another fort.

To see a list of all races, run this command:

devel/query --table df.global.world.raws.creatures.all --search ^creature_id --maxdepth 1

Though not all the races listed there are tameable/butcherable.

Note: Settings and watchlist are stored in the savegame, so you can have different settings for each save. If you want
to copy your watchlist to another, savegame, you can export the commands required to recreate your settings.

To export, open an external terminal in the DF directory, and run dfhack-run autobutcher list_export >
filename.txt. To import, load your new save and run script filename.txt in the DFHack terminal.

5.6. All DFHack tools alphabetically 47

DFHack Documentation, Release 50.11-r4

Examples

Keep at most 7 kids (4 female, 3 male) and at most 3 adults (2 female, 1 male) for turkeys. Once the kids grow up, the
oldest adults will get slaughtered. Excess kids will get slaughtered starting the the youngest to allow that the older ones
grow into adults:

autobutcher target 4 3 2 1 BIRD_TURKEY

Configure useful limits for dogs, cats, geese (for eggs, leather, and bones), alpacas, sheep, and llamas (for wool), and
pigs (for milk and meat). All other unnamed tame units will be marked for slaughter as soon as they arrive in your
fortress:

enable autobutcher
autobutcher target 2 2 2 2 DOG
autobutcher target 1 1 2 2 CAT
autobutcher target 50 50 14 2 BIRD_GOOSE
autobutcher target 2 2 4 2 ALPACA SHEEP LLAMA
autobutcher target 5 5 6 2 PIG
autobutcher target 0 0 0 0 new

5.6.23 autochop

Tags: fort | auto | plants

Command: autochop

Auto-harvest trees when low on stockpiled logs.

This plugin can automatically designate trees for chopping when your stocks are low on logs. It can also ensure specified
burrows are kept clear of trees, so, for example, caravans always have a path to your depot and trees won’t grow close
to your walls, giving invaders an unexpected path into your fort.

Autochop checks your stock of logs and designates appropriate trees for chopping once every in-game day. Logs that
are forbidden or inaccessible (e.g. in hidden parts of the map, under water, etc.) are not counted towards your target.
Trees that are inaccessible are likewise never designated.

Please see gui/autochop for the interactive configuration dialog.

Usage

enable autochop
autochop [status]
autochop (designate|undesignate)
autochop target <max> [<min>]
autochop (chop|nochop) <burrow>[,<burrow>...]
autochop (clearcut|noclearcut) <burrow>[,<burrow>...]
autochop (protect|unprotect) <type>[,<type>...] <burrow>[,<burrow>...]

48 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

Ensure we always have about 200 logs in stock, harvested from accessible trees anywhere on the map:

enable autochop

Ensure we always have about 500 logs in stock, harvested from a burrow named “TreeFarm”. Also ensure the caravan
pathway and the area around the outer wall (“CaravanPath” and “OuterWall”) are always clear:

enable autochop
autochop target 500
autochop chop TreeFarm
autochop clearcut CaravanPath,OuterWall

Clear all non-food-producing trees out of a burrow (“PicnicArea”) intended to contain only food-producing trees:

autochop clearcut PicnicArea
autochop protect brewable,edible,cookable PicnicArea
autochop designate

Commands

status Show current configuration and relevant statistics.

designate Designate trees for chopping right now according to the current configuration. This works even if
autochop is not currently enabled.

undesignate Undesignates all trees.

target <max> [<min>] Set the target range for the number of logs you want to have in stock. If a minimum amount
is not specified, it defaults to 20% less than the maximum. The default target is 200 (with a corresponding
minimum of 160).

(no)chop <burrow>[,<burrow>...] Instead of choosing trees across the whole game map, restrict tree cutting to
the given burrows. Burrows can be specified by name or internal ID.

(no)clearcut <burrow>[,<burrow>...] Ensure the given burrows are always clear of trees. As soon as a tree
appears in any of these burrows, it is designated for chopping at priority 2.

(un)protect <type>[,<type>...] <burrow>[,<burrow>...] Choose whether to exclude trees from chopping
that produce any of the given types of food. Valid types are: brewable, edible, and cookable.

5.6.24 autoclothing

Tags: fort | auto | workorders

Command: autoclothing

Automatically manage clothing work orders.

This command allows you to set how many of each clothing type every citizen should have.

5.6. All DFHack tools alphabetically 49

DFHack Documentation, Release 50.11-r4

Usage

autoclothing
autoclothing <material> <item> [quantity]

material can be “cloth”, “silk”, “yarn”, or “leather”. The item can be anything your civilization can produce, such
as “dress” or “mitten”.

When invoked without parameters, it shows a summary of all managed clothing orders, and the overall clothing situation
in your fort. When invoked with a material and item, but without a quantity, it shows the current configuration for that
material and item.

Examples

autoclothing cloth "short skirt" 10 Sets the desired number of cloth short skirts available per citizen to 10.

autoclothing cloth dress Displays the currently set number of cloth dresses chosen per citizen.

5.6.25 autodump

Tags: fort | armok | fps | items

Command: autodump

Instantly gather or destroy items marked for dumping.

Command: autodump-destroy-here

Destroy items marked for dumping under the keyboard cursor.

This tool can instantly move all unforbidden items marked for dumping to the tile under the keyboard cursor. After
moving the items, the dump flag is unset and the forbid flag is set, just as if it had been dumped normally. Be aware
that dwarves that are en route to pick up the item for dumping may still come and move the item to your dump zone.

The keyboard cursor must be placed on a floor tile so the items can be dumped there.

Usage

autodump [<options>]
autodump-destroy-here

autodump-destroy-here is an alias for autodump destroy-here and is intended for use as a keybinding.

50 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Options

destroy Destroy instead of dumping. Doesn’t require a cursor. If autodump is called again with this option before
the game is resumed, it cancels pending destroy actions.

destroy-here Destroy items marked for dumping under the cursor.

visible Only process items that are not hidden.

hidden Only process hidden items.

forbidden Only process forbidden items (default: only unforbidden).

Examples

autodump Teleports items marked for dumping to the cursor position.

autodump destroy Destroys all unforbidden items marked for dumping

autodump-destroy-here Destroys items on the selected tile that are marked for dumping.

5.6.26 autofarm

Tags: fort | auto | plants

Command: autofarm

Automatically manage farm crop selection.

Periodically scan your plant stocks and assign crops to your farm plots based on which plant stocks are low (as long as
you have the appropriate seeds). The target threshold for each crop type is configurable.

Usage

enable autofarm Enable the plugin and start managing crop assignment.

autofarm runonce Updates all farm plots once, without enabling the plugin.

autofarm status Prints status information, including any defined thresholds.

autofarm default <number> Sets the default threshold.

autofarm threshold <number> <type> [<type> ...] Sets thresholds of individual plant types.

You can find the identifiers for the crop types in your world by running the following command:

lua "for _,plant in ipairs(df.global.world.raws.plants.all) do if plant.flags.SEED then␣
→˓print(plant.id) end end"

5.6. All DFHack tools alphabetically 51

DFHack Documentation, Release 50.11-r4

Examples

autofarm default 30 Set the default threshold to 30.

autofarm threshold 150 MUSHROOM_HELMET_PLUMP GRASS_TAIL_PIG Set the threshold for Plump Helmets
and Pig Tails to 150

5.6.27 autofish

Tags: fort | auto | labors

Command: autofish

Auto-manage fishing labors to control your stock of fish.

This script makes managing how much fish you keep around automatic. It tries to maintain a configured stock level of
raw and/or prepared fish, partially to keep item quantities from ballooning out of control, and partly to try and prevent
collecting too many rotten fish.

Usage

enable autofish Enable the script

disable autofish Disable the script

autofish status Show the current status of the script, your configured values, and whether or not fishing is currently
enabled.

autofish <max> [min] [<options>] Change autofish settings.

Positional Parameters

max (default: 100) controls the maximum amount of fish you want to keep on hand in your fortress. Fishing will be
disabled when the amount of fish goes above this value.

min (default: 75) controls the minimum fish you want before restarting fishing.

Options

r, --raw (true | false) (default: true) Set whether or not raw fish should be counted in the running total of fish
in your fortress.

52 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

enable autofish Enables the script.

autofish 150 -r true Sets your maximum fish to 150, and enables counting raw fish.

autofish 300 250 Sets your maximum fish to 300 and minimum to 250.

5.6.28 autogems

Tags: unavailable

Automatically cut rough gems.

Command: autogems-reload

Reloads the autogems configuration file.

Automatically cut rough gems. This plugin periodically scans your stocks of rough gems and creates manager orders
for cutting them at a Jeweler’s Workshop.

Usage

enable autogems Enables the plugin and starts autocutting gems according to its configuration.

autogems-reload Reloads the autogems configuration file. You might need to do this if you have manually modified
the contents while the game is running.

Run gui/autogems for a configuration UI, or access the Auto Cut Gems option from the Current Workshop Orders
screen (o-W).

5.6.29 autolabor

Tags: fort | auto | labors

Command: autolabor

Automatically manage dwarf labors.

Autolabor attempts to keep as many dwarves as possible busy while allowing dwarves to specialize in specific skills.

Autolabor frequently checks how many jobs of each type are available and sets labors proportionally in order to get
them all done quickly. Labors with equipment – mining, hunting, and woodcutting – which are abandoned if labors
change mid-job, are handled slightly differently to minimize churn.

Dwarves on active military duty or dwarves assigned to burrows are left untouched by autolabor.

5.6. All DFHack tools alphabetically 53

DFHack Documentation, Release 50.11-r4

Warning: This plugin is still being tested. Use at your own risk.

The algorithms that autolabor uses to choose labor assignments have not been updated for version 50 of Dwarf
Fortress. There is no particular guarantee that the labor assignments autolabor is making are optimal, and it is
entirely possible that the assignments it makes will lead to unforeseen consequences. You should monitor what
your dwarves are doing, and more importantly not doing, when using autolabor.

At this time there is no way to easily see what labors are being assigned to whom, as there is no longer any vanilla
means for seeing the labor assignment table. Until manipulator is once again available, probably the best way
to see what autolabor is doing is to use Dwarf Therapist. You can also increase autolabor’s logging level using
the debugfilter command (setting either debug or trace level for the cycle mode) but be warned that this may
generate a large amount of console spam, especially in a large fort.

When it is enabled, autolabor automatically disables the work detail system. You cannot use autolabor and work
details at the same time. If you attempt to open the work detail screen while autolabor is active, a warning box
should appear advising you that autolabor is managing labors and preventing you from making any changes on that
screen.

Finally, should you disable autolabor, autolabor will automatically reenable the vanilla work detail system. However,
the work detail system only updates labors when the work detail screen is open and some change is made on that
screen. Therefore, if you choose to disable autolabor, you should probably immediately thereafter open the work
details screen and make some change to force the game to recompute all labor assignments based on the vanilla
algorithm. At this time, it is not possible for autolabor to do this automatically.

Usage

enable autolabor

Anything beyond this is optional - autolabor works well with the default settings. Once you have enabled it in a fortress,
it stays enabled until you explicitly disable it, even if you save and reload your game.

By default, each labor is assigned to between 1 and 200 dwarves (2-200 for mining). 33% of the workforce become
haulers, who handle all hauling jobs as well as cleaning, pulling levers, recovering wounded, removing constructions,
and filling ponds. Other jobs are automatically assigned as described above. Each of these settings can be adjusted.

Jobs are rarely assigned to nobles with responsibilities for meeting diplomats or merchants, never to the chief medical
dwarf, and less often to the bookkeeper and manager.

Hunting is never assigned without a butchery, and fishing is never assigned without a fishery.

For each labor, a preference order is calculated based on skill, excluding those who can’t do the job. Dwarves who are
masters of a skill are deprioritized for other skills. The labor is then added to the best <minimum> dwarves for that
labor, then to additional dwarfs that meet any of these conditions:

• The dwarf is idle and there are no idle dwarves assigned to this labor

• The dwarf has non-zero skill associated with the labor

• The labor is mining, hunting, or woodcutting and the dwarf currently has it enabled.

We stop assigning dwarves when we reach the maximum allowed.

Autolabor uses DFHack’s debug functionality to display information about the changes it makes. The amount of
information displayed can be controlled through appropriate use of the debugfilter command.

54 Chapter 5. DFHack tools

https://github.com/Dwarf-Therapist/Dwarf-Therapist

DFHack Documentation, Release 50.11-r4

Examples

autolabor MINE 5 Keep at least 5 dwarves with mining enabled.

autolabor CUT_GEM 1 1 Keep exactly 1 dwarf with gem cutting enabled.

autolabor COOK 1 1 3 Keep 1 dwarf with cooking enabled, selected only from the top 3.

autolabor FEED_WATER_CIVILIANS haulers Have haulers feed and water wounded dwarves.

autolabor CUTWOOD disable Turn off autolabor for wood cutting.

Advanced usage

autolabor list List current status of all labors. Use this command to see the IDs for all labors.

autolabor status Show basic status information.

autolabor <labor> <minimum> [<maximum>] [<talent pool>] Set range of dwarves assigned to a labor, op-
tionally specifying the size of the pool of most skilled dwarves that will ever be considered for this labor.

autolabor <labor> haulers Set a labor to be handled by hauler dwarves.

autolabor <labor> disable Turn off autolabor for a specific labor.

autolabor reset-all|<labor> reset Return a labor (or all labors) to the default handling.

See autolabor-artisans for a differently-tuned setup.

5.6.30 autolabor-artisans

Tags: unavailable

Command: autolabor-artisans

Configures autolabor to produce artisan dwarves.

This script runs an autolabor command for all labors where skill level influences output quality (e.g. Carpentry, Stone
detailing, Weaponsmithing, etc.). It automatically enables autolabor if it is not already enabled.

After running this tool, you can make further adjustments to autolabor configuration by running autolabor commands
directly.

Usage

autolabor-artisans <minimum> <maximum> <talent pool>

Examples:

autolabor-artisans 0 2 3 Only allows a maximum of 2 dwarves to have skill-dependent labors enabled at once,
chosen from the talent pool of the top 3 dwarves for that skill.

5.6. All DFHack tools alphabetically 55

DFHack Documentation, Release 50.11-r4

5.6.31 autonestbox

Tags: fort | auto | animals

Command: autonestbox

Auto-assign egg-laying female pets to nestbox zones.

To use this feature, you must create pen/pasture zones on the same tiles as built nestboxes. If the pen is bigger than 1x1,
the nestbox must be in the top left corner. Only 1 unit will be assigned per pen, regardless of the size. Egg layers who
are also grazers will be ignored, since confining them to a 1x1 pasture is not a good idea. Only tame and domesticated
own units are processed since pasturing half-trained wild egg layers could destroy your neat nestbox zones when they
revert to wild.

Note that the age of the units is not checked, so you might get some egg-laying kids assigned to the nestbox zones.
Most birds grow up quite fast, though, so they should be adults and laying eggs soon enough.

Usage

enable autonestbox Start checking for unpastured egg-layers and assigning them to nestbox zones.

autonestbox Print current status.

autonestbox now Run a scan and assignment cycle right now. Does not require that the plugin is enabled.

autonestbox ticks <ticks> Change the number of ticks between scan and assignment cycles when the plugin is
enabled. The default is 6000 (about 8 days).

5.6.32 autonick

Tags: fort | productivity | units

Command: autonick

Give dwarves random unique nicknames.

Names are chosen randomly from the dfhack-config/autonick.txt config file, which you can edit with your own
preferred names, if you like.

Dwarves who already have nicknames will keep the nicknames they have, and no other dwarf will be assigned that
nickname.

If there are fewer available nicknames than dwarves, the remaining dwarves will go un-nicknamed.

56 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

autonick all [<options>]

You may wish to use this script with the “repeat” command so that new migrants automatically get nicknamed:

repeat -name autonick -time 3 -timeUnits months -command [autonick all]

Options

-q, --quiet Do not report how many dwarves were given nicknames.

Config file format

The dfhack-config/autonick.txt config file has a simple format:

• One nickname per line

• Empty lines, lines beginning with #, and repeat entries are discarded

You can add any nicknames you like!

5.6.33 autoslab

Tags: fort | auto | workorders

Automatically engrave slabs for ghostly citizens.

Automatically queue orders to engrave slabs of existing ghosts. Will only queue an order if there is no existing slab
with that unit’s memorial engraved and there is not already an existing work order to engrave a slab for that unit. Make
sure you have spare slabs on hand for engraving! If you run orders import library/rockstock, you’ll be sure to always
have some slabs in stock.

Usage

enable autoslab Enables the plugin and starts checking for ghosts that need memorializing.

disable autoslab Disables the plugin.

5.6.34 ban-cooking

Tags: fort | productivity | items | plants

Command: ban-cooking

Protect useful items from being cooked.

5.6. All DFHack tools alphabetically 57

DFHack Documentation, Release 50.11-r4

Some cookable ingredients have other important uses. For example, seeds can be cooked, but if you cook them all,
then your farmers will have nothing to plant in the fields. Similarly, thread can be cooked, but if you do that, then
your weavers will have nothing to weave into cloth and your doctors will have nothing to use for stitching up injured
dwarves.

If you open the Kitchen screen, you can select individual item types and choose to ban them from cooking. To prevent
all your booze from being cooked, for example, you’d select the Booze tab and then click each of the visible types of
booze to prevent them from being cooked. Only types that you have in stock are shown, so if you acquire a different
type of booze in the future, you have to come back to this screen and ban the new types.

Instead of doing all that clicking, ban-cooking can ban entire classes of items (e.g. all types of booze) in one go. It
can even ban types that you don’t have in stock yet, so when you do get some in stock, they will already be banned. It
will never ban items that are only good for eating or cooking, like meat or non-plantable nuts. It is usually a good idea
to run ban-cooking all as one of your first actions in a new fort.

If you want to re-enable cooking for a banned item type, you can go to the Kitchen screen and un-ban whatever you like
by clicking on the “cook” icon. You can also un-ban an entire class of items with the ban-cooking --unban option.

Usage

ban-cooking <type|all> [<type> ...] [<options>]

Valid types are booze, brew (brewable plants), fruit, honey, milk, mill (millable plants), oil, seeds (plantable
seeds), tallow, and thread. It is possible to include multiple types or all types in a single ban-cooking command:
ban-cooking oil tallow will ban both oil and tallow from cooking. ban-cooking all will ban all of the above
types.

Examples:

on-new-fortress ban-cooking all

Ban cooking all otherwise useful ingredients once when starting a new fortress. Note that this exact command can be
enabled via the Autostart tab of gui/control-panel.

Options

-u, --unban Un-ban the indicated item types.

-v, --verbose Print each ban as it happens.

5.6.35 binpatch

Tags: unavailable

Command: binpatch

Applies or removes binary patches.

See Patching the DF binary for more info.

58 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

binpatch check|apply|remove <patchname>

5.6.36 blueprint

Tags: fort | design | buildings | map | stockpiles

Command: blueprint

Record a live game map in a quickfort blueprint.

With blueprint, you can export the structure of a portion of your fortress in a blueprint file that you (or anyone else)
can later play back with gui/quickfort.

Blueprints are .csv or .xlsx files created in the dfhack-config/blueprints subdirectory of your DF folder. The
map area to turn into a blueprint is either selected interactively with the gui/blueprint command or, if the GUI is
not used, starts at the active cursor location and extends right and down for the requested width and height.

Note

blueprint is still in the process of being updated for the new version of DF. Stockpiles (the “place” phase), zones (the
“zone” phase), building configuration (the “query” phase), and game configuration (the “config” phase) are not yet
supported.

Usage

blueprint <width> <height> [<depth>] [<name> [<phases>]] [<options>]
blueprint gui [<name> [<phases>]] [<options>]

Examples

blueprint gui Runs gui/blueprint, the GUI frontend, where all configuration for a blueprint command can be set
visually and interactively.

blueprint 30 40 bedrooms Generates blueprints for an area 30 tiles wide by 40 tiles tall, starting from the active
cursor on the current z-level. Blueprints are written to bedrooms.csv in the blueprints directory.

blueprint 30 40 bedrooms dig --cursor 108,100,150 Generates only the #dig blueprint in the bedrooms.
csv file, and the start of the blueprint area is set to a specific coordinate instead of using the in-game cursor
position.

5.6. All DFHack tools alphabetically 59

DFHack Documentation, Release 50.11-r4

Positional parameters

width Width of the area (in tiles) to translate.

height Height of the area (in tiles) to translate.

depth Number of z-levels to translate. Positive numbers go up from the cursor and negative numbers go down. De-
faults to 1 if not specified, indicating that the blueprint should only include the current z-level.

name Base name for blueprint files created in the blueprints directory. If no name is specified, “blueprint” is used
by default. The string must contain some characters other than numbers so the name won’t be confused with the
optional depth parameter.

Phases

If you want to generate blueprints only for specific phases, add their names to the commandline, anywhere after the
blueprint base name. You can list multiple phases; just separate them with a space.

dig Generate quickfort #dig blueprints for digging natural stone.

carve Generate quickfort #dig blueprints for smoothing and carving.

construct Generate quickfort #build blueprints for constructions (e.g. flooring and walls).

build Generate quickfort #build blueprints for buildings (including furniture).

place Generate quickfort #place blueprints for placing stockpiles.

zone Generate quickfort #zone blueprints for designating zones.

query Generate quickfort #query blueprints for configuring stockpiles and naming buildings.

rooms Generate quickfort #query blueprints for defining rooms.

If no phases are specified, phases are autodetected. For example, a #place blueprint will be created only if there are
stockpiles in the blueprint area.

Options

-c, --cursor <x>,<y>,<z> Use the specified map coordinates instead of the current cursor position for the upper
left corner of the blueprint range. If this option is specified, then an active game map cursor is not necessary.

-e, --engrave Record engravings in the carve phase. If this option is not specified, engravings are ignored.

-f, --format <format> Select the output format of the generated files. See the Output formats section below for
options. If not specified, the output format defaults to “minimal”, which will produce a small, fast .csv file.

--nometa Meta blueprints let you apply all blueprints that can be replayed at the same time (without unpausing the
game) with a single command. This usually reduces the number of quickfort commands you need to run to rebuild
your fort from about 6 to 2 or 3. If you would rather just have the low-level blueprints, this flag will prevent meta
blueprints from being generated and any low-level blueprints from being hidden from the quickfort list
command.

-s, --playback-start <x>,<y>,<comment> Specify the column and row offsets (relative to the upper-left corner
of the blueprint, which is 1,1) where the player should put the cursor when the blueprint is played back with
quickfort, in quickfort start marker format, for example: 10,10,central stairs. If there is a space in the
comment, you will need to surround the parameter string in double quotes: "-s10,10,central stairs" or
--playback-start "10,10,central stairs" or "--playback-start=10,10,central stairs".

--smooth Record all smooth tiles in the smooth phase. If this parameter is not specified, only tiles that will later be
carved into fortifications or engraved will be smoothed.

60 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

-t, --splitby <strategy> Split blueprints into multiple files. See the Splitting output into multiple files section
below for details. If not specified, defaults to “none”, which will create a standard quickfort multi-blueprint file.

Output formats

Here are the values that can be passed to the --format flag:

minimal Creates .csv files with minimal file size that are fast to read and write. This is the default.

pretty Makes the blueprints in the .csv files easier to read and edit with a text editor by adding extra spacing and
alignment markers.

Splitting output into multiple files

The --splitby flag can take any of the following values:

none Writes all blueprints into a single file. This is the standard format for quickfort fortress blueprint bundles and is
the default.

group Creates one file per group of blueprints that can be played back at the same time (without have to unpause the
game and let dwarves fulfill jobs between blueprint runs).

phase Creates a separate file for each phase. Implies --nometa since meta blueprints can’t combine blueprints that
are in separate files.

5.6.37 bodyswap

Tags: unavailable

Command: bodyswap

Take direct control of any visible unit.

This script allows the player to take direct control of any unit present in adventure mode whilst giving up control of
their current player character.

Usage

bodyswap [--unit <id>]

If no specific unit id is specified, the target unit is the one selected in the user interface, such as by opening the unit’s
status screen or viewing its description.

5.6. All DFHack tools alphabetically 61

DFHack Documentation, Release 50.11-r4

Examples

bodyswap Takes control of the selected unit.

bodyswap --unit 42 Takes control of unit with id 42.

5.6.38 brainwash

Tags: fort | armok | units

Command: brainwash

Set the personality of a dwarf to an ideal.

Modify the traits of the selected dwarf to match an idealized personality: as stable and reliable as possible to prevent
tantrums even after months of misery.

Usage

:: brainwash <type>

Examples

brainwash ideal Sets the dwarf to have an ideal, stable personality

Types

The type is one of the following:

ideal Reliable, with generally positive personality traits

baseline Reset all personality traits to the average

stepford Amplifies all good qualities to an excessive degree

wrecked Amplifies all bad qualities to an excessive degree

5.6.39 break-dance

Tags: unavailable

Command: break-dance

Fixes buggy tavern dances.

Sometimes when a unit can’t find a dance partner, the dance becomes stuck and never stops. This tool can get them
unstuck.

62 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

break-dance

5.6.40 build-now

Tags: fort | armok | buildings

Command: build-now

Instantly completes building construction jobs.

By default, all unsuspended buildings on the map are completed, but the area of effect is configurable.

Note that no units will get architecture experience for any buildings that require that skill to construct.

Usage

build-now [<pos> [<pos>]] [<options>]

Where the optional <pos> pair can be used to specify the coordinate bounds within which build-now will operate. If
they are not specified, build-now will scan the entire map. If only one <pos> is specified, only the building at that
coordinate is built.

The <pos> parameters can either be an <x>,<y>,<z> triple (e.g. 35,12,150) or the string here, which means the
position of the active keyboard game cursor.

Examples

build-now Completes all unsuspended construction jobs on the map.

build-now here Builds the unsuspended, unconstructed building under the cursor.

Options

-q, --quiet Suppress informational output (error messages are still printed).

-z, --zlevel Restrict operation to the currently visible z-level

5.6.41 building-hacks

Tags: unavailable

Provides a Lua API for creating powered workshops.

See building-hacks for more details.

5.6. All DFHack tools alphabetically 63

DFHack Documentation, Release 50.11-r4

5.6.42 buildingplan

Tags: fort | design | productivity | buildings

Command: buildingplan

Plan building layouts with or without materials.

Buildingplan allows you to place furniture, constructions, and other buildings, regardless of whether the required ma-
terials are available. This allows you to focus purely on design elements when you are laying out your fort, and defers
item production concerns to a more convenient time.

Buildingplan is an alternative to the vanilla building placement UI. It appears after you have selected the type of
building, furniture, or construction that you want to place in the vanilla build menu. Buildingplan then takes over for
the actual placement step. If the placed building requires materials that aren’t available yet, it will be created in a
suspended state. Buildingplan will periodically scan for appropriate items and attach them to the planned building.
Once all items are attached, the construction job will be unsuspended and a dwarf will come and build the building.
If you have the unsuspend overlay enabled (it is enabled by default), then buildingplan-suspended buildings will be
tagged with a clock graphic in graphics mode or a P marker in ASCII mode, as opposed to the x marker for “regular”
suspended buildings. If you have suspendmanager running, then buildings will be left suspended when their items are
all attached and suspendmanager will unsuspend them for construction when it is safe to do so.

If you want to impose restrictions on which items are chosen for the buildings, buildingplan has full support for quality
and material filters (see below). This lets you create layouts with a consistent color, if that is part of your design.

If you just care about the heat sensitivity of the building, you can set the building to be fire- or magma-proof in the
placement UI screen. This makes it very easy to ensure that your pump stacks and floodgates, for example, are magma-
safe.

Buildingplan works well in conjuction with other design tools like gui/quickfort, which allow you to apply a building
layout from a blueprint. You can apply very large, complicated layouts, and the buildings will simply be built when
your dwarves get around to producing the needed materials. If you set filters in the buildingplan UI before applying the
blueprint, the filters will be applied to the blueprint buildings, just as if you had planned them from the buildingplan
placement UI.

One way to integrate buildingplan into your gameplay is to create manager workorders to ensure you always have a few
blocks/doors/beds/etc. available. You can then place as many of each building as you like. Items will be used to build
the planned buildings as they are produced, with minimal space dedicated to stockpiles. The DFHack orders library
can help with setting these manager workorders up for you.

If you don’t want to use the buildingplan interface for the building you’re currently trying to place, you can hit AltM
or click on the minimize toggle in the upper right corner of the panel. If you do not wish to ever use the buildingplan
interface, you can turn off the buildingplan.planner overlay in gui/control-panel (on the “Overlays” tab). Be sure
to keep the buildingplan “System service” itself enabled in gui/control-panel since if you turn it off, existing planned
buildings in saved forts will stop functioning.

64 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

buildingplan [status]
buildingplan set <setting> (true|false)
buildingplan reset

Examples

buildingplan Print a report of current settings, which kinds of buildings are planned, and what kinds of materials
the buildings are waiting for.

buildingplan set boulders false When finding items to satisfy “building materials” requirements, don’t select
boulders. Use blocks or logs (if enabled) instead.

buildingplan reset Reset all settings and filters to their defaults. This command does not affect existing planned
buildings.

Global settings

The buildingplan plugin has several global settings that affect what materials can be chosen when attaching items to
planned buildings:

blocks, boulders, logs, bars (defaults: true, true, true, false) Allow blocks, boulders, logs, or bars to be
matched for generic “building material” items.

These settings are saved with your fort, so you only have to set them once and they will be persisted in your save.

If you normally embark with some blocks on hand for early workshops, you might want to add this line to your
dfhack-config/init/onMapLoad.init file to always configure buildingplan to just use blocks for buildings and
constructions:

on-new-fortress buildingplan set boulders false
on-new-fortress buildingplan set logs false

Building placement

Once you have selected a building type to build in the vanilla build menu, the buildingplan placement UI appears as
an overlay widget, covering the vanilla building placement panel.

For basic usage, you don’t need to change any settings. Just click to place buildings of the selected type and right click
to exit building mode. Any buildings that require materials that you don’t have on hand will be suspended and built
when the items are available.

When building constructions, you’ll get a few extra options, like whether the construction area should be hollow or
what types of stairs you’d like at the top and bottom of a stairwell. Also, unlike other buildings, it is ok if some tiles
selected in the construction area are not appropriate for building. For example, if you want to fill an area with flooring,
you can select the entire area, and any tiles with existing buildings or walls will simply be skipped.

Some building types will have other options available as well, such as a selector for how many weapons you want in
weapon traps or whether you want your built cages to not have any occupants.

5.6. All DFHack tools alphabetically 65

DFHack Documentation, Release 50.11-r4

Setting quality and material filters

If you want to set restrictions on the items chosen to complete the planned building, you can click on the “[any material]”
link next to the item name or select the item with the q or Q keys and hit f to bring up the filter dialog.

You can select whether the item must be decorated, and you can drag the ends of the “Item quality” slider to set your
desired quality range. Note that blocks, boulders, logs, and bars don’t have a quality, and the quality options are disabled
for those types. As you change the quality settings, the number of currently available matched items of each material
is adjusted in the materials list.

You can click on specific materials to allow only items of those materials when building the current type of building.
You can also allow or disallow entire categories of materials by clicking on the “Type” options on the left. Note that it
is perfectly fine to choose materials that currently show zero quantity. buildingplan will patiently wait for items made
of materials you have selected to become available.

Choosing specific items

If you want to choose specific items instead of using the filters, click on the “Choose items” selector or hit z before
placing the building. You can choose to be prompted for every item (“Manually”) or you can have it automatically
select the type of item that you last chose for this building type. The list you are prompted with is sorted by most
recently used materials for that building type by default, but you can change to sort by name or by available quantity by
clicking on the “Sort by” selector or hitting R. The configuration for whether you would like to choose specific items is
saved per building type and will be restored when you plan more of that building type.

You can select the maximum quantity of a specified item by clicking on the item name or selecting it with the arrow
keys and hitting Enter. You can instead select items one at a time by Ctrl-clicking (ShiftRight) to increment or
Ctrl-Shift-clicking (ShiftLeft) to decrement.

Once you are satisfied with your choices, click on the large green button or hit C to continue building. Note that you
don’t have to select all the items that the building needs. Any remaining items will be automatically chosen from other
available items (or from items produced in the future if not all items are available yet). If there are multiple item types
to choose for the current building, one dialog will appear per item type.

Building status

When viewing a planned building, a separate overlay widget appears on the building info sheet, showing you which
items have been attached and which items are still pending. For a pending item, you can see its position in the fulfillment
queue. You need to manufacture these items for them to be attached to the building. If there is a particular building
that you need built ASAP, you can click on the “make top priority” button (or hit CtrlT) to bump the items for this
building to the front of their respective queues.

Note that each item type and filter configuration has its own queue, so even if an item is in queue position 1, there may
be other queues that snag the needed item first.

66 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Lever linking

When linking levers, buildingplan extends the vanilla panel by offering control over which mechanisms are chosen for
installation at the lever and at the target. Heat safety filters are provided for convenience.

5.6.43 burial

Tags: fort | productivity | buildings

Command: burial

Create tomb zones for unzoned coffins.

Creates a 1x1 tomb zone for each built coffin that isn’t already contained in a zone.

Usage

burial [<options>]

Examples

burial Create a general use tomb for every unzoned coffin on the map.

burial -z Create tombs only on the current zlevel.

burial -c Create tombs designated for burial of citizens only.

burial -p Create tombs designated for burial of pets only.

burial -cp Create tombs with automatic burial disabled for both citizens and pets, requiring manual assignment of
deceased units to each tomb.

Options

-z, --cur-zlevel Only create tombs on the current zlevel.

-c, --citizens-only Only automatically bury citizens.

-p, --pets-only Only automatically bury pets.

5.6.44 burrow

Tags: fort | auto | design | productivity | units

Command: burrow

Quickly adjust burrow tiles and units.

5.6. All DFHack tools alphabetically 67

DFHack Documentation, Release 50.11-r4

This tool has two modes. When enabled, it monitors burrows with names that end in +. If a wall at the edge of such a
burrow is dug out, the burrow will be automatically extended to include the newly-revealed adjacent walls. If a miner
digs into an open space, such as a cavern, the open space will not be included in the burrow.

When run as a command, it can quickly adjust which tiles and/or units are associated with the burrow.

Usage

enable burrow
burrow tiles|units clear <target burrow> [<target burrow> ...] [<options>]
burrow tiles|units set|add|remove <target burrow> <burrow> [...] [<options>]
burrow tiles box-add|box-remove <target burrow> [<pos>] [<pos>] [<options>]
burrow tiles flood-add|flood-remove <target burrow> [<options>]

The burrows can be referenced by name or by the internal numeric burrow ID. If referenced by name, the first burrow
that matches the name (case sensitive) will be targeted. If a burrow name ends in + (to indicate that it should be
auto-expanded), the final + does not need to be specified on the commandline.

For set, add, or remove commands, instead of a burrow, you can specify one of the following all-caps keywords:

• ABOVE_GROUND

• SUBTERRANEAN

• INSIDE

• OUTSIDE

• LIGHT

• DARK

• HIDDEN

• REVEALED

to add or remove tiles with the corresponding properties.

Flood fill selects tiles spreading out from a starting tile if they:

• match the inside/outside and hidden/revealed properties of the starting tile

• match the walkability group of the starting tile OR (if the starting tile is walkable) is adjacent to a tile with the
same walkability group as the starting tile

When flood adding, the flood fill will also stop at any tiles that have already been added to the burrow. Similarly for
flood removing, the flood will also stop at tiles that are not in the burrow.

Examples

enable burrow Start monitoring burrows that have names ending in ‘+’ and automatically expand them when walls
that border the burrows are dug out.

burrow tiles clear Safety Remove all tiles from the burrow named Safety (in preparation for adding new tiles
elsewhere, presumably).

burrow units clear Farmhouse Workshops Remove all units from the burrows named Farmhouse and
Workshops.

multicmd burrow tiles set Inside INSIDE; burrow tiles remove Inside HIDDEN Reset the burrow
named Inside to include all the currently revealed, interior tiles.

68 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

burrow units set "Core Fort" Peasants Skilled Clear all units from the burrow named Core Fort, then
add units currently assigned to the Peasants and Skilled burrows.

burrow tiles box-add Safety 0,0,0 Add all tiles to the burrow named Safety that are within the volume of
the box starting at coordinate 0, 0, 0 (the upper left corner of the bottom level) and ending at the current location
of the keyboard cursor.

burrow tiles flood-add Safety --cur-zlevel Flood-add the tiles on the current z-level with the same prop-
erties as the tile under the keyboard cursor to the burrow named Safety.

Options

-c, --cursor <pos> Indicate the starting position of the box or flood fill. If not specified, the position of the keyboard
cursor is used.

-z, --cur-zlevel Restricts a flood fill operation to the currently visible z-level.

Note

If you are auto-expanding a burrow (whose name ends in a +) and the miner who is digging to expand the burrow is
assigned to that burrow, then 1-wide corridors that expand the burrow will have very slow progress. This is because the
burrow is expanded to include the next dig job only after the miner has chosen a next tile to dig, which may be far away.
2-wide cooridors are much more efficient when expanding a burrow since the “next” tile to dig will still be nearby.

Overlay

When painting burrows in the vanilla UI, a few extra mouse operations are supported. If you box select across multiple
z-levels, you will be able to select the entire volume instead of just the selected area on the z-level that you are currently
looking at.

In addition, double-clicking will start a flood fill from the target tile.

The box and flood fill actions respect the UI setting for whether the burrow is being added to or erased.

5.6.45 cannibalism

Tags: unavailable

Command: cannibalism

Allows a player character to consume sapient corpses.

This tool clears the flag from items that mark them as being from a sapient creature. Use from an adventurer’s inventory
screen or an individual item’s detail screen.

5.6. All DFHack tools alphabetically 69

DFHack Documentation, Release 50.11-r4

Usage

cannibalism

5.6.46 caravan

Tags: fort | armok | bugfix

Command: caravan

Adjust properties of caravans on the map.

This tool can help with caravans that are leaving too quickly, refuse to unload, or are just plain unhappy that you are
such a poor negotiator.

Also see force for creating caravans.

Usage

caravan [list]
caravan extend [<days> [<ids>]]
caravan happy [<ids>]
caravan leave [<ids>]
caravan unload

Commands listed with the argument [<ids>] can take multiple (space-separated) caravan IDs (see caravan list to
get the IDs). If no IDs are specified, then the commands apply to all caravans on the map.

Examples

caravan List IDs and information about all caravans on the map.

caravan extend Force a caravan that is leaving to return to the depot and extend their stay another 7 days.

caravan extend 30 0 1 Extend the time that caravans 0 and 1 stay at the depot by 30 days. If the caravans have
already started leaving, they will return to the depot.

caravan happy Make the active caravans willing to trade again (after seizing goods, annoying merchants, etc.). If
the caravan has already started leaving in a huff, they will return to the depot.

caravan leave Makes caravans pack up and leave immediately.

caravan unload Fix a caravan that got spooked by wildlife and refuses to fully unload.

70 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Overlays

Additional functionality is provided on the various trade-related screens via overlay widgets.

Trade screen

• Shift+Click checkbox: Select all items inside a bin without selecting the bin itself

• Ctrl+Click checkbox: Collapse or expand a single bin (as is possible in the “Move goods to/from depot”
screen)

• Ctrl+c: Collapses all bins. The hotkey hint can also be clicked as though it were a button.

• Ctrl+x: Collapses everything (all item categories and anything collapsible within each category). The
hotkey hint can also be clicked as though it were a button.

There is also a reminder of the fast scroll functionality provided by the vanilla game when you hold shift while scrolling
(this works everywhere).

You can turn the overlay on and off in gui/control-panel, or you can reposition it to your liking with gui/overlay. The
overlay is named caravan.tradeScreenExtension.

Bring item to depot

When the trade depot is selected, a button appears to bring up the DFHack enhanced move trade goods screen. You’ll
get a searchable, sortable list of all your tradeable items, with hotkeys to quickly select or deselect all visible items.

There are filter sliders for selecting items of various condition levels and quality. For example, you can quickly trade
all your tattered, frayed, and worn clothing by setting the condition slider to include from tattered to worn, then hitting
Ctrl-V to select all.

Click on an item and shift-click on a second item to toggle all items between the two that you clicked on. If the one
that you shift-clicked on was selected, the range of items will be deselected. If the one you shift-clicked on was not
selected, then the range of items will be selected.

Trade agreement

A small panel is shown with a hotkey (Ctrl-A) for selecting all/none in the currently shown category.

Display furniture

A button is added to the screen when you are viewing display furniture (pedestals and display cases) where you can
launch an item assignment GUI.

The dialog allows you to sort by name, value, or where the item is currently assigned for display.

You can search by name, and you can filter by item quality and by whether the item is forbidden.

5.6. All DFHack tools alphabetically 71

DFHack Documentation, Release 50.11-r4

5.6.47 catsplosion

Tags: fort | armok | animals

Command: catsplosion

Cause pregnancies.

This tool makes cats (or anything else) immediately pregnant. If you value your fps, it is a good idea to use this tool
sparingly.

Usage

catsplosion [<id> ...] Makes animals with the given identifiers pregnant. Defaults to CAT.

catsplosion list List IDs of all animals on the map.

Units will give birth within two in-game hours (100 ticks or fewer).

Examples

catsplosion Make all cats pregnant.

catsplosion PIG SHEEP ALPACA Get some quick butcherable meat.

catsplosion DWARF Have a population boom in your fort.

5.6.48 changeitem

Tags: adventure | fort | armok | items

Command: changeitem

Change item material, quality, and subtype.

By default, a change is only allowed if the existing and desired item materials are of the same subtype (for example wood
-> wood, stone -> stone, etc). But since some transformations work pretty well and may be desired you can override
this with force. Note that forced changes can possibly result in items that crafters and haulers refuse to touch.

72 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

changeitem info Show details about the selected item. Does not change the item. You can use this command to
discover RAW ids for existing items.

changeitem [<options>] Change the item selected in the k list or inside a container/inventory.

changeitem here [<options>] Change all items at the cursor position. Requires in-game cursor.

Examples

changeitem here m INORGANIC:GRANITE Change material of all stone items under the cursor to granite.

changeitem q 5 Change currently selected item to masterpiece quality.

Options

m, material <RAW id> Change material. Must be followed by valid material RAW id.

s, subtype <RAW id> Change subtype. Must be followed by a valid subtype RAW id.”

q, quality <quality> Change base quality. Must be followed by number (0-5) with 0 being no quality and 5 being
masterpiece quality.

force Ignore subtypes and force the change to the new material.

5.6.49 changelayer

Tags: fort | armok | map

Command: changelayer

Change the material of an entire geology layer.

Note that one layer can stretch across many z-levels, and changes to the geology layer will affect all surrounding regions,
not just your embark! Mineral veins and gem clusters will not be affected. Use changevein if you want to modify those.

tl;dr: You will end up with changing large areas in one go, especially if you use it in lower z levels. Use this command
with care!

Usage

changelayer <material RAW id> [<options>]

When run without options, changelayer will:

• only affect the geology layer at the current cursor position

• only affect the biome that covers the current cursor position

• not allow changing stone to soil and vice versa

You can use the probe command on various tiles around your map to find valid material RAW ids and to get an idea
how layers and biomes are distributed.

5.6. All DFHack tools alphabetically 73

DFHack Documentation, Release 50.11-r4

Examples

changelayer GRANITE Convert the layer at the cursor position into granite.

changelayer SILTY_CLAY force Convert the layer at the cursor position into clay, even if it’s stone.

changelayer MARBLE all_biomes all_layers Convert all layers of all biomes which are not soil into marble.

Note:

• If you use changelayer and nothing happens, try to pause/unpause the game for a while and move the cursor to
another tile. Then try again. If that doesn’t help, then try to temporarily change some other layer, undo your
changes, and try again for the layer you want to change. Saving and reloading your map also sometimes helps.

• You should be fine if you only change single layers without the use of ‘force’. Still, it’s advisable to save your
game before messing with the map.

• When you force changelayer to convert soil to stone, you might see some weird stuff (flashing tiles, tiles changed
all over place etc). Try reverting the changes manually or even better use an older savegame. You did save your
game, right?

Options

all_biomes Change the corresponding geology layer for all biomes on your map. Be aware that the same geology
layer can AND WILL be on different z-levels for different biomes.

all_layers Change all geology layers on your map (only for the selected biome unless all_biomes is also specified).
Candy mountain, anyone? Will make your map quite boring, but tidy.

force Allow changing stone to soil and vice versa. THIS CAN HAVE WEIRD EFFECTS, USE WITH CARE
AND SAVE FIRST. Note that soil will not be magically replaced with stone. You will, however, get a stone
floor after digging, so it will allow the floor to be engraved. Similarly, stone will not be magically replaced with
soil, but you will get a soil floor after digging, so it could be helpful for creating farm plots on maps with no soil.

verbose Output details about what is being changed.

5.6.50 changevein

Tags: fort | armok | map

Command: changevein

Change the material of a mineral inclusion.

You can change a vein to any inorganic material RAW id. Note that this command only affects tiles within the current
16x16 block - for large veins and clusters, you will need to use this command multiple times.

You can use the probe command to discover the material RAW ids for existing veins that you want to duplicate.

74 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

changevein <material RAW id>

Example

changevein NATIVE_PLATINUM Convert vein at cursor position into platinum ore.

5.6.51 channel-safely

Tags: fort | auto

Command: channel-safely

Auto-manage channel designations to keep dwarves safe.

Multi-level channel projects can be dangerous, and managing the safety of your dwarves throughout the completion of
such projects can be difficult and time consuming. This plugin keeps your dwarves safe (at least while channeling) so
you don’t have to. Now you can focus on designing your dwarven cities with the deep chasms they were meant to have.

Usage

enable channel-safely
channel-safely set <setting> <value>
channel-safely enable|disable <feature>
channel-safely <command>

When enabled the map will be scanned for channel designations which will be grouped together based on adjacency
and z-level. These groups will then be analyzed for safety and designations deemed unsafe will be put into Marker
Mode. Each time a channel designation is completed its group status is checked, and if the group is complete pending
groups below are made active again.

Features and settings once set will persist until you change them, even if you save and reload your game.

Examples

channel-safely The plugin reports its configured status.

channel-safely runonce Runs the safety procedures once. You can use this if you prefer initiating scans manually.

channel-safely disable require-vision Allows the plugin to read all tiles, including the ones your dwarves
know nothing about.

channel-safely enable monitor Enables monitoring active channel digging jobs. Meaning that if another unit
it present or the tile below becomes open space the job will be paused or canceled (respectively).

channel-safely set ignore-threshold 3 Configures the plugin to ignore designations equal to or above prior-
ity 3 designations.

5.6. All DFHack tools alphabetically 75

https://dwarffortresswiki.org/Designations_menu#Marker_Mode
https://dwarffortresswiki.org/Designations_menu#Marker_Mode

DFHack Documentation, Release 50.11-r4

Commands

runonce Run the safety procedures once to set the marker mode of designations.

rebuild Rebuild the designation group data. You should also read Troubleshooting.

Features

require-vision Toggle whether the dwarves need vision of a tile before channeling to it can be deemed
unsafe. (default: enabled)

risk-averse Toggles whether to use cave-in prevention. Designations are activated in stages and their
priorities along edges are modified. (default: enabled)

monitoring Toggle whether to monitor the conditions of active digs. (default: disabled)

resurrect Toggle whether to resurrect units involved in cave-ins, and if monitor is enabled units who die
while digging. (default: disabled)

Settings

refresh-freq The rate at which full refreshes are performed. This can be expensive if you’re undertaking
many mega projects. (default:600, twice a day)

monitor-freq The rate at which active jobs are monitored. (default:1)

ignore-threshold Sets the priority threshold below which designations are processed. You can set to 1 or
0 to effectively disable the scanning. (default: 5)

fall-threshold Sets the fall threshold beyond which is considered unsafe. (default: 1)

Troubleshooting

If designations aren’t switching correctly, try putting the designations into marker mode. Then press . (next) or resume.
If you’re debugging code you’ll want these:

debugfilter set Info channel manager
debugfilter set Debug channel plugin
debugfilter set Trace channel group

5.6.52 cleanconst

Tags: fort | fps | buildings

Command: cleanconst

Cleans up construction materials.

This tool alters all constructions on the map so that they spawn their building component when they are disassembled,
allowing their actual build items to be safely deleted. This can improve FPS when you have many constructions on the
map.

76 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

cleanconst

5.6.53 cleaners

Tags: adventure | fort | armok | fps | items | map | units

Provides commands for cleaning spatter from the map.

Command: clean

Removes contaminants.

Command: spotclean

Remove all contaminants from the tile under the cursor.

Keybinding: CtrlC in dwarfmode

This plugin provides commands that clean the splatter that get scattered all over the map and that clings to your items
and units. In an old fortress, cleaning with this tool can significantly reduce FPS lag! It can also spoil your !!FUN!!,
so think before you use it.

Usage

clean all|map|items|units|plants [<options>]
spotclean

By default, cleaning the map leaves mud and snow alone. Note that cleaning units includes hostiles, and that cleaning
items removes poisons from weapons.

spotclean works like clean map snow mud, removing all contaminants from the tile under the cursor. This is ideal
if you just want to clean a specific tile but don’t want the cleaners command to remove all the glorious blood from your
entranceway.

Examples

clean all Clean everything that can be cleaned (except mud and snow).

clean all mud item snow Removes all spatter, including mud, leaves, and snow from map tiles.

5.6. All DFHack tools alphabetically 77

DFHack Documentation, Release 50.11-r4

Options

When cleaning the map, you can specify extra options for extra cleaning:

mud Also remove mud.

item Also remove item spatter, like fallen leaves and flowers.

snow Also remove snow coverings.

5.6.54 cleanowned

Tags: fort | productivity | items

Command: cleanowned

Confiscates and dumps garbage owned by dwarves.

This tool gets dwarves to give up ownership of scattered items and items with heavy wear and then marks those items
for dumping. Now you can finally get your dwarves to give up their rotten food and tattered loincloths and go get new
ones!

Usage

cleanowned [<types>] [dryrun]

When run without parameters, cleanowned will confiscate and dump rotten items and owned food that is left behind
on the floor. Specify the dryrun parameter to just print out what would be done, but don’t actually confiscate anything.

You can confiscate additional types of items by adding them to the commandline:

scattered Confiscate/dump all items scattered on the floor.

x Confiscate/dump items with wear level ‘x’ (lightly worn) and more.

X Confiscate/dump items with wear level ‘X’ (heavily worn) and more.

Or you can confiscate all owned items by specifying all.

Example

cleanowned scattered X Confiscate and dump rotten and dropped food, garbage on the floors, and any worn items
with ‘X’ damage and above.

78 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.55 clear-smoke

Tags: fort | armok | fps | map

Command: clear-smoke

Removes all smoke from the map.

Note that this can leak memory and should be used sparingly.

Usage

clear-smoke

5.6.56 clear-webs

Tags: adventure | fort | armok | map | units

Command: clear-webs

Removes all webs from the map.

In addition to removing webs, this tool also frees any creatures who have been caught in one. Usable in both fortress
and adventurer mode.

Note that it does not affect sprayed webs until they settle on the ground.

See also fix/drop-webs.

Usage

clear-webs [--unitsOnly|--websOnly]

Examples

clear-webs Remove all webs and free all webbed units.

5.6. All DFHack tools alphabetically 79

DFHack Documentation, Release 50.11-r4

Options

--unitsOnly Free all units from webs without actually removing any webs

--websOnly Remove all webs without freeing any units.

5.6.57 cls

Tags: dfhack

Command: cls

Clear the terminal screen.

Can also be invoked as clear. Note that this command does not delete command history. It just clears the text on the
screen.

Usage

cls

5.6.58 colonies

Tags: fort | armok | map

Command: colonies

Manipulate vermin colonies and hives.

Usage

colonies List all vermin colonies on the map.

colonies place [<type>] Place a colony under the cursor.

colonies convert [<type>] Convert all existing colonies to the specified type.

The place and convert subcommands create or convert to honey bees by default.

80 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

colonies place Place a honey bee colony.

colonies place ANT Place an ant hive.

colonies convert TERMITE End your beekeeping industry by converting all colonies to termite mounds.

5.6.59 color-schemes

Tags: unavailable

Command: color-schemes

Modify the colors used by the DF UI.

This tool allows you to set exactly which shades of colors should be used in the DF interface color palette.

To set up the colors, you must first create at least one file with color definitions inside. These files must be in the same
format as data/init/colors.txt and contain RGB values for each of the color names. Just copy colors.txt and
edit the values for your custom color schemes.

If you are interested in alternate color schemes, also see:

• gui/color-schemes: the in-game GUI for this script

• season-palette: automatically swaps color schemes when the season changes

Usage

color-schemes register <directory> [-f] [-q] Register the directory (relative to the main DF game direc-
tory) where your color scheme files are stored.

color-schemes list List the color schemes from the registered directories.

color-schemes default set <scheme name> [-q] Set the named color scheme as the default. This value is
stored so you only have to set it once, even if you start a new adventure/fort.

color-schemes default load [-q] Load the default color scheme that you previously set with default set.

color-schemes load <scheme name> [-q] Load the named color scheme.

Examples

Read your color scheme files from the colorschemes directory (a directory you created and populated with color
scheme files) and set the default to the scheme named mydefault:

color-schemes register colorschemes
color-schemes default set mydefault

Read your color scheme files from the colorschemes directory (a directory you created and populated with color
scheme files) and load the saved default. If you have a color scheme that you always want loaded, put these commands
in your dfhack-config/init/dfhack.init file:

5.6. All DFHack tools alphabetically 81

DFHack Documentation, Release 50.11-r4

color-schemes -q register colorschemes
color-schemes default load

Options

-f, --force Register and read color schemes that are incomplete or are syntactically incorrect.

-q, --quiet Don’t print any informational output.

API

When loaded as a module, this script will export the following functions:

• register(path, force) : Register colors schemes by path (file or directory), relative to DF main directory

• load(name) : Load a registered color scheme by name

• list() : Return a list of registered color schemes

• set_default(name) : Set the default color scheme

• load_default() : Load the default color scheme

5.6.60 combat-harden

Tags: unavailable

Command: combat-harden

Set the combat-hardened value on a unit.

This tool can make a unit care more/less about seeing corpses.

Usage

combat-harden [<unit>] [<hardness>]

Examples

combat-harden Make the currently selected unit fully combat hardened

combat-harden --citizens --tier 2 Make all fort citizens moderately combat hardened.

82 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Unit options

--all All active units will be affected.

--citizens All (sane) citizens of your fort will be affected. Will do nothing in adventure mode.

--unit <id> The given unit will be affected.

If no option is given or the indicated unit can’t be found, the script will use the currently selected unit.

Hardness options

--value <num> A percent value (0 to 100, inclusive) to set combat hardened to.

--tier <num> Choose a tier of hardenedness to set it to. - 1 = No hardenedness. - 2 = “is getting used to tragedy” -
3 = “is a hardened individual” - 4 = “doesn’t really care about anything anymore” (max)

If no option is given, the script defaults to using a value of 100.

5.6.61 combine

Tags: fort | productivity | items | plants | stockpiles

Command: combine

Combine items that can be stacked together.

Usage

combine (all|here) [<options>]

Examples

combine Displays help

combine all --dry-run Preview stack changes for all types in all stockpiles.

combine all Merge stacks for all stockpile and all types

combine all --types=meat,plant Merge meat and plant type stacks in all stockpiles.

combine here Merge stacks in the selected stockpile.

5.6. All DFHack tools alphabetically 83

DFHack Documentation, Release 50.11-r4

Commands

all Search all stockpiles.

here Search the currently selected stockpile.

Options

-h, --help Prints help text. Default if no options are specified.

-d, --dry-run Display the stack changes without applying them.

-t, --types <comma separated list of types> Filter item types. Default is all. Valid types are:

all: all of the types listed here.

ammo: AMMO. Qty max 25.

drink: DRINK. Qty max 100.

fat: GLOB and CHEESE. Qty max 5.

fish: FISH, FISH_RAW and EGG. Qty 5.

food: FOOD. Qty max 20.

meat: MEAT. Qty max 5.

parts: CORPSEPIECE. Material max 30.

plant: PLANT and PLANT_GROWTH. Qty max 5.

powders: POWDERS_MISC. Qty max 10.

-q, --quiet Only print changes instead of a summary of all processed stockpiles.

-v, --verbose n Print verbose output, n from 1 to 4.

Notes

The following conditions prevent an item from being combined:

1. An item is not in a stockpile.

2. An item is sand or plaster.

3. An item is rotten, forbidden/hidden, marked for dumping/melting, on fire, encased, owned by a
trader/hostile/dwarf or is in a spider web.

4. An item is part of a corpse and not butchered.

The following categories are defined:

1. Corpse pieces, grouped by piece type and race

2. Items that have an associated race/caste, grouped by item type, race, and caste

3. Ammo, grouped by ammo type, material, and quality. If the ammo is a masterwork, it is also grouped by
who created it.

4. Anything else, grouped by item type and material.

84 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.62 confirm

Tags: fort | interface

Command: confirm

Adds confirmation dialogs for destructive actions.

In the base game, it is frightenly easy to destroy hours of work with a single misclick. Now you can avoid the conse-
quences of accidentally disbanding a squad (for example), or deleting a hauling route.

Usage

enable confirm, confirm enable all Enable all confirmation options. Replace with disable to disable all.

confirm enable option1 [option2...] Enable (or disable) specific confirmation dialogs.

When run without parameters, confirm will report which confirmation dialogs are currently enabled.

5.6.63 createitem

Tags: adventure | fort | armok | items

Command: createitem

Create arbitrary items.

You can create new items of any type and made of any material. A unit must be selected in-game to use this command.
By default, items created are spawned at the feet of the selected unit.

Specify the item and material information as you would indicate them in custom reaction raws, with the following
differences:

• Separate the item and material with a space rather than a colon

• If the item has no subtype, the :NONE can be omitted

• If the item is REMAINS, FISH, FISH_RAW, VERMIN, PET, or EGG, then specify a CREATURE:CASTE pair instead of
a material token.

• If the item is a PLANT_GROWTH, specify a PLANT_ID:GROWTH_ID pair instead of a material token.

Corpses, body parts, and prepared meals cannot be created using this tool.

5.6. All DFHack tools alphabetically 85

DFHack Documentation, Release 50.11-r4

Usage

createitem <item> <material> [<count>] Create <count> copies (default is 1) of the specified item made out
of the specified material.

createitem inspect Obtain the item and material tokens of an existing item. Its output can be used directly as
arguments to createitem to create new matching items (as long as the item type is supported).

createitem floor|item|building Subsequently created items will be placed on the floor beneath the selected
unit’s, inside the selected item, or as part of the selected building.

Note: createitem building is good for loading traps, but if you use it with workshops, you will have to deconstruct
the workshop to access the item.

Examples

createitem GLOVES:ITEM_GLOVES_GAUNTLETS INORGANIC:STEEL 2 Create 2 pairs of steel gauntlets (that is, 2
left gauntlets and 2 right gauntlets).

createitem WOOD PLANT_MAT:TOWER_CAP:WOOD 100 Create 100 tower-cap logs.

createitem PLANT_GROWTH BILBERRY:FRUIT Create a single bilberry.

For more examples, the wiki.

5.6.64 cursecheck

Tags: fort | armok | inspection | units

Command: cursecheck

Check for cursed creatures.

This command checks a single map tile (or the whole map/world) for cursed creatures (ghosts, vampires, necromancers,
werebeasts, zombies, etc.).

With an active in-game cursor, only the selected tile will be checked. Without a cursor, the whole map will be checked.

By default, you will just see the count of cursed creatures in case you just want to find out if you have any of them running
around in your fort. Dead and passive creatures (ghosts who were put to rest, killed vampires, etc.) are ignored. Undead
skeletons, corpses, bodyparts and the like are all thrown into the curse category “zombie”. Anonymous zombies and
resurrected body parts will show as “unnamed creature”.

86 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Utility:DFHack/createitem

DFHack Documentation, Release 50.11-r4

Usage

cursecheck [<options>]

Examples

• cursecheck Display a count of cursed creatures on the map (or under the cursor).

• cursecheck detail all Give detailed info about all cursed creatures including deceased ones.

• cursecheck nick Give a nickname to all living/active cursed creatures.

Note: If you do a full search (with the option “all”) former ghosts will show up with the cursetype “unknown” because
their ghostly flag is not set.

If you see any living/active creatures with a cursetype of “unknown”, then it is most likely a new type of curse introduced
by a mod.

Options

detail Print full name, date of birth, date of curse, and some status info (some vampires might use fake identities
in-game, though).

nick Set the type of curse as nickname (does not always show up in-game; some vamps don’t like nicknames).

ids Print the creature and race IDs.

all Include dead and passive cursed creatures (this can result in quite a long list after having !!FUN!! with necro-
mancers).

verbose Print all curse tags (if you really want to know it all).

5.6.65 cxxrandom

Tags: dev

Provides a Lua API for random distributions.

See cxxrandom for details.

5.6.66 deathcause

Tags: fort | inspection | units

Command: deathcause

Find out the cause of death for a creature.

Select a corpse or body part on the ground, and deathcause will detail the cause of death of the creature.

5.6. All DFHack tools alphabetically 87

DFHack Documentation, Release 50.11-r4

Usage

deathcause

5.6.67 debug

Tags: dev

Provides commands for controlling debug log verbosity.

Command: debugfilter

Configure verbosity of DFHack debug output.

Debug output is grouped by plugin name, category name, and verbosity level.

The verbosity levels are:

• Trace Possibly very noisy messages which can be printed many times per second.

• Debug Messages that happen often but they should happen only a couple of times per second.

• Info Important state changes that happen rarely during normal execution.

• Warning Enabled by default. Shows warnings about unexpected events which code managed to handle correctly.

• Error Enabled by default. Shows errors which code can’t handle without user intervention.

The runtime message printing is controlled using filters. Filters set the visible messages of all matching categories.
Matching uses regular expression syntax, which allows listing multiple alternative matches or partial name matches.
This syntax is a C++ version of the ECMA-262 grammar (Javascript regular expressions). Details of differences can
be found at https://en.cppreference.com/w/cpp/regex/ecmascript

Persistent filters are stored in dfhack-config/runtime-debug.json. Oldest filters are applied first. That means a
newer filter can override the older printing level selection.

Usage

debugfilter category [<plugin regex>] [<category regex>] List available debug plugin and category
names. If filters aren’t given then all plugins/categories are matched. This command is a good way to test
regex parameters before you pass them to set.

debugfilter filter [<id>] List active and passive debug print level changes. The optional id parameter is the
id listed as the first column in the filter list. If id is given, then the command shows extended information for
the given filter only.

debugfilter set [<level>] [<plugin regex>] [<category regex>] Create a new debug filter to set cate-
gory verbosity levels. This filter will not be saved when the DF process exists or the plugin is unloaded.

debugfilter set persistent [<level>] [<plugin regex>] [<category regex>] Store the filter in the
configuration file to until unset is used to remove it.

debugfilter unset <id> [<id> ...] Delete a space separated list of filters.

debugfilter disable <id> [<id> ...] Disable a space separated list of filters but keep it in the filter list.

debugfilter enable <id> [<id> ...] Enable a space separated list of filters.

88 Chapter 5. DFHack tools

https://en.cppreference.com/w/cpp/regex/ecmascript

DFHack Documentation, Release 50.11-r4

debugfilter header [enable] | [disable] [<element> ...] Control which header metadata is shown
along with each log message. Run it without parameters to see the list of configurable elements. Include an
enable or disable keyword to change whether specific elements are shown.

Example

debugfilter set Warning core script Hide script execution log messages (e.g. “Loading script: dfhack-
config/dfhack.init”), which are normally output at Info verbosity in the “core” plugin with the “script” category.

5.6.68 deep-embark

Tags: embark | fort | gameplay

Command: deep-embark

Start a fort deep underground.

Moves the starting units and equipment to a specified underground region upon embarking so you can start your fort
from there.

Run this script while setting up an embark, any time before the embark welcome message appears.

Usage

deep-embark --depth <layer> [<options>] Start monitoring the game for the welcome message. Once the
embark welcome message appears, your units and equipment will automatically be moved to the specified layer.

deep-embark --clear Stop monitoring the game for the welcome message, effectively restoring normal embarks
on the surface.

Example

deep-embark --depth CAVERN_2 Embark in the second cavern layer

deep-embark --depth UNDERWORLD --blockDemons Embark in the underworld and disable the usual welcoming
party.

Options

--depth <layer> Embark at the specified layer. Valid layers are: CAVERN_1, CAVERN_2, CAVERN_3, and
UNDERWORLD.

--blockDemons Prevent the demon surge that is normally generated when you breach an underworld spire. Use this
with --depth UNDERWORLD to survive past the first few minutes. Note that “wildlife” demon spawning will be
unaffected.

--atReclaim Enable deep embarks when reclaiming sites.

--clear Re-enable normal surface embarks.

5.6. All DFHack tools alphabetically 89

DFHack Documentation, Release 50.11-r4

Deep embarks for mods

If you are creating a mod and you want to enable deep embarks by default, create a file called “onLoad.init” in the DF
raw folder (if one does not exist already) and enter the deep-embark command within it.

5.6.69 deramp

Tags: fort | armok | map

Command: deramp

Removes all ramps designated for removal from the map.

It also removes any “floating” down ramps that can remain after a cave-in.

Usage

deramp

5.6.70 design

Tags: fort | design | dev | map

Draws designations in shapes.

This plugin provides a Lua API, but no direct commands. See gui/design for the user interface.

5.6.71 deteriorate

Tags: unavailable

Command: deteriorate

Cause corpses, clothes, and/or food to rot away over time.

When enabled, this script will cause the specified item types to slowly rot away. By default, items disappear after a few
months, but you can choose to slow this down or even make things rot away instantly!

Now all those slightly worn wool shoes that dwarves scatter all over the place or the toes, teeth, fingers, and limbs from
the last undead siege will deteriorate at a greatly increased rate, and eventually just crumble into nothing. As warm and
fuzzy as a dining room full of used socks makes your dwarves feel, your FPS does not like it!

90 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

deteriorate start --types <types> [--freq <frequency>] [--quiet] [--keep-usable] Starts dete-
riorating the specified item types while you play.

deteriorate stop --types <types> Stops deteriorating the specified item types.

deteriorate status Shows the item types that are currently being monitored and their deterioration frequencies.

deteriorate now --types <types> [--quiet] [--keep-usable] Causes all items (of the specified item
types) to rot away within a few ticks.

You can have different types of items rotting away at different rates by running deteriorate start multiple times
with different options.

Examples

Start deteriorating corpses and body parts, keeping usable parts such as hair, wool:

deteriorate start --types corpses --keep-usable

Start deteriorating corpses and food and do it at twice the default rate:

deteriorate start --types corpses,food --freq 0.5,days

Deteriorate corpses quickly but clothes slowly:

deteriorate start -tcorpses -f0.1
deteriorate start -tclothes -f3,months

Options

-f, --freq, --frequency <number>[,<timeunits>] How often to increment the wear counters. <timeunits>
can be one of days, months, or years and defaults to days if not specified. The default frequency of 1 day
will result in items disappearing after several months. The number does not need to be a whole number. E.g.
--freq=0.5,days is perfectly valid.

-k, --keep-usable Keep usable body parts such as hair, wool, hooves, bones, and skulls.

-q, --quiet Silence non-error output.

-t, --types <types> The comma-separated list of item types to affect. This option is required for start, stop,
and now commands.

Types

clothes All clothing pieces that have an armor rating of 0 and are lying on the ground.

corpses All resident corpses and body parts.

food All food and plants, regardless of whether they are in barrels or stockpiles. Seeds are left untouched.

5.6. All DFHack tools alphabetically 91

DFHack Documentation, Release 50.11-r4

5.6.72 die

Tags: dfhack

Command: die

Instantly exit DF without saving.

Use to exit DF quickly and safely.

Usage

die

5.6.73 dig

Tags: fort | design | productivity | map

Provides commands for designating tiles for digging.

Command: digv

Designate all of the selected vein for digging.

Keybinding: CtrlV in dwarfmode

Keybinding: CtrlShiftV -> "digv x" in dwarfmode

Command: digvx

Dig a vein across z-levels, digging stairs as needed.

Command: digl

Dig all of the selected layer stone.

Command: diglx

Dig layer stone across z-levels, digging stairs as needed.

Command: digcircle

Designate circles.

92 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Command: digtype

Designate all vein tiles of the same type as the selected tile.

Command: digexp

Designate dig patterns for exploratory mining.

This plugin provides commands to make complicated dig patterns easy.

Usage

digv [x] [-p<number>] Designate all of the selected vein for digging.

digvx [-p<number>] Dig a vein across z-levels, digging stairs as needed. This is an alias for digv x.

digl [x] [undo] [-p<number>] Dig all of the selected layer stone. If undo is specified, removes the designation
instead (for if you accidentally set 50 levels at once).

diglx [-p<number>] Dig layer stone across z-levels, digging stairs as needed. This is an alias for digl x.

digcircle [<diameter>] [<solidity>] [<action>] [<designation>] [-p<number>] Designate circles.
The diameter is the number of tiles across the center of the circle that you want to dig. See the digcircle section
below for options.

digtype [<designation>] [-p<number>] [--zup|-u] [--zdown|-zu] [--cur-zlevel|-z] [--hidden|-h] [--no-auto|-a]
Designate all vein tiles of the same type as the selected tile. See the digtype section below for options.

digexp [<pattern>] [<filter>] [-p<number>] Designate dig patterns for exploratory mining. See the digexp
section below for options.

All commands support specifying the priority of the dig designations with -p<number>, where the number is from 1
to 7. If a priority is not specified, the priority selected in-game is used as the default.

Examples

digcircle filled 3 -p2 Dig a filled circle with a diameter of 3 tiles at dig priority 2.

digcircle Do it again (previous parameters are reused).

expdig diag5 hidden Designate the diagonal 5 pattern over all hidden tiles on the current z-level.

expdig ladder designated Take existing designations on the current z-level and replace them with the ladder
pattern.

expdig Do it again (previous parameters are reused).

5.6. All DFHack tools alphabetically 93

DFHack Documentation, Release 50.11-r4

digcircle

The digcircle command can accept up to one option of each type below.

Solidity options:

hollow Designates hollow circles (default).

filled Designates filled circles.

Action options:

set Set designation (default).

unset Unset current designation.

invert Invert designations already present.

Designation options:

dig Normal digging designation (default).

ramp Dig ramps.

ustair Dig up staircases.

dstair Dig down staircases.

xstair Dig up/down staircases.

chan Dig channels.

After you have set the options, the command called with no options repeats with the last selected parameters.

digtype

For every tile on the map of the same vein type as the selected tile, this command designates it to have the same
designation as the selected tile. If the selected tile has no designation, they will be dig designated. By default, only
designates visible tiles, and in the case of dig designation, applies automatic mining to them (designates uncovered
neighbouring tiles of the same type to be dug).

If an argument is given, the designation of the selected tile is ignored, and all appropriate tiles are set to the specified
designation.

Designation options:

dig Normal digging designation.

channel Dig channels.

ramp Dig ramps.

updown Dig up/down staircases.

up Dig up staircases.

down Dig down staircases.

clear Clear any designations.

Other options:

-d, --zdown Only designates tiles on the cursor’s z-level and below.

-u, --zup Only designates tiles on the cursor’s z-level and above.

-z, --cur-zlevel Only designates tiles on the same z-level as the cursor.

94 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

-h, --hidden Allows designation of hidden tiles, and picking a hidden tile as the target type.

-a, --no-auto No automatic mining mode designation - useful if you want to avoid dwarves digging where you don’t
want them.

digexp

This command is for exploratory mining.

There are two variables that can be set: pattern and filter.

Patterns:

diag5 Diagonals separated by 5 tiles.

diag5r The diag5 pattern rotated 90 degrees.

ladder A ‘ladder’ pattern.

ladderr The ladder pattern rotated 90 degrees.

cross A cross, exactly in the middle of the map.

clear Just remove all dig designations.

Filters:

hidden Designate only hidden tiles of z-level (default)

all Designate the whole z-level.

designated Take current designation and apply the selected pattern to it.

After you have a pattern set, you can use expdig to apply it again.

Overlay

This tool also provides two overlays that are managed by the overlay framework. Both have no effect when in graph-
ics mode, but when in ASCII mode, they display useful highlights that are otherwise missing from the ASCII mode
interface.

The dig.asciiwarmdamp overlay highlights warm tiles red and damp tiles in blue. Box selection characters and the
keyboard cursor will also change color as appropriate when over the warm or damp tile.

The dig.asciicarve overlay highlights tiles that are designated for smoothing, engraving, track carving, or fortifi-
cation carving. The designations blink so you can still see what is underneath them.

Note that due to the limitations of the ASCII mode screen buffer, the designation highlights may show through other
interface elements that overlap the designated area.

5.6.74 dig-now

Tags: fort | armok | map

Command: dig-now

Instantly complete dig designations.

5.6. All DFHack tools alphabetically 95

https://dwarffortresswiki.org/Exploratory_mining

DFHack Documentation, Release 50.11-r4

This tool will magically complete non-marker dig designations, modifying tile shapes and creating boulders, ores, and
gems as if a miner were doing the mining or engraving. By default, the entire map is processed and boulder generation
follows standard game rules, but the behavior is configurable.

Note that no units will get mining or engraving experience for the dug/engraved tiles.

Trees and roots are not currently handled by this plugin and will be skipped. Requests for engravings are also skipped
since they would depend on the skill and creative choices of individual engravers. Other types of engraving (i.e.
smoothing and track carving) are handled.

Usage

dig-now [<pos> [<pos>]] [<options>]

Where the optional <pos> pair can be used to specify the coordinate bounds within which dig-now will operate. If
they are not specified, dig-now will scan the entire map. If only one <pos> is specified, only the tile at that coordinate
is processed.

Any <pos> parameters can either be an <x>,<y>,<z> triple (e.g. 35,12,150) or the string here, which means the
position of the active game cursor should be used. You can use the position command to get the current cursor position
if you need it.

Examples

dig-now Dig designated tiles according to standard game rules.

dig-now --clean Dig all designated tiles, but don’t generate any boulders, ores, or gems.

dig-now --dump here Dig tiles and teleport all generated boulders, ores, and gems to the tile under the game cursor.

Options

-c, --clean Don’t generate any boulders, ores, or gems. Equivalent to --percentages 0,0,0,0.

-d, --dump <pos> Dump any generated items at the specified coordinates. If the tile at those coordinates is open
space or is a wall, items will be generated on the closest walkable tile below.

-e, --everywhere Generate a boulder, ore, or gem for every tile that can produce one. Equivalent to --percentages
100,100,100,100.

-p, --percentages <layer>,<vein>,<small cluster>,<deep> Set item generation percentages for each of the
tile categories. The vein category includes both the large oval clusters and the long stringy mineral veins. Default
is 25,33,100,100.

-z, --cur-zlevel Restricts the bounds to the currently visible z-level.

96 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.75 digFlood

Tags: unavailable

Command: digFlood

Digs out veins as they are discovered.

Once you register specific vein types, this tool will automatically designate tiles of those types of veins for digging as
your miners complete adjacent mining jobs. Note that it will only dig out tiles that are adjacent to a just-finished dig
job, so if you want to autodig a vein that has already been discovered, you may need to manually designate one tile of
the tile for digging to get started.

Usage

enable digflood Enable the plugin.

digflood 1 <vein type> [<vein type> ...] Start monitoring for the specified vein types.

digFlood 0 <vein type> [<vein type> ...] 1 Stop monitoring for the specified vein types. Note the required
1 at the end.

digFlood CLEAR Remove all inorganics from monitoring.

digFlood digAll1 Ignore the monitor list and dig any vein.

digFlood digAll0 Disable digAll mode.

You can get the list of valid vein types with this command:

lua "for i,mat in ipairs(df.global.world.raws.inorganics) do if mat.material.flags.IS_
→˓STONE and not mat.material.flags.NO_STONE_STOCKPILE then print(i, mat.id) end end"

Examples

digFlood 1 MICROCLINE COAL_BITUMINOUS Automatically dig microcline and bituminous coal veins.

digFlood 0 MICROCLINE 1 Stop automatically digging microcline.

5.6.76 diggingInvaders

Tags: unavailable

Command: diggingInvaders

Invaders dig and destroy to get to your dwarves.

5.6. All DFHack tools alphabetically 97

DFHack Documentation, Release 50.11-r4

Usage

enable diggingInvaders Enable the plugin.

diggingInvaders add <race> Register the specified race as a digging invader.

diggingInvaders remove <race> Unregisters the specified race as a digging invader.

diggingInvaders now Makes invaders try to dig now (if the plugin is enabled).

diggingInvaders clear Clears the registry of digging invader races.

diggingInvaders edgesPerTick <n> Makes the pathfinding algorithm work on at most n edges per tick. Set to 0
or lower to make it unlimited.

diggingInvaders setCost <race> <action> <n> Set the pathing cost per tile for a particular action. This de-
termines what invaders consider to be the shortest path to their target.

diggingInvaders setDelay <race> <action> <n> Set the time cost (in ticks) for performing a particular ac-
tion. This determines how long it takes for invaders to get to their target.

Note that the race is case-sensitive. You can get a list of races for your world with this command:

devel/query --table df.global.world.raws.creatures.all --search creature_id --maxdepth 1␣
→˓--maxlength 5000

but in general, the race is what you’d expect, just capitalized (e.g. GOBLIN or ELF).

Actions:

walk Default cost: 1, default delay: 0. This is the base cost for the pathing algorithm.

destroyBuilding Default cost: 2, default delay: 1,000,

dig Default cost: 10,000, default delay: 1,000. This is for digging soil or natural stone.

destroyRoughConstruction Default cost: 1,000, default delay: 1,000. This is for destroying constructions made
from boulders.

destroySmoothConstruction Default cost: 100, default delay: 100. This is for destroying constructions made from
blocks or bars.

Example

diggingInvaders add GOBLIN Registers members of the GOBLIN race as a digging invader.

5.6.77 diplomacy

Tags: fort | armok | inspection | military

Command: diplomacy

View or alter diplomatic relationships.

This tool can report on or modify the diplomatic relationships (i.e. war vs. peace) you have with other contacted
civilizations. Note that a civilization is only at peace if both you are at peace with them and they are at peace with
you.

98 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

diplomacy
diplomacy all <RELATIONSHIP>
diplomacy <CIV_ID> <RELATIONSHIP>

Examples

diplomacy See current diplomatic relationships between you and all other contacted civs.

diplomacy 224 peace Changes both your stance towards civilization 224 and their stance towards you to peace.

diplomacy all war Induce the entire world to declare war on your civilization.

5.6.78 disable

Tags: dfhack

Command: disable

Deactivate a DFHack tool that has some persistent effect.

See the enable command for more info.

Usage

disable <plugin> [<plugin> ...]

5.6.79 do-job-now

Tags: unavailable

Command: do-job-now

Mark the job related to what you’re looking at as high priority.

The script will try its best to find a job related to the selected entity (which can be a job, dwarf, animal, item, building,
plant or work order) and then mark the job as high priority.

Apart from jobs that are queued from buildings, there is normally no visual indicator that the job is now high priority.
If you use do-job-now from the keybinding, you have to check the dfhack console for output to see if the command
succeeded.

If a work order is selected, every job currently active from this work order is adjusted, but not the future ones.

Also see the do-job-now tweak, which allows you to adjust job priorities from the j`obs screen, and
`prioritize, which can automatically adjust priorities based on the type of job.

5.6. All DFHack tools alphabetically 99

DFHack Documentation, Release 50.11-r4

Usage

do-job-now

5.6.80 drain-aquifer

Tags: fort | armok | map

Command: drain-aquifer

Remove some or all aquifers on the map.

This tool irreversibly removes ‘aquifer’ tags from map blocks. Also see prospector for discovering the range of layers
that currently have aquifers.

Usage

drain-aquifer [<options>]

Examples

drain-aquifer Remove all aquifers on the map.

drain-aquifer --top 2 Remove all aquifers on the map except for the top 2 levels of aquifer.

drain-aquifer -d Remove all aquifers on the current z-level and below.

Options

-t, --top <num> Remove all aquifers on the map except for the top <num> levels, starting from the first level that has
an aquifer tile. Note that there may be less than <num> levels of aquifer after the command is run if the levels of
aquifer are not contiguous.

-d, --zdown Remove all aquifers on the current z-level and below.

-u, --zup Remove all aquifers on the current z-level and above.

-z, --cur-zlevel Remove all aquifers on the current z-level.

5.6.81 dwarf-op

Tags: unavailable

Command: dwarf-op

Tune units to perform underrepresented job roles in your fortress.

100 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

dwarf-op examines the distribution of skills and attributes across the dwarves in your fortress and can rewrite the
characteristics of a dwarf (or group of dwarves) so that they are fit to excel at the jobs that your current dwarves don’t
adequately cover.

It uses a library of profiles to define job classes, and generates dwarves with random variation so each dwarf is unique.

dwarf-op can also be used in a mode more similar to assign-profile, where you can specify precisely what archetype
you want a for given dwarf, and dwarf-op can generate a random dwarf that matches that archetype.

Usage

dwarf-op --list <table>
dwarf-op --reset|--resetall
dwarf-op [--select <criteria>] <commands>

Examples

dwarf-op --select unoptimized --clear --optimize Transform newly arrived dwarves into the workers that
your fort needs most.

dwarf-op --select all --clear --optimize Rebalance the distribution of skills and attributes across your
units.

dwarf-op --select names,Einstein --applytypes genius3,intuitive3,creative2,spaceaware3
Make dwarves with Einstein in their name into geniuses capable of surpassing the real Einstein.

dwarf-op --select waves,2,3,5,7,11,13 --applyjobs MINER Make all migrants in waves 2, 3, 5, 7, 11, and
13 very good miners.

dwarf-op --select jobs,Stoneworker --applytypes fast3,strong5 Boost the speed and strength of your
masons so they can carry boulders to their workshop faster.

Selection criteria

Note that dwarves whose name or profession starts with . or , are considered “protected”, and will not be matched by
the selection criteria options below unless specifically noted.

You can prepend the letter p to any option to include protected dwarves in your selection. For example, to truly select
all dwarves, specify pall instead of all.

highlighted Selects only the in-game highlighted dwarf (from any screen), regardless of protection status. This is
the default if no --select option is specified.

all Selects all dwarves.

named Selects dwarves with user-given names.

unnamed Selects dwarves without user-given names.

employed` Selects dwarves with custom professions. Does not include optimized dwarves.

optimized Selects dwarves that have been previously optimized by dwarf-op.

unoptimized Selects any dwarves that have not been previously optimized by dwarf-op.

protected Selects protected dwarves.

unprotected Selects unprotected dwarves.

5.6. All DFHack tools alphabetically 101

DFHack Documentation, Release 50.11-r4

drunks Selects any dwarves who have the DRUNK profession, including those who have been zeroed by the --clear
command option.

names,<name>[,<name>...] Selects any dwarf with <name> anywhere in their name or nickname. This option
ignores protection status.

jobs,<job>[,<job>...] Selects any dwarves with the specified custom professions.

waves,<num>[,<num>...] Selects dwarves from the specified migration waves. Waves are enumerated starting at
0 and increasing by 1 with each wave. The waves go by season and year and thus should match what you see in
list-waves or Dwarf Therapist. It is recommended that you --show the selected dwarves before modifying them.

Options

--reset Forget which dwarves have been optimized. However, if you reload an existing save, the optimization list
will be reloaded.

--resetall Forget which dwarves have been optimized and remove the saved optimization data.

--list <table name> Show the raw data tables that dwarf-op uses to make decisions. See the Data tables section
below for which tables are available.

--select <criteria> Select a specific subset of dwarves that the specified Command options should act on.

Command options

--show Lists the selected dwarves. Useful for previewing selected dwarves before modifying them or looking up the
migration wave number for a group.

--clean <value> Checks for skills with a rating of <value> and removes them from the dwarf’s skill list.

--clear Zeroes the skills and attributes of selected dwarves. No attributes, no labors. Assigns DRUNK profession.

--reroll [inclusive] Clears attributes of selected dwarves, then rerolls that dwarf based on their jobs. Run
dwarf-op --list attrib_levels to see how stats are distributed. If inclusive is specified, then attributes
are not cleared, but rather will only be changed if the current reroll is better. This command ignores dwarves
with jobs that are not listed in the jobs table.

--optimize Performs a job search for unoptimized dwarves. Run dwarf-op --list job_distribution to see
how jobs are distributed.

--applyjobs <job>[,<job>...] Applies the listed jobs to the selected dwarves. Run dwarf-op --list jobs
to see available jobs.

--applyprofessions <profession>[,<profession>...] Applies the listed professions to the selected
dwarves. Run dwarf-op --list professions to see available professions.

--applytypes <profession>[,<profession>...] Applies the listed types to the selected dwarves. Run
dwarf-op --list dwf_types to see available types.

--renamejob <name> Renames the selected dwarves’ custom professions to the specified name.

102 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Data tables

The data tables that dwarf-op uses are described below. They can be inspected with dwarf-op --list <table
name>.

job_distributions Defines thresholds for each column of distributions. The columns should add up to the values
in the thresholds row for that column. Every other row references an entry in the jobs table.

attrib_levels Defines stat distributions for both physical and mental attributes. Each level has a probability (p-
value, or p) which indicates how likely a level will be used for a particular stat, e.g. strength or spacial awareness.
The levels range from incompetent to unbelievable (god-like) and are mostly in line with what the game uses
already. dwarf-op adds one additional level to push the unbelievable even higher, though.

In addition to a bell shaped p-value curve for the levels, there is additionally a standard deviation used to generate
the value once a level has been selected, this makes the bell curve not so bell shaped in the end. Labors do not
follow the same stat system and are more uniformly random, which are compensated for in the description of
jobs/professions.

jobs Defines dwarf-op’s nameable jobs. Each job is comprised of required professions, optional professions, proba-
bilities for each optional profession, a ‘max’ number of optional professions, and a list of types (from the types
table below) to apply to dwarves in the defined job.

professions These are a subset of the professions DF has. All professions listed should match a profession dwarf
fortress has built in, however not all the built-ins are defined here.

Each profession is defined with a set of job skills which match the skills built into Dwarf Fortress. Each skill is
given a value which represents the bonus a dwarf will get for this skill. The skills are added in a random order,
with the first few receiving the highest values (excluding the bonus just mentioned). Thus the bonuses are to
ensure a minimum threshold is passed for certain skills deemed critical to a profession.

types These are a sort of archetype system for applying to dwarves. It primarily includes physical and mental at-
tributes, but can include skills as well. If it has skills listed, each skill will have a minimum and maximum value.
The chosen values will be evenly distributed between these two numbers (inclusive).

Job specifications from the jobs table add these types to a dwarf to modify their stats. For the sake of randomness
and individuality, each type has a probability for being additionally applied to a dwarf just by pure luck. This
will bump some status up even higher than the base job calls for.

To see a full list of built-in professions, skills, and attributes, you can run these commands:

devel/query --table df.profession
devel/query --table df.job_skill
devel/query --table df.physical_attribute_type
devel/query --table df.mental_attribute_type

5.6.82 dwarfmonitor

Tags: unavailable

Command: dwarfmonitor

Report on dwarf preferences and efficiency.

It can also show heads-up display widgets with live fort statistics.

5.6. All DFHack tools alphabetically 103

DFHack Documentation, Release 50.11-r4

Usage

enable dwarfmonitor Enable tracking of job efficiency for display on the dwarfmonitor stats screen.

dwarfmonitor stats Show statistics and efficiency summary.

dwarfmonitor prefs Show a summary of preferences for dwarves in your fort.

Widget configuration

The following widgets are registered for display on the main fortress mode screen with the overlay framework:

dwarfmonitor.cursor Show the current keyboard and mouse cursor positions.

dwarfmonitor.date Show the in-game date.

dwarfmonitor.misery Show overall happiness levels of all dwarves.

dwarfmonitor.weather Show current weather (e.g. rain/snow).

They can be enabled or disable via the overlay command.

The dfhack-config/dwarfmonitor.json file can be edited to change widget configuration with any of the following
fields:

• date_format (string): format for the dwarfmonitor.date widget:

– Y or y: The current year

– M: The current month, zero-padded if necessary

– m: The current month, not zero-padded

– D: The current day, zero-padded if necessary

– d: The current day, not zero-padded

The default date format is Y-M-D, per the ISO8601 standard.

• coords_type (string): the coordinate type to show in the dwarfmonitor.cursor widget:

– all (the default): show all of the coordinate types listed here

– mouse_ui: the X/Y UI coordinates of the tile the mouse is positioned over

– mouse_map: the X/Y/Z map coordinates of the tile the mouse is positioned over (only if over the map)

– keyboard_map: the X/Y/Z map coordinates of the tile selected by the keyboard-controlled X cursor in DF
(if active)

• coords_short (boolean, default: false): if true, hides explanatory text from the dwarfmonitor.cursor
widget, and only shows coordinates as (X,Y,Z)

Example configuration file:

{
"date_format": "m/d/y",
"coords_type": "mouse_map",
"coords_short": false

}

104 Chapter 5. DFHack tools

https://en.wikipedia.org/wiki/ISO_8601

DFHack Documentation, Release 50.11-r4

5.6.83 dwarfvet

Tags: fort | gameplay | animals

Command: dwarfvet

Allow animals to be treated at hospitals.

Annoyed that your dragons become useless after a minor injury? Well, with dwarfvet, injured animals will be treated
at a hospital. Dwarfs with the Animal Caretaker labor enabled will come to the hospital to treat the animals. Normal
medical skills are used (and trained), but no experience is given to the Animal Caretaker skill itself.

You can enable dwarfvet in gui/control-panel, and you can choose to start dwarfvet automatically in new forts in
the Autostart tab.

Usage

enable dwarfvet
dwarfvet [status]
dwarfvet now

Examples

dwarfvet Report on how many animals are being treated and how many are in need of treatment.

dwarfvet now Assign injured animals to a free floor spot in a nearby hospital, regardless of whether the plugin is
enabled.

5.6.84 elevate-mental

Tags: fort | armok | units

Command: elevate-mental

Set mental attributes of a dwarf to an ideal.

Set all mental attributes of the selected dwarf to the maximum possible, or any value between 0 and 5000.

5.6. All DFHack tools alphabetically 105

DFHack Documentation, Release 50.11-r4

Usage

elevate-mental [value]

Examples

elevate-mental Boost mental attributes of the selected dwarf to the maximum.

elevate-mental 100 Make the selected dwarf very stupid indeed.

5.6.85 elevate-physical

Tags: fort | armok | units

Command: elevate-physical

Set physical attributes of a dwarf to an ideal.

Set all physical attributes of the selected dwarf to the maximum possible, or any value between 0 and 5000. Higher is
usually better, but an ineffective hammerer can be useful too. . .

Usage

elevate-physical [value]

Examples

elevate-physical Boost physical attributes of the selected dwarf to the maximum.

elevate-physical 100 Ensure your hammerer won’t kill any citizens when they get punished.

5.6.86 embark-assistant

Tags: unavailable

Command: embark-assistant

Embark site selection support.

Run this command while the pre-embark screen is displayed to show extended (and reasonably correct) resource infor-
mation for the embark rectangle as well as normally undisplayed sites in the current embark region. You will also have
access to a site selection tool with far more options than DF’s vanilla search tool.

If you enable the plugin, you’ll also be able to invoke embark-assistant with the A key on the pre-embark screen.

106 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable embark-assistant
embark-assistant

Note the site selection tool requires a display height of at least 46 lines to display properly.

5.6.87 embark-skills

Tags: unavailable

Command: embark-skills

Adjust dwarves’ skills when embarking.

When selecting starting skills for your dwarves on the embark screen, this tool can manipulate the skill values or adjust
the number of points you have available to distribute.

Note that already-used skill points are not taken into account or reset.

Usage

embark-skills points <N> [all] Sets the skill points remaining of the selected dwarf (or all dwarves) to N.

embark-skills max [all] Sets all skills of the selected dwarf (or all dwarves) to “Proficient”.

embark-skills legendary [all] Sets all skills of the selected dwarf (or all dwarves) to “Legendary”.

Examples

embark-skills points 10 After using all points for the selected dwarf, this will give you an extra 10 to assign to
that dwarf.

embark-skills legendary all Make all your starting dwarves incredibly skilled.

5.6.88 embark-tools

Tags: unavailable

Command: embark-tools

Extend the embark screen functionality.

5.6. All DFHack tools alphabetically 107

DFHack Documentation, Release 50.11-r4

Usage

enable embark-tools
embark-tools enable|disable all
embark-tools enable|disable <tool> [<tool> ...]

Available tools are:

anywhere Allows embarking anywhere (including sites, mountain-only biomes, and oceans). Use with caution.

mouse Implements mouse controls (currently in the local embark region only).

sand Displays an indicator when sand is present in the currently-selected area, similar to the default clay/stone indi-
cators.

sticky Maintains the selected local area while navigating the world map.

Example

embark-tools enable all Enable all embark screen extensions.

5.6.89 emigration

Tags: fort | gameplay | units

Command: emigration

Allow dwarves to emigrate from the fortress when stressed.

If a dwarf is spiraling downward and is unable to cope in your fort, this tool will give them the choice to leave the
fortress (and the map).

Dwarves will choose to leave in proportion to how badly stressed they are. Dwarves who can leave in friendly company
(e.g. a dwarven merchant caravan) will choose to do so, but extremely stressed dwarves can choose to leave alone, or
even in the company of a visiting elven bard!

The check is made monthly. A happy dwarf (i.e. with negative stress) will never emigrate.

Usage

enable emigration

108 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.90 empty-bin

Tags: fort | productivity | items

Command: empty-bin

Empty the contents of containers onto the floor.

This tool can quickly empty the contents of the selected container (bin, barrel, or pot) onto the floor, allowing you to
access individual items that might otherwise be hard to get to.

Usage

empty-bin

5.6.91 enable

Tags: dfhack

Command: enable

Activate a DFHack tool that has some persistent effect.

Many plugins and scripts can be in a distinct enabled or disabled state. Some of them activate and deactivate automat-
ically depending on the contents of the world raws. Others store their state in world data. However a number of them
have to be enabled globally, and the init file is the right place to do it.

Most such plugins or scripts support the built-in enable and disable commands. Calling them at any time without
arguments prints a list of enabled and disabled plugins, and shows whether that can be changed through the same
commands. Passing plugin names to these commands will enable or disable the specified plugins.

If you are a script developer, see Enabling and disabling scripts for how to expose whether your script is currently
enabled or disabled.

Usage

enable
enable <plugin> [<plugin> ...]

5.6. All DFHack tools alphabetically 109

DFHack Documentation, Release 50.11-r4

Examples

enable manipulator Enable the manipulator plugin.

enable manipulator search Enable multiple plugins at once.

5.6.92 eventful

Tags: dev

Provides a Lua API for reacting to in-game events.

See eventful for details.

5.6.93 exportlegends

Tags: legends | inspection

Command: exportlegends

Exports extended legends data for external viewing.

When run from the legends mode screen, this tool will export detailed data about your world so that it can be browsed
with external programs like Legends Browser. The data is more detailed than what you can get with vanilla export
functionality, and many external tools depend on this extra information.

By default, exportlegends hooks into the standard vanilla Export XML button and runs in the background when you
click it, allowing both the vanilla export and the extended data export to execute simultaneously. You can continue to
browse legends mode via the vanilla UI while the export is running.

To use:

• Enter legends by “Starting a new game” in an existing world and selecting Legends mode

• Ensure the toggle for “Also export extended legends data” is on (which is the default)

• Click the “Export XML” button to generate both the standard export and the extended data export

You can also generate just the extended data export by manually running the exportlegends command while legends
mode is open.

Usage

exportlegends

110 Chapter 5. DFHack tools

http://www.bay12forums.com/smf/index.php?topic=179848

DFHack Documentation, Release 50.11-r4

Overlay

This script also provides an overlay that is managed by the overlay framework. When the overlay is enabled, a toggle
for exporting extended legends data will appear below the vanilla “Export XML” button. If the toggle is enabled when
the “Export XML” button is clicked, then exportlegends will run alongside the vanilla data export.

While the extended data is being exported, a status line will appear in place of the toggle, reporting the current export
target and the overall percent complete.

There is an additional overlay that masks out the “Done” button while the extended export is running. This prevents
the player from exiting legends mode before the export is complete.

5.6.94 exterminate

Tags: fort | armok | units

Command: exterminate

Kill things.

Kills any unit, or all undead, or all units of a given race. You can target any unit on a revealed tile of the map, including
ambushers, but caged/chained creatures cannot be killed with this tool.

Usage

exterminate
exterminate this [<options>]
exterminate undead [<options>]
exterminate <race>[:<caste>] [<options>]

Examples

exterminate this Kill the selected unit.

exterminate List the targets on your map.

exterminate BIRD_RAVEN:MALE Kill the ravens flying around the map (but only the male ones).

exterminate GOBLIN --method magma --only-visible Kill all visible, hostile goblins on the map by boiling
them in magma.

5.6. All DFHack tools alphabetically 111

DFHack Documentation, Release 50.11-r4

Options

-m, --method <method> Specifies the “method” of killing units. See below for details.

-o, --only-visible Specifies the tool should only kill units visible to the player. on the map.

-f, --include-friendly Specifies the tool should also kill units friendly to the player.

Methods

exterminate can kill units using any of the following methods:

instant Kill by blood loss, and if this is ineffective, then kill by vaporization (default).

vaporize Make the unit disappear in a puff of smoke. Note that units killed this way will not leave a corpse
behind, but any items they were carrying will still drop.

drown Drown the unit in water.

magma Boil the unit in magma (not recommended for magma-safe creatures).

butcher Will mark the units for butchering instead of killing them. This is more useful for pets than armed
enemies.

Technical details

This tool kills by setting a unit’s blood_count to 0, which means immediate death at the next game tick. For creatures
where this is not enough, such as vampires, it also sets animal.vanish_countdown, allowing the unit to vanish in a
puff of smoke if the blood loss doesn’t kill them.

If the method of choice involves liquids, the tile is filled with a liquid level of 7 every tick. If the target unit moves, the
liquid moves along with it, leaving the vacated tiles clean.

5.6.95 extinguish

Tags: fort | armok | buildings | items | map | units

Command: extinguish

Put out fires.

With this tool, you can put out fires affecting map tiles, plants, units, items, and buildings.

To select a target, place the cursor over it before running the script.

If your FPS is unplayably low because of the generated smoke, see clear-smoke.

112 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

extinguish Put out the fire under the cursor.

extinguish --all Put out all fires on the map.

extinguish --location [<x> <y> <z>] Put out the fire at the specified map coordinates. You can use the
position tool to find out what the coordinates under the cursor are.

Examples

extinguish --location [33 41 128] Put out the fire burning on the surface at position x=33, y=41, z=128.

5.6.96 fastdwarf

Tags: fort | armok | units

Command: fastdwarf

Dwarves teleport and/or finish jobs instantly.

Usage

enable fastdwarf
fastdwarf <speed mode> [<tele mode>]

Examples

fastdwarf 1 Make all your dwarves move and work at maximum speed.

fastdwarf 1 1 In addition to working at maximum speed, dwarves also teleport to their destinations.

Options

Speed modes:

0 Dwarves move and work at normal rates.

1 Dwarves move and work at maximum speed.

2 ALL units move (and work) at maximum speed, including creatures and hostiles.

Tele modes:

0 No teleportation.

1 Dwarves teleport to their destinations.

5.6. All DFHack tools alphabetically 113

DFHack Documentation, Release 50.11-r4

5.6.97 faststart

Tags: dfhack | interface

Makes the main menu appear sooner.

This plugin accelerates the initial “Loading. . . ” screen that appears when the game first starts, so you don’t have to wait
as long before the Main Menu appears and you can start playing.

Usage

enable faststart

5.6.98 feature

Tags: fort | armok | map

Command: feature

Control discovery flags for map features.

This tool allows you to toggle the flags that the game uses to track your discoveries of map features. For example, you
can make the game think that you have discovered magma so that you can build magma workshops and furnaces. You
can also toggle the cavern layer discovery flags so you can control whether trees, shrubs, and grass from the various
cavern layers grow within your fortress.

Usage

feature list List all map features in your current embark by index.

feature magma Enable magma furnaces (discovers a random magma feature).

feature show <index> Marks the indicated map feature as discovered.

feature hide <index> Marks the selected map feature as undiscovered.

There will usually be multiple features with the subterranean_from_layer type. These are the cavern layers, and
they are listed in order from closest to the surface to closest to the underworld.

114 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.99 fillneeds

Tags: fort | armok | units

Command: fillneeds

Temporarily satisfy the needs of a unit.

Use with a unit selected to make them focused and unstressed.

Usage

fillneeds Make the selected unit focused and unstressed.

fillneeds --unit <id> Make the specified unit focused and unstressed.

fillneeds --all Make all units focused and unstressed.

5.6.100 filltraffic

Tags: fort | design | productivity | map

Command: filltraffic

Set traffic designations using flood-fill starting at the cursor.

Command: alltraffic

Set traffic designations for every single tile of the map.

Command: restrictice

Restrict traffic on all tiles on top of visible ice.

Command: restrictliquids

Restrict traffic on all visible tiles with liquid.

5.6. All DFHack tools alphabetically 115

DFHack Documentation, Release 50.11-r4

Usage

filltraffic <designation> [<options>]
alltraffic <designation>
restrictice
restrictliquids

For filltraffic, flood filling stops at walls and doors.

Examples

filltraffic H When used in a room with doors, it will set traffic to HIGH in just that room.

Options

Traffic designations:

H High Traffic.

N Normal Traffic.

L Low Traffic.

R Restricted Traffic.

Filltraffic extra options:

X Fill across z-levels.

B Include buildings and stockpiles.

P Include empty space.

5.6.101 firestarter

Tags: fort | armok | items | map | units

Command: firestarter

Lights things on fire.

Feel the need to burn something? Set items, locations, or even entire inventories on fire! Use while viewing an item,
with the cursor over a map tile, or while viewing a unit’s inventory.

116 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

firestarter

5.6.102 fix-ster

Tags: unavailable

Command: fix-ster

Toggle infertility for units.

Now you can restore fertility to infertile creatures or inflict infertility on creatures that you do not want to breed.

Usage

fix-ster fert|ster [all|animals|only:<race>]

Specify fert or ster to indicate whether you want to make the target fertile or sterile, respectively.

If no additional options are given, the command affects only the currently selected unit.

Options

all Apply to all units on the map.

animals Apply to all non-dwarf creatures.

only:<race> Apply to creatures of the specified race.

Examples

fix-ster fert Make the selected unit fertile.

fix-ster fert all Ensure all units across the entire fort are fertile.

fix-ster ster only:DWARF Halt dwarven population growth.

5.6.103 fix-unit-occupancy

Tags: unavailable

Command: fix-unit-occupancy

Fix phantom unit occupancy issues.

If you see “unit blocking tile” messages that you can’t account for (Bug 3499), this tool can help.

5.6. All DFHack tools alphabetically 117

https://www.bay12games.com/dwarves/mantisbt/view.php?id=3499

DFHack Documentation, Release 50.11-r4

Usage

enable fix-unit-occupancy
fix-unit-occupancy [here] [-n]
fix-unit-occupancy interval <num_ticks>

When run without arguments (or with just the here or -n parameters), the fix just runs once. You can also have it run
periodically by enabling the plugin.

Examples

fix-unit-occupancy Run once and fix all occupancy issues on the map.

fix-unit-occupancy -n Report on, but do not fix, all occupancy issues on the map.

Options

here Only operate on the tile at the cursor.

-n Report issues, but do not write any changes to the map.

interval <num_ticks> Set how often the plugin will check for and fix issues when it is enabled. The default is
1200 ticks, or 1 game day.

5.6.104 fixnaked

Tags: unavailable

Command: fixnaked

Removes all unhappy thoughts due to lack of clothing.

If you’re having trouble keeping your dwarves properly clothed and the stress is mounting, this tool can help you calm
things down. fixnaked will go through each of your units, scan for unhappy thoughts due to lack of clothing, and
remove the unhappy thoughts from your dwarves’ minds.

Usage

fixnaked

118 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.105 fixveins

Tags: unavailable

Command: fixveins

Restore missing mineral inclusions.

This tool can also remove invalid references to mineral inclusions if you broke your embark with tools like tiletypes.

Usage

fixveins

5.6.106 flashstep

Tags: unavailable

Command: flashstep

Teleport your adventurer to the cursor.

flashstep is a hotkey-friendly teleport that places your adventurer where your cursor is.

Usage

flashstep

5.6.107 flows

Tags: fort | inspection | map

Command: flows

Counts map blocks with flowing liquids.

If you suspect that your magma sea leaks into HFS, you can use this tool to be sure without revealing the map.

5.6. All DFHack tools alphabetically 119

DFHack Documentation, Release 50.11-r4

Usage

flows

5.6.108 follow

Tags: unavailable

Command: follow

Make the screen follow the selected unit.

Once you exit from the current menu or cursor mode, the screen will stay centered on the unit. Handy for watching
dwarves running around. Deactivated by moving the cursor manually.

Usage

follow

5.6.109 forbid

Tags: fort | productivity | items

Command: forbid

Forbid and list forbidden items on the map.

List forbidden items, forbid all items on the map, or forbid unreachable items. Forbidding unreachable items checks if
any of your citizens can walk to the item.

Usage

forbid
forbid all
forbid unreachable

120 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.110 force

Tags: fort | armok | gameplay

Command: force

Trigger in-game events.

This tool triggers events like megabeasts, caravans, and migrants. Note that you can only trigger one caravan per civ at
the same time, and that DF may choose to ignore events that are triggered too frequently.

Usage

force <event> [<civ id>]

The civ id is only used for Diplomat and Caravan events, and defaults to the player civilization if not specified.

The default civ IDs that you are likely to be interested in are:

• MOUNTAIN (dwarves)

• PLAINS (humans)

• FOREST (elves)

But to see IDs for all civilizations in your current game, run this command:

devel/query --table df.global.world.entities.all --search code --maxdepth 2

Event types

The recognized event types are:

• Caravan

• Migrants

• Diplomat

• Megabeast

• WildlifeCurious

• WildlifeMischievous

• WildlifeFlier

• NightCreature

5.6. All DFHack tools alphabetically 121

DFHack Documentation, Release 50.11-r4

5.6.111 forceequip

Tags: unavailable

Command: forceequip

Move items into a unit’s inventory.

This tool is typically used to equip specific clothing/armor items onto a dwarf, but can also be used to put armor onto
a war animal or to add unusual items (such as crowns) to any unit. Make sure the unit you want to equip is standing on
the target items, which must be on the ground and be unforbidden. If multiple units are standing on the same tile, the
first one will be equipped.

The most reliable way to set up the environment for this command is to pile target items on a tile of floor with a garbage
dump activity zone or the autodump command, then walk/pasture a unit (or use gui/teleport) on top of the items. Be
sure to unforbid the items that you want to work with!

Note: Weapons are not currently supported.

Usage

forceequip [<options>]

As mentioned above, this plugin can be used to equip items onto units (such as animals) who cannot normally equip
gear. There’s an important caveat here: such creatures will automatically drop inappropriate gear almost immediately
(within 10 game ticks). If you want them to retain their equipment, you must forbid it AFTER using forceequip to get
it into their inventory. This technique can also be used to clothe dwarven infants, but only if you’re able to separate
them from their mothers.

By default, the forceequip command will attempt to abide by game rules as closely as possible. For instance, it will
skip any item which is flagged for use in a job, and will not equip more than one piece of clothing/armor onto any
given body part. These restrictions can be overridden via options, but doing so puts you at greater risk of unexpected
consequences. For instance, a dwarf who is wearing three breastplates will not be able to move very quickly.

Items equipped by this plugin DO NOT become owned by the recipient. Adult dwarves are free to adjust their own
wardrobe, and may promptly decide to doff your gear in favour of their owned items. Animals, as described above, will
tend to discard ALL clothing immediately unless it is manually forbidden. Armor items seem to be an exception: an
animal will tend to retain an equipped suit of mail even if you neglect to forbid it.

Please note that armored animals are quite vulnerable to ranged attacks. Unlike dwarves, animals cannot block, dodge,
or deflect arrows, and they are slowed by the weight of their armor.

122 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

forceequip Attempts to equip all of the clothing and armor under the cursor onto the unit under the cursor, following
game rules regarding which item can be equipped on which body part and only equipping 1 item onto each body
part. Items owned by other dwarves are ignored.

forceequip v bp QQQ List the bodyparts of the selected unit.

forceequip bp LH Equips an appropriate item onto the unit’s left hand.

forceequip m bp LH Equips ALL appropriate items onto the unit’s left hand. The unit may end up wearing a dozen
left-handed mittens. Use with caution, and remember that dwarves tend to drop extra items ASAP.

forceequip i bp NECK Equips an item around the unit’s neck, ignoring appropriateness restrictions. If there’s a
millstone or an albatross carcass sitting on the same square as the targeted unit, then there’s a good chance that
it will end up around his neck. For precise control, remember that you can selectively forbid some of the items
that are piled on the ground.

forceequip s Equips the item currently selected in the k menu, if possible.

forceequip s m i bp HD Equips the selected item onto the unit’s head. Ignores all restrictions and conflicts. If you
know exactly what you want to equip, and exactly where you want it to go, then this is the most straightforward
and reliable option.

Options

i, ignore Bypasses the usual item eligibility checks (such as “Never equip gear belonging to another dwarf” and
“Nobody is allowed to equip a Hive”.

m, multi Bypasses the 1-item-per-bodypart limit. Useful for equipping both a mitten and a gauntlet on the same hand
(or twelve breastplates on the upper body).

m2, m3, m4 Modifies the 1-item-per-bodypart limit, allowing each part to receive 2, 3, or 4 pieces of gear.

s, selected Equip only the item currently selected in the k menu and ignore all other items in the tile.

bp, bodypart <body part code> Specify which body part should be equipped.

v, verbose Provide detailed narration and error messages, including listing available body parts when an invalid
bodypart code is specified.

5.6.112 forget-dead-body

Tags: unavailable

Command: forget-dead-body

Removes emotions associated with seeing a dead body.

This tool can help your dwarves recover from seeing a massacre. It removes all emotions associated with seeing a dead
body. If your dwarves are traumatized and despondent after seeing a dead body, this tool can help.

5.6. All DFHack tools alphabetically 123

DFHack Documentation, Release 50.11-r4

Usage

forget-dead-body Make the selected unit forget seeing dead bodies.

forget-dead-body --all Make all units forget seeing dead bodies.

5.6.113 forum-dwarves

Tags: unavailable

Command: forum-dwarves

Exports the text you see on the screen for posting to the forums.

This tool saves a copy of a text screen, formatted in BBcode for posting to the Bay12 Forums. Text color and layout is
preserved. See markdown if you want to export for posting to Reddit or other places.

This script will attempt to read the current screen, and if it is a text viewscreen (such as the dwarf ‘thoughts’ screen or
an item ‘description’) then append a marked-up version of this text to the forumdwarves.txt file. Previous entries in
the file are not overwritten, so you may use the forum-dwarves command multiple times to create a single document
containing the text from multiple screens, like thoughts from several dwarves or descriptions from multiple artifacts.

The screens which have been tested and known to function properly with this script are:

1. dwarf/unit ‘thoughts’ screen

2. item/art ‘description’ screen

3. individual ‘historical item/figure’ screens

There may be other screens to which the script applies. It should be safe to attempt running the script with any screen
active. An error message will inform you when the selected screen is not appropriate for this script.

Note: The text will be encoded in CP437, which is likely to be incompatible with the system default. This causes
incorrect display of special characters (e.g. é õ ç = é õ ç). You can fix this by opening the file in an editor such as
Notepad++ and selecting the correct encoding before copying the text.

Usage

forum-dwarves

124 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.114 fpause

Tags: dfhack

Command: fpause

Forces DF to pause.

This is useful when your FPS drops below 1 and you lose control of the game.

Usage

fpause

5.6.115 full-heal

Tags: fort | armok | units

Command: full-heal

Fully heal the selected unit.

This script attempts to heal the selected unit from anything, optionally including death.

Usage

full-heal Completely heal the currently selected unit.

full-heal --unit <unitId> Completely heal the unit with the given ID.

full-heal -r [--keep_corpse] Heal the unit, raising from the dead if needed. If --keep_corpse is specified,
don’t remove their corpse. The unit can be targeted by selecting its corpse in the UI.

full-heal --all [-r] [--keep_corpse] Heal all units on the map, optionally resurrecting them if dead.

full-heal --all_citizens [-r] [--keep_corpse] Heal all fortress citizens on the map. Does not include
pets.

full-heal --all_civ [-r] [--keep_corpse] Heal all units belonging to your parent civilization, including
pets and visitors.

5.6. All DFHack tools alphabetically 125

DFHack Documentation, Release 50.11-r4

Examples

full-heal Fully heal the selected unit.

full-heal -r --keep_corpse --unit 23273 Fully heal unit 23273. If this unit was dead, it will be resurrected
without removing the corpse - creepy!

5.6.116 gaydar

Tags: fort | inspection | animals | units

Command: gaydar

Shows the sexual orientation of units.

gaydar is useful for social engineering or checking the viability of livestock breeding programs.

Usage

gaydar [<target>] [<filter>]

Examples

gaydar Show sexual orientation of the selected unit.

gaydar --citizens --asexual Identify asexual citizens.

Target options

--all Selects every creature on the map.

--citizens Selects fort citizens.

--named Selects all named units on the map.

Filter options

--notStraight Only creatures who are not strictly straight.

--gayOnly Only creatures who are strictly gay.

--biOnly Only creatures who can get into romances with both sexes.

--straightOnly Only creatures who are strictly straight.

--asexualOnly Only creatures who are strictly asexual.

126 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.117 geld

Tags: fort | armok | animals

Command: geld

Geld and ungeld animals.

Usage

geld [--ungeld|--toggle] [--unit <id>]

Examples

geld Gelds the selected animal.

geld --toggle Toggles the gelded status for the selected animal.

geld --ungeld --unit 24242 Ungelds the unit with the specified id.

Options

--unit <id> Selects the unit with the specified ID.

--ungeld Ungelds the specified unit instead of gelding it (see also ungeld).

--toggle Toggles the gelded status of the specified unit.

5.6.118 generated-creature-renamer

Tags: unavailable

Automatically renames generated creatures.

Command: list-generated

List the token names of all generated creatures.

Command: save-generated-raws

Export a creature graphics file for modding.

Now, forgotten beasts, titans, necromancer experiments, etc. will have raw token names that match the description
given in-game instead of unreadable generated strings.

5.6. All DFHack tools alphabetically 127

DFHack Documentation, Release 50.11-r4

Usage

enable generated-creature-renamer Rename generated creatures when a world is loaded.

list-generated [detailed] List the token names of all generated creatures in the loaded save. If detailed is
specified, then also show the accompanying description.

save-generated-raws Save a sample creature graphics file in the Dwarf Fortress root directory to use as a start for
making a graphics set for generated creatures using the new names that they get with this plugin.

The new names are saved with the world.

5.6.119 getplants

Tags: fort | productivity | plants

Command: getplants

Designate trees for chopping and shrubs for gathering.

Specify the types of trees to cut down and/or shrubs to gather by their plant names.

Usage

getplants [-t|-s|-f] List valid tree/shrub ids, optionally restricted to the specified type.

getplants <id> [<id> ...] [<options>] Designate trees/shrubs of the specified types for chopping/gathering.

Examples

getplants List all valid IDs.

getplants -f -a Gather all plants on the map that yield seeds for farming.

getplants NETHER_CAP -n 10 Designate 10 nether cap trees for chopping.

Options

-t Tree: Select trees only (exclude shrubs).

-s Shrub: Select shrubs only (exclude trees).

-f Farming: Designate only shrubs that yield seeds for farming.

-a All: Select every type of plant (obeys -t/-s/-f).

-c Clear: Clear designations instead of setting them.

-x eXcept: Apply selected action to all plants except those specified (invert selection).

-v Verbose: Lists the number of (un)designations per plant.

-n <num> Number: Designate up to the specified number of plants of each species.

128 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Note: DF is capable of determining that a shrub has already been picked, leaving an unusable structure part behind.
This plugin does not perform such a check (as the location of the required information has not yet been identified). This
leads to some shrubs being designated when they shouldn’t be, causing a plant gatherer to walk there and do nothing
(except clearing the designation). See Issue 1479 for details.

5.6.120 ghostly

Tags: unavailable

Command: ghostly

Toggles an adventurer’s ghost status.

This is useful for walking through walls, avoiding attacks, or recovering after a death.

Usage

ghostly

5.6.121 growcrops

Tags: unavailable

Command: growcrops

Instantly grow planted seeds into crops.

With no parameters, this command lists the seed types currently planted in your farming plots. With a seed type, the
script will grow those seeds, ready to be harvested.

Usage

growcrops List the seeds planted in your farming plots.

growcrops <crop name> Grow the specified planted seed type. The given name can be a substring of the full crop
name.

growcrops all Grow all planted seeds.

5.6. All DFHack tools alphabetically 129

https://github.com/DFHack/dfhack/issues/1479

DFHack Documentation, Release 50.11-r4

Example

growcrops plump Grow all planted plump helmet spawn seeds.

5.6.122 help

Tags: dfhack

Command: help

Display help about a command or plugin.

Can also be invoked as ? or man (short for “manual”).

Usage

help|?|man
help|?|man <command or plugin>

Examples

help blueprint
man blueprint

Both examples above will display the help text for the blueprint command.

Some commands also take help or ? as an option on their command line for the same effect – e.g. blueprint help.

5.6.123 hermit

Tags: fort | gameplay

Command: hermit

Go it alone in your fortress and attempt the hermit challenge.

This script blocks all caravans, migrants, diplomats, and forgotten beasts (not wildlife) from entering your fort. Useful
for attempting the hermit challenge.

Warning: This script does not block sieges, and may not block visitors or monarchs.

130 Chapter 5. DFHack tools

http://dwarffortresswiki.org/index.php/Playstyle_challenge#Hermit

DFHack Documentation, Release 50.11-r4

Usage

enable hermit
hermit [status]

5.6.124 hfs-pit

Tags: fort | armok | map

Command: hfs-pit

Creates a pit straight to the underworld.

This script creates a pit to the underworld, starting at the cursor position and going down, down down.

Usage

hfs-pit [<size> [<walls> [<stairs>]]]

The first parameter is the “radius” in tiles of the (square) pit, that is, how many tiles to open up in each direction around
the cursor. The default is 1, meaning a single column.

The second parameter is 1 to wall off the sides of the pit on all layers except the underworld, or anything else to leave
them open.

The third parameter is 1 to add stairs in the middle of the pit or anything else to just have an open channel.

Note that stairs are buggy; they will not reveal the bottom until you dig somewhere, but underworld creatures will path
in.

Examples

hfs-pit Create a single-tile wide pit with no walls or stairs.

hfs-pit 4 1 0 A seven-across pit (the center tile plus three on each side) with stairs but no containing walls.

hfs-pit 2 0 1 A five-across pit with no stairs but with containing walls.

5.6.125 hide

Tags: dfhack

Command: hide

Hide the DFHack terminal window.

5.6. All DFHack tools alphabetically 131

DFHack Documentation, Release 50.11-r4

You can show it again with the show command, though you’ll need to use it from a keybinding set beforehand or the
in-game command-prompt.

Only available on Windows.

Usage

hide

5.6.126 hide-interface

Tags: interface

Command: hide-interface

Hide the interface layer.

This tool simply hides the interface layer so you can view the map unhindered or take clean fullscreen screenshots. The
interface will remain hidden until you hit Esc or right click. You can still pause/unpause and move the map around,
so this is an excellent way to sit back and observe fortress life a little without being distracted by announcements or
statistics.

Note that the interface layer and the map layer cannot be separated in ASCII mode. This script can only hide the
interface in graphics mode.

Usage

hide-interface

5.6.127 hide-tutorials

Tags: fort | interface

Command: hide-tutorials

Hide new fort tutorial popups.

If you’ve played the game before and don’t need to see the tutorial popups that show up on every new fort,
hide-tutorials can hide them for you. You can enable this tool as a system service in the “Services” tab of
gui/control-panel so it takes effect for all new or loaded forts.

Specifically, this tool hides:

• The popup displayed when creating a new world

• The “Do you want to start a tutorial embark” popup

132 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• Popups displayed the first time you open the labor, burrows, justice, and other similar screens in a new fort

Note that only unsolicited tutorial popups are hidden. If you directly request a tutorial page from the help, then it will
still function normally.

Usage

enable hide-tutorials
hide-tutorials

If you haven’t enabled the tool, but you run the command while a fort is loaded, all future popups for the loaded fort
will be hidden.

5.6.128 hotkey-notes

Tags: unavailable

Command: hotkey-notes

Show info on DF map location hotkeys.

This command lists the key (e.g. F1), name, and jump position of the map location hotkeys you set in the H menu.

Usage

hotkey-notes

5.6.129 hotkeys

Tags: dfhack

Command: hotkeys

Show all DFHack keybindings for the current context.

Keybinding: CtrlShiftC

The command opens an in-game screen showing which DFHack keybindings are active in the current context. See also
hotkey-notes.

5.6. All DFHack tools alphabetically 133

DFHack Documentation, Release 50.11-r4

Usage

hotkeys Show the list of keybindings for the current context in an in-game menu.

hotkeys list List the keybindings to the console.

Menu overlay widget

The in-game hotkeys menu is registered with the overlay framework and appears as a DFHack logo in the upper-left
corner of the screen. You can bring up the menu by clicking on the logo or by hitting the global CtrlShiftc hotkey.
You can select a command to run from the list by clicking on it with the mouse or by using the keyboard to select a
command with the arrow keys and hitting Enter.

The menu closes automatically when an action is taken or when you click or right click anywhere else on the screen.

A short description of the command will appear in a nearby textbox. If you’d like to see the full help text for the
command or edit the command before running, you can open it for editing in gui/launcher by shift clicking on the
command, left clicking on the arrow to the left of the command, or by pressing the right arrow key while the command
is selected.

5.6.130 infiniteSky

Tags: unavailable

Command: infiniteSky

Automatically allocate new z-levels of sky

If enabled, this plugin will automatically allocate new z-levels of sky at the top of the map as you build up. Or it can
allocate one or many additional levels at your command.

Usage

enable infiniteSky Enables monitoring of constructions. If you build anything in the second highest z-level, it
will allocate one more sky level. You can build stairs up as high as you like!

infiniteSky [<n>] Raise the sky by n z-levels. If run without parameters, raises the sky by one z-level.

Warning: Sometimes new z-levels disappear and cause cave-ins. Saving and loading after creating new z-levels
should fix the problem.

134 Chapter 5. DFHack tools

https://github.com/DFHack/dfhack/issues/254

DFHack Documentation, Release 50.11-r4

5.6.131 install-info

Tags: dfhack

Command: install-info

Exports information about DFHack for bug reports.

This command saves information about the current DFHack installation and recent errors to install-info.txt in
the current DF folder. Useful for bug reports.

Usage

install-info

5.6.132 isoworldremote

Tags: unavailable

Provides a remote API used by Isoworld.

See DFHack remote interface for related remote APIs.

5.6.133 jobutils

Tags: unavailable

Provides commands for interacting with jobs.

Command: job

Inspect or modify details of workshop jobs.

Command: job-duplicate

Duplicates the highlighted job.

Command: job-material

Alters the material of the selected job.

5.6. All DFHack tools alphabetically 135

DFHack Documentation, Release 50.11-r4

Usage

job Print details of the current job. The job can be selected in a workshop or the unit/jobs screen.

job list Print details of all jobs in the selected workshop.

job item-material <item-idx> <material[:subtoken]> Replace the exact material id in the job item.

job item-type <item-idx> <type[:subtype]> Replace the exact item type id in the job item.

job-duplicate Duplicates the highlighted job. Must be in qmode and have a workshop or furnace building selected.

job-material <inorganic-token> Alters the material of the selected job (in q mode) or jumps to the selected
material when choosing the building component of a planned building (in b mode). Note that this form of the
command can only handle inorganic materials.

Use the job and job list commands to discover the type and material ids for existing jobs, or use the following
commands to see the full lists:

lua @df.item_type
lua "for i,mat in ipairs(df.global.world.raws.inorganics) do if mat.material.flags.IS_
→˓STONE and not mat.material.flags.NO_STONE_STOCKPILE then print(i, mat.id) end end"

Examples

job-material GNEISS Change the selected “Construct rock Coffin” job at a Mason’s workshop to “Construct gneiss
coffin”.

job item-material 2 MARBLE Change the selected “Construct Traction Bench” job (which has three source items:
a table, a mechanism, and a chain) to specifically use a marble mechanism.

job item-type 2 TABLE Change the selected “Encrust furniture with blue jade” job (which has two source items:
a cut gem and a piece of improvable furniture) to specifically use a table instead of just any furniture.

5.6.134 keybinding

Tags: dfhack

Command: keybinding

Create hotkeys that will run DFHack commands.

Like any other command, it can be used at any time from the console, but bindings are not remembered between runs
of the game unless re-created in dfhack-config/init/dfhack.init.

Hotkeys can be any combinations of Ctrl/Alt/Shift with A-Z, 0-9, F1-F12, or ` (the key below the Esc key on most
keyboards).

136 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

keybinding Show some useful information, including the current game context.

keybinding list <key> List bindings active for the key combination.

keybinding clear <key> [<key>...] Remove bindings for the specified keys.

keybinding add <key> "<cmdline>" ["<cmdline>" ...] Add bindings for the specified key.

keybinding set <key> "<cmdline>" ["<cmdline>" ...] Clear, and then add bindings for the specified key.

The <key> parameter above has the following case-sensitive syntax:

[Ctrl-][Alt-][Shift-]KEY[@context[|context...]]

where the KEY part can be any recognized key and [] denote optional parts.

DFHack commands can advertise the contexts in which they can be usefully run. For example, a command that acts
on a selected unit can tell keybinding that it is not “applicable” in the current context if a unit is not actively selected.

When multiple commands are bound to the same key combination, DFHack selects the first applicable one. Later add
commands, and earlier entries within one add command have priority. Commands that are not specifically intended
for use as a hotkey are always considered applicable.

The context part in the key specifier above can be used to explicitly restrict the UI state where the binding would be
applicable.

Only bindings with a context tag that either matches the current context fully, or is a prefix ending at a / boundary
would be considered for execution, i.e. when in context foo/bar/baz, keybindings restricted to any of @foo/bar/
baz, @foo/bar, @foo, or none will be active.

Multiple contexts can be specified by separating them with a pipe (|) - for example, @foo|bar|baz/foo would match
anything under @foo, @bar, or @baz/foo.

Commands like liquids or tiletypes cannot be used as hotkeys since they require the console for interactive input.

Examples

keybinding add Ctrl-Shift-C hotkeys Bind Ctrl-Shift-C to run the hotkeys command on any screen at any
time.

keybinding add Alt-F@dwarfmode gui/quickfort Bind Alt-F to run gui/quickfort, but only when on a screen
that shows the main map.

keybinding add Ctrl-Shift-Z@dwarfmode/Default "stocks show" Bind Ctrl-Shift-Z to run stocks show,
but only when on the main map in the default mode (that is, no special mode, like cursor look, is enabled).

5.6.135 kill-lua

Tags: dfhack

Command: kill-lua

Gracefully stop any currently-running Lua scripts.

Use this command to stop a misbehaving script that appears to be stuck.

5.6. All DFHack tools alphabetically 137

DFHack Documentation, Release 50.11-r4

Usage

kill-lua
kill-lua force

Use kill-lua force if just kill-lua doesn’t seem to work.

5.6.136 labormanager

Tags: unavailable

Command: labormanager

Automatically manage dwarf labors.

Labormanager is derived from autolabor but uses a completely different approach to assigning jobs to dwarves. While
autolabor tries to keep as many dwarves busy as possible, labormanager instead strives to get jobs done as quickly as
possible.

Labormanager frequently scans the current job list, current list of dwarves, and the map to determine how many dwarves
need to be assigned to what labors in order to meet all current labor needs without starving any particular type of job.

Dwarves on active military duty or dwarves assigned to burrows are left untouched.

Warning: As with autolabor, labormanager will override any manual changes you make to labors while it is
enabled, including through other tools such as Dwarf Therapist. Do not run both autolabor and labormanager at the
same time!

Usage

enable labormanager

Anything beyond this is optional - labormanager works well with the default settings. Once you have enabled it in a
fortress, it stays enabled until you explicitly disable it, even if you save and reload your game.

The default priorities for each labor vary (some labors are higher priority by default than others). The way the plugin
works is that, once it determines how many jobs of each labor are needed, it then sorts them by adjusted priority.
(Labors other than hauling have a bias added to them based on how long it’s been since they were last used to prevent
job starvation.) The labor with the highest priority is selected, the “best fit” dwarf for that labor is assigned to that
labor, and then its priority is halved. This process is repeated until either dwarves or labors run out.

Because there is no easy way to detect how many haulers are actually needed at any moment, the plugin always ensures
that at least one dwarf is assigned to each of the hauling labors, even if no hauling jobs are detected. At least one
dwarf is always assigned to construction removing and cleaning because these jobs also cannot be easily detected.
Lever pulling is always assigned to everyone. Any dwarves for which there are no jobs will be assigned hauling, lever
pulling, and cleaning labors. If you use animal trainers, note that labormanager will misbehave if you assign specific
trainers to specific animals; results are only guaranteed if you use “any trainer”.

Labormanager also sometimes assigns extra labors to currently busy dwarfs so that when they finish their current job,
they will go off and do something useful instead of standing around waiting for a job.

138 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

There is special handling to ensure that at least one dwarf is assigned to haul food whenever food is detected left in a
place where it will rot if not stored. This will cause a dwarf to go idle if you have no stockpiles to haul food to.

Dwarves who are unable to work (child, in the military, wounded, handless, asleep, in a meeting) are entirely excluded
from labor assignment. Any dwarf explicitly assigned to a burrow will also be completely ignored by labormanager.

The fitness algorithm for assigning jobs to dwarves generally attempts to favor dwarves who are more skilled over
those who are less skilled. It also tries to avoid assigning female dwarfs with children to jobs that are “outside”, favors
assigning “outside” jobs to dwarfs who are carrying a tool that could be used as a weapon, and tries to minimize how
often dwarves have to reequip.

Labormanager automatically determines medical needs and reserves health care providers as needed. Note that this
may cause idling if you have injured dwarves but no or inadequate hospital facilities.

Hunting is never assigned without a butchery, and fishing is never assigned without a fishery, and neither of these labors
is assigned unless specifically enabled (see below).

The method by which labormanager determines what labor is needed for a particular job is complicated and, in places,
incomplete. In some situations, labormanager will detect that it cannot determine what labor is required. It will, by
default, pause and print an error message on the dfhack console, followed by the message “LABORMANAGER: Game
paused so you can investigate the above message.”. If this happens, please open an Issue <issue> on GitHub, reporting
the lines that immediately preceded this message. You can tell labormanager to ignore this error and carry on by running
labormanager pause-on-error no, but be warned that some job may go undone in this situation.

Examples

labormanager priority BREWER 500 Boost the priority of brewing jobs.

labormanager max FISH 1 Only assign fishing to one dwarf at a time. Note that you also have to run
labormanager allow-fishing for any dwarves to be assigned fishing at all.

Advanced usage

labormanager list Show current priorities and current allocation stats. Use this command to see the IDs for all
labors.

labormanager status Show basic status information.

labormanager priority <labor> <value> Set the priority value for labor <labor> to <value>.

labormanager max <labor> <value> Set the maximum number of dwarves that can be assigned to a labor.

labormanager max <labor> none Unrestrict the number of dwarves that can be assigned to a labor.

labormanager max <labor> disable Don’t manage the specified labor. Dwarves who you have manually enabled
this labor on will be less likely to have managed labors assigned to them.

labormanager reset-all|reset <labor> Return a labor (or all labors) to the default priority.

labormanager allow-fishing|forbid-fishing Allow/disallow fisherdwarves. Warning Allowing fishing tends
to result in most of the fort going fishing. Fishing is forbidden by default.

labormanager allow-hunting|forbid-hunting Allow/disallow hunterdwarves. Warning Allowing hunting
tends to result in as many dwarves going hunting as you have crossbows. Hunting is forbidden by default.

labormanager pause-on-error yes|no Make labormanager pause/continue if the labor inference engine fails.
See the above section for details.

5.6. All DFHack tools alphabetically 139

https://github.com/DFHack/dfhack/issues/\T1\textless {}issue\T1\textgreater {}

DFHack Documentation, Release 50.11-r4

5.6.137 lair

Tags: fort | armok | map

Command: lair

Mark the map as a monster lair.

This avoids item scatter when the fortress is abandoned.

Usage

lair Mark the map as a monster lair.

lair reset Mark the map as ordinary (not lair).

This command doesn’t save the information about tiles - you won’t be able to restore the state of a real monster lairs
using lair reset.

5.6.138 launch

Tags: unavailable

Command: launch

Thrash your enemies with a flying suplex.

Attack another unit and then run this command to grab them and fly in a glorious parabolic arc to where you have
placed the cursor. You’ll land safely and your opponent will slam into the ground, skidding away. Extra points for
skidding them into a wall or off a cliff! The farther you jump, the harder they slam. Launch six tiles away or more for
some serious pain!

Note that if you run this command without attacking an enemy first, it will be you that slams into the ground. Launching
yourself 3 tiles or so should be fine (e.g. to surprise an approaching enemy), but don’t expect to survive after jumping
across the map!

Usage

launch

140 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.139 lever

Tags: fort | armok | inspection | productivity | buildings

Command: lever

Inspect and pull levers.

Usage

lever list Print out a list of your fort’s levers, including their ID, name, activation state, and what they are linked
to (if anything).

lever pull [<options>] Queue a job so a dwarf will pull the lever. This is the same as selecting the lever and
triggering a pull job in the UI.

lever show If a lever is selected, print information about it.

lever show --id <id> Center the display on the specified lever and print information about it.

Examples

lever pull --id 42 --priority Queue a job to pull lever 42 at high priority.

lever pull --id 42 --instant Skip the job and pull the lever with the hand of Armok!

Options

--id Select the lever by ID to show/pull. Uses the currently selected lever if not specified.

--priority Queue a job at high priority.

--instant Instantly toggle the lever without a job.

5.6.140 light-aquifers-only

Tags: embark | fort | armok | map

Command: light-aquifers-only

Change heavy and varied aquifers to light aquifers.

This script behaves differently depending on whether it’s called pre-embark or post-embark. Pre-embark, it changes all
aquifers in the world to light ones, while post-embark it only modifies the active map tiles, leaving the rest of the world
unchanged.

5.6. All DFHack tools alphabetically 141

DFHack Documentation, Release 50.11-r4

Usage

light-aquifers-only

If you don’t ever want to have to deal with heavy aquifers, you can enable the light-aquifers-only command in
the “Autostart” tab of gui/control-panel so it will be run automatically whenever you start a new fort.

Technical details

When run pre-embark, this script changes the drainage of all world tiles that would generate heavy aquifers into a value
that results in light aquifers instead, based on logic revealed by ToadyOne in a FotF answer: http://www.bay12forums.
com/smf/index.php?topic=169696.msg8099138#msg8099138

Basically, the drainage is used as an “RNG” to cause an aquifer to be heavy about 5% of the time. The script shifts the
matching numbers to a neighboring one, which does not result in any change of the biome.

When run post-embark, this script simply clears the flags that mark aquifer tiles as heavy, converting them to light.

5.6.141 linger

Tags: unavailable

Command: linger

Take control of your adventurer’s killer.

Run this script after being presented with the “You are deceased.” message to abandon your dead adventurer and take
control of your adventurer’s killer.

The killer is identified by examining the historical event generated when the adventurer died. If this is unsuccessful,
the killer is assumed to be the last unit to have attacked the adventurer prior to their death.

This will fail if the unit in question is no longer present on the local map.

Usage

linger

5.6.142 liquids

Tags: adventure | fort | armok | map

Command: liquids

Place magma, water or obsidian.

142 Chapter 5. DFHack tools

http://www.bay12forums.com/smf/index.php?topic=169696.msg8099138#msg8099138
http://www.bay12forums.com/smf/index.php?topic=169696.msg8099138#msg8099138

DFHack Documentation, Release 50.11-r4

Command: liquids-here

Spawn liquids on the selected tile.

Place magma, water or obsidian. See gui/liquids for an in-game interface for this functionality.

Also, if you only want to add or remove water or magma from a single tile, the source script may be easier to use.

Usage

liquids Start the interactive terminal settings interpreter. This command must be called from the DFHack terminal
and not from any in-game interface.

liquids-here Run the liquid spawner with the current/last settings made in liquids (if no settings in liquidswere
made, then it paints a point of 7/7 magma by default). This command is intended to be used as keybinding, and
it requires an active in-game cursor.

Warning: Spawning and deleting liquids can mess up pathing data and temperatures (creating heat traps). You’ve
been warned.

Interactive interpreter

The interpreter replaces the normal dfhack command line and can’t be used from a hotkey. Settings will be remembered
as long as dfhack runs. It is intended for use in combination with the command liquids-here (which can be bound
to a hotkey).

You can enter the following commands at the prompt.

Misc commands:

q quit

help, ? print this list of commands

<empty line> put liquid

Modes:

m switch to magma

w switch to water

o make obsidian wall instead

of make obsidian floors

rs make a river source

f flow bits only

wclean remove salt and stagnant flags from tiles

Set-Modes and flow properties (only for magma/water):

s+ only add mode

s. set mode

s- only remove mode

5.6. All DFHack tools alphabetically 143

DFHack Documentation, Release 50.11-r4

f+ make the spawned liquid flow

f. don’t change flow state (read state in flow mode)

f- make the spawned liquid static

Permaflow (only for water):

pf. don’t change permaflow state

pf- make the spawned liquid static

pf[NS][EW] make the spawned liquid permanently flow

0-7 set liquid amount

Brush size and shape:

p, point Single tile

r, range Block with cursor at bottom north-west (any place, any size)

block DF map block with cursor in it (regular spaced 16x16x1 blocks)

column Column from cursor, up through free space

flood Flood-fill water tiles from cursor (only makes sense with wclean)

5.6.143 list-agreements

Tags: fort | inspection

Command: list-agreements

List guildhall and temple agreements.

If you have trouble remembering which guildhalls and temples you’ve agreed to build (and don’t we all?), then this script
is for you! You can use this command to clearly list outstanding agreements or see the entire history of agreements for
your fort.

Usage

list-agreements [all]

Examples

list-agreements List outstanding, unfulfilled location agreements.

list-agreements all Lists all location agreements, whether satisfied, denied, or expired.

144 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.144 list-waves

Tags: unavailable

Command: list-waves

Show migration wave information for your dwarves.

This script displays information about migration waves or identifies which wave a particular dwarf came from.

Usage

list-waves --all [--showarrival] [--granularity <value>]
list-waves --unit [--granularity <value>]

Examples

list-waves --all Show how many dwarves came in each migration wave.

list-waves --all --showarrival Show how many dwarves came in each migration wave and when that migra-
tion wave arrived.

list-waves --unit Show which migration wave the selected dwarf arrived with.

Options

--unit Displays the highlighted unit’s arrival wave information.

--all Displays information about each arrival wave.

--granularity <value> Specifies the granularity of wave enumeration: years, seasons, months, or days. If
omitted, the default granularity is seasons, the same as Dwarf Therapist.

--showarrival: Shows the arrival date for each wave.

5.6.145 load

Tags: dfhack

Command: load

Load and register a plugin library.

Also see unload and reload for related actions.

5.6. All DFHack tools alphabetically 145

DFHack Documentation, Release 50.11-r4

Usage

load <plugin> [<plugin> ...]
load -a|--all

You can load individual named plugins or all plugins at once. Note that plugins are disabled after loading/reloading
until you explicitly enable them.

5.6.146 load-save

Tags: unavailable

Command: load-save

Load a savegame.

When run on the Dwarf Fortress title screen or “load game” screen, this script will load the save with the given folder
name without requiring interaction. Note that inactive saves (i.e. saves under the “start game” menu that have gone
through world generation but have not had a fort or adventure game started in them yet) cannot be loaded by this script.

Usage

load-save <save directory name>

Examples

load-save region1 Load the savegame in the save/region1 directory.

Autoloading a game on DF start

It is useful to run this script from the commandline when starting Dwarf Fortress. For example, on Linux/MacOS you
could start Dwarf Fortress with:

./dfhack +load-save region1

Similarly, on Windows, you could run:

"Dwarf Fortress.exe" +load-save region1

146 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.147 locate-ore

Tags: fort | armok | productivity | map

Command: locate-ore

Scan the map for metal ores.

This tool finds and designates for digging one tile of a specific metal ore. If you want to dig all tiles of that kind of ore,
select that tile with the cursor and run digtype.

By default, the tool only searches for visible ore veins.

Usage

locate-ore list List metal ores available on the map.

locate-ore <type> Finds a tile of the specified ore type, zooms the screen so that tile is visible, and designates that
tile for digging.

Options

-a, --all Allow undiscovered ore veins to be marked.

Examples

locate-ore hematite
locate-ore iron
locate-ore silver --all

Note that looking for a particular metal might find an ore that contains that metal along with other metals. For example,
locating silver may find tetrahedrite, which contains silver and copper.

5.6.148 logistics

Tags: fort | auto | animals | items | stockpiles

Command: logistics

Automatically mark and route items in monitored stockpiles.

Commands act upon the stockpile selected in the UI unless another stockpile identifier is specified on the commandline.

When the plugin is enabled, it checks stockpiles marked with automelt, autotrade, autodump, and/or autotrain features
twice every in-game day, and will mark valid items/animals in those stockpiles for melting, trading, dumping, and/or
training, respectively.

5.6. All DFHack tools alphabetically 147

DFHack Documentation, Release 50.11-r4

For autotrade, items will be marked for trading only when a caravan is approaching or is already at the trade depot.
Items (or bins that contain items) of which a noble has forbidden export will not be marked for trade.

Stockpiles can be registered for logistics features by toggling the options in the stockpiles overlay that comes up
when you select a stockpile in the UI.

Usage

enable logistics
logistics [status]
logistics now
logistics add [melt] [trade] [dump] [train] [<options>]
logistics clear [all] [<options>]

Examples

logistics Print a summary of all your stockpiles, their logistics configuration, and the number of items that are
designated (or can be designated) by each of the logistics processors.

logistics now Designate items in monitored stockpiles according to the current configuration. This works regard-
less of whether logistics is currently enabled.

logistics add melt Register the currently selected stockpile for automelting. Meltable items that are brought to
this stockpile will be designated for melting.

logistics add melt trade -s goblinite Register the stockpile(s) named “goblinite” for automatic melting
and automatic trading. Items will be marked for melting, but any items still in the stockpile when a caravan
shows up will be brought to the trade depot for trading.

logistics clear Unregisters the currently selected stockpile from any monitoring. Any currently designated items
will remain designated.

logistics clear -s 12,15,goblinite Unregisters the stockpiles with stockpile numbers 12 and 15, along with
any stockpiles named “goblinite”, from any monitoring.

logistics clear all Unregister all stockpiles from any monitoring.

Options

-s, --stockpile <name or number>[,<name or number>...] Causes the command to act upon stockpiles
with the given names or numbers instead of the stockpile that is currently selected in the UI. Note that the
numbers are the stockpile numbers, not the building ids.

-m, --melt-masterworks If specified with a logistics add melt command, will configure the stockpile to allow
melting of masterworks. By default, masterworks are not marked for melting, even if they are in an automelt
stockpile.

148 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.149 ls

Tags: dfhack

Command: ls

List available DFHack commands.

In order to group related commands, each command is associated with a list of tags. You can filter the listed commands
by a tag or a substring of the command name. Can also be invoked as dir.

Usage

ls [<options>] Lists all available commands and the tags associated with them.

ls <tag> [<options>] Shows only commands that have the given tag. Use the tags command to see the list of
available tags.

ls <string> [<options>] Shows commands that include the given string. E.g. ls quick will show all the com-
mands with “quick” in their names. If the string is also the name of a tag, then it will be interpreted as a tag
name.

Examples

ls quick List all commands that match the substring “quick”.

ls adventure List all commands with the adventure tag.

ls --dev trigger List all commands, including developer and modding commands, that match the substring “trig-
ger”.

Options

--notags Don’t print out the tags associated with each command.

--dev Include commands intended for developers and modders.

--exclude <string>[,<string>...] Exclude commands that match any of the given strings.

5.6.150 lua

Tags: dfhack | dev

Command: lua

Run Lua script commands.

5.6. All DFHack tools alphabetically 149

DFHack Documentation, Release 50.11-r4

Usage

lua Start an interactive lua interpreter. Type quit on an empty line and hit enter to exit the interpreter.

lua -f <filename>, lua --file <filename> Load the specified file and run the lua script within. The filename
is interpreted relative to the Dwarf Fortress game directory.

lua -s [<filename>], lua --save [<filename>] Load the specified file and run the lua script within. The
filename is interpreted relative to the current save directory. If the filename is not supplied, it loads dfhack.
lua.

:lua <lua statement> Parses and executes the given lua statement like the interactive interpreter would.

The last form recognizes shortcut characters from the interactive interpreter for easy inspection of values:

'! foo' => 'print(foo)'
'~ foo' => 'printall(foo)'
'^ foo' => 'printall_recurse(foo)'
'@ foo' => 'printall_ipairs(foo)'

Examples

:lua !df.global.window_z Print out the current z-level (as distinct from the displayed elevation).

:lua !unit.id Print out the id of the currently selected unit.

:lua ~item.flags Print out the toggleable flags for the currently selected item.

:lua @df.profession Print out the valid internal profession names.

5.6.151 luasocket

Tags: dev

Provides a Lua API for accessing network sockets.

See luasocket for details.

5.6.152 make-legendary

Tags: unavailable

Command: make-legendary

Boost skills of the selected dwarf.

This tool can make the selected dwarf legendary in one skill, a group of skills, or all skills.

150 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

make-legendary list List the individual skills that you can boost.

make-legendary classes List the skill groups that you can boost.

make-legendary <skill>|all Make the selected dwarf legendary in the specified skill (or all skills)

Examples

make-legendary MINING Make the selected dwarf a legendary miner.

make-legendary all Make the selected dwarf legendary in all skills. Only perfection will do.

5.6.153 make-monarch

Tags: fort | armok | units

Command: make-monarch

Crown the selected unit as a monarch.

This tool can make the selected unit king or queen of your civilization.

Usage

make-monarch

5.6.154 makeown

Tags: fort | armok | units

Command: makeown

Converts the selected unit to be a fortress citizen.

Select a unit in the UI and run this tool to converts that unit to be a fortress citizen (if sentient). It also removes their
foreign affiliation, if any.

This tool also fixes Bug 10921, where you request workers from your holdings, but they come with the “Merchant”
profession and are unable to complete jobs in your fort. Select those units and run makeown to convert them into
functional citizens.

5.6. All DFHack tools alphabetically 151

https://www.bay12games.com/dwarves/mantisbt/view.php?id=10921

DFHack Documentation, Release 50.11-r4

Usage

makeown

5.6.155 manipulator

Tags: unavailable

An in-game labor management interface.

It is equivalent to the popular Dwarf Therapist utility.

To activate, open the unit screen and press l.

Usage

enable manipulator

The far left column displays the unit’s name, happiness (color-coded based on its value), profession, or squad, and the
right half of the screen displays each dwarf’s labor settings and skill levels (0-9 for Dabbling through Professional, A-E
for Great through Grand Master, and U-Z for Legendary through Legendary+5).

Cells with teal backgrounds denote skills not controlled by labors, e.g. military and social skills.

152 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Press t to toggle between Profession, Squad, and Job views.

Use the arrow keys or number pad to move the cursor around, holding Shift to move 10 tiles at a time.

Press the Z-Up (<) and Z-Down (>) keys to move quickly between labor/skill categories. The numpad Z-Up and Z-Down
keys seek to the first or last unit in the list. Backspace seeks to the top left corner.

Press Enter to toggle the selected labor for the selected unit, or Shift+Enter to toggle all labors within the selected
category.

Press the +- keys to sort the unit list according to the currently selected skill/labor, and press the */ keys to sort the
unit list by Name, Profession/Squad, Happiness, or Arrival order (using Tab to select which sort method to use here).

With a unit selected, you can press the v key to view its properties (and possibly set a custom nickname or profession)
or the c key to exit Manipulator and zoom to its position within your fortress.

The following mouse shortcuts are also available:

• Click on a column header to sort the unit list. Left-click to sort it in one direction (descending for happiness or
labors/skills, ascending for name, profession or squad) and right-click to sort it in the opposite direction.

• Left-click on a labor cell to toggle that labor. Right-click to move the cursor onto that cell instead of toggling it.

• Left-click on a unit’s name, profession or squad to view its properties.

• Right-click on a unit’s name, profession or squad to zoom to it.

Pressing Esc normally returns to the unit screen, but ShiftEsc would exit directly to the main dwarf mode screen.

5.6. All DFHack tools alphabetically 153

DFHack Documentation, Release 50.11-r4

Professions

The manipulator plugin supports saving professions: a named set of labors that can be quickly applied to one or multiple
dwarves.

To save a profession, highlight a dwarf and press P. The profession will be saved using the custom profession name of
the dwarf, or the default profession name for that dwarf if no custom profession name has been set.

To apply a profession, either highlight a single dwarf or select multiple with x, and press p to select the profession to
apply. All labors for the selected dwarves will be reset to the labors of the chosen profession and the custom profession
names for those dwarves will be set to the applied profession.

Professions are saved as human-readable text files in the dfhack-config/professions folder within the DF folder,
and can be edited or deleted there.

The professions library

The manipulator plugin comes with a library of professions that you can assign to your dwarves.

If you’d rather use Dwarf Therapist to manage your labors, it is easy to import these professions to DT and use them
there. Simply assign the professions you want to import to a dwarf. Once you have assigned a profession to at least one
dwarf, you can select “Import Professions from DF” in the DT “File” menu. The professions will then be available for
use in DT.

In the list below, the “needed” range indicates the approximate number of dwarves of each profession that you are likely
to need at the start of the game and how many you are likely to need in a mature fort. These are just approximations.
Your playstyle may demand more or fewer of each profession.

• Chef (needed: 0, 3) Butchery, Tanning, and Cooking. It is important to focus just a few dwarves on cooking
since well-crafted meals make dwarves very happy. They are also an excellent trade good.

• Craftsdwarf (needed: 0, 4-6) All labors used at Craftsdwarf’s workshops, Glassmaker’s workshops, and
kilns.

• Doctor (needed: 0, 2-4) The full suite of medical labors, plus Animal Caretaking for those using the dwarfvet
plugin.

• Farmer (needed 1, 4) Food- and animal product-related labors.

• Fisherdwarf (needed 0, 0-1) Fishing and fish cleaning. If you assign this profession to any dwarf, be pre-
pared to be inundated with fish. Fisherdwarves never stop fishing. Be sure to also run prioritize -a
PrepareRawFish ExtractFromRawFish or else caught fish will just be left to rot.

• Hauler (needed 0, >20) All hauling labors plus Siege Operating, Mechanic (so haulers can assist in reloading
traps) and Architecture (so haulers can help build massive windmill farms and pump stacks). As you
accumulate enough Haulers, you can turn off hauling labors for other dwarves so they can focus on their
skilled tasks. You may also want to restrict your Mechanic’s workshops to only skilled mechanics so your
unskilled haulers don’t make low-quality mechanisms.

• Laborer (needed 0, 10-12) All labors that don’t improve quality with skill, such as Soapmaking and furnace
labors.

• Marksdwarf (needed 0, 10-30) Similar to Hauler. See the description for Meleedwarf below for more details.

• Mason (needed 2, 2-4) Masonry and Gem Cutting/Encrusting.

• Meleedwarf (needed 0, 20-50) Similar to Hauler, but without most civilian labors. This profession is separate
from Hauler so you can find your military dwarves easily. Meleedwarves and Marksdwarves have Me-
chanics and hauling labors enabled so you can temporarily deactivate your military after sieges and allow
your military dwarves to help clean up and reset traps.

154 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• Migrant (needed 0, 0) You can assign this profession to new migrants temporarily while you sort them into
professions. Like Marksdwarf and Meleedwarf, the purpose of this profession is so you can find your
new dwarves more easily.

• Miner (needed 2, 2-10) Mining and Engraving. This profession also has the Alchemist labor enabled, which
disables hauling for those using the autohauler plugin. Once the need for Miners tapers off in the late game,
dwarves with this profession make good military dwarves, wielding their picks as weapons.

• Outdoorsdwarf (needed 1, 2-4) Carpentry, Bowyery, Woodcutting, Animal Training, Trapping, Plant Gather-
ing, Beekeeping, and Siege Engineering.

• Smith (needed 0, 2-4) Smithing labors. You may want to specialize your Smiths to focus on a single smithing
skill to maximize equipment quality.

• StartManager (needed 1, 0) All skills not covered by the other starting professions (Miner, Mason,
Outdoorsdwarf, and Farmer), plus a few overlapping skills to assist in critical tasks at the beginning
of the game. Individual labors should be turned off as migrants are assigned more specialized professions
that cover them, and the StartManager dwarf can eventually convert to some other profession.

• Tailor (needed 0, 2) Textile industry labors: Dying, Leatherworking, Weaving, and Clothesmaking.

A note on autohauler

These profession definitions are designed to work well with or without the autohauler plugin (which helps to keep your
dwarves focused on skilled labors instead of constantly being distracted by hauling). If you do want to use autohauler,
adding the following lines to your onMapLoad.init file will configure it to let the professions manage the “Feed water
to civilians” and “Recover wounded” labors instead of enabling those labors for all hauling dwarves:

on-new-fortress enable autohauler
on-new-fortress autohauler FEED_WATER_CIVILIANS allow
on-new-fortress autohauler RECOVER_WOUNDED allow

5.6.156 map-render

Tags: unavailable

Provides a Lua API for re-rendering portions of the map.

See map-render for details.

5.6.157 markdown

Tags: unavailable

Command: markdown

Exports the text you see on the screen for posting online.

This tool saves a copy of a text screen, formatted in markdown, for posting to Reddit (among other places). See forum-
dwarves if you want to export BBCode for posting to the Bay 12 forums.

5.6. All DFHack tools alphabetically 155

DFHack Documentation, Release 50.11-r4

This script will attempt to read the current screen, and if it is a text viewscreen (such as the dwarf ‘thoughts’ screen
or an item ‘description’) then append a marked-down version of this text to the output file. Previous entries in the file
are not overwritten, so you may use the markdown command multiple times to create a single document containing the
text from multiple screens, like thoughts from several dwarves or descriptions from multiple artifacts.

The screens which have been tested and known to function properly with this script are:

1. dwarf/unit ‘thoughts’ screen

2. item/art ‘description’ screen

3. individual ‘historical item/figure’ screens

4. manual pages

5. announcements screen

6. combat reports screen

7. latest news (when meeting with liaison)

There may be other screens to which the script applies. It should be safe to attempt running the script with any screen
active. An error message will inform you when the selected screen is not appropriate for this script.

Usage

markdown [-n] [<name>]

The output is appended to the md_export.md file by default. If an alternate name is specified, then a file named like
md_{name}.md is used instead.

Examples

markdown Appends the contents of the current screen to the md_export.md file.

markdown artifacts Appends the contents of the current screen to the md_artifacts.md file.

Options

-n Overwrite the contents of output file instead of appending.

5.6.158 max-wave

Tags: unavailable

Command: max-wave

Dynamically limit the next immigration wave.

Limit the number of migrants that can arrive in the next wave by overriding the population cap value from
data/init/d_init.txt. Use with the repeat command to set a rolling immigration limit. Original credit was for Loci.

If you edit the population caps using gui/settings-manager after running this script, your population caps will be reset
and you may get more migrants than you expected.

156 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

max-wave <wave_size> [max_pop]

Examples

max-wave 5
repeat -time 1 -timeUnits months -command [max-wave 10 200]

The first example ensures the next migration wave has 5 or fewer immigrants. The second example ensures all future
seasons have a maximum of 10 immigrants per wave, up to a total population of 200.

5.6.159 migrants-now

Tags: fort | armok | units

Command: migrants-now

Trigger a migrant wave.

This tool can trigger an immediate migrant wave. Note that it only works after at least one wave of migrants have
arrived naturally, and that no migrants are actually guaranteed to arrive (especially if you’ve just run this command a
few times).

Usage

migrants-now

5.6.160 misery

Tags: fort | gameplay | units

Command: misery

Make citizens more miserable.

When enabled, all of your citizens receive a negative thought about a particularly nasty soapy bath. You can vary the
strength of this negative thought to increase or decrease the difficulty of keeping your citizens happy.

5.6. All DFHack tools alphabetically 157

DFHack Documentation, Release 50.11-r4

Usage

enable misery
misery [status]
misery <factor>
misery clear

The default misery factor is 2, which will result in a moderate hit to your dwarves’ happiness. Larger numbers increase
the challenge.

Examples

enable misery Start adding bad thoughts about nasty soapy baths to your citizens!

misery 5 Change the strength of the soapy bath negative thought to something quite large – this is very challenging
to handle!

misery clear Clear away negative thoughts added by misery. Note that this will not clear negative thoughts that
your dwarves accumulated “naturally”.

5.6.161 mode

Tags: unavailable

Command: mode

See and change the game mode.

Warning: Only use mode after making a backup of your save!

Not all combinations are good for every situation and most of them will produce undesirable results. There are a
few good ones though.

Usage

mode Print the current game mode.

mode set Enter an interactive commandline menu where you can set the game mode.

158 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

Scenario 1:

• You are in fort game mode, managing your fortress and paused.

• You switch to the arena game mode, assume control of a creature and then

• switch to adventure game mode.

You just lost a fortress and gained an adventurer.

Scenario 2:

• You are in fort game mode, managing your fortress and paused at the Esc menu.

• You switch to the adventure game mode, assume control of a creature, then save or retire.

You just created a returnable mountain home and gained an adventurer.

5.6.162 mousequery

Tags: unavailable

Command: mousequery

Adds mouse controls to the DF interface.

Adds mouse controls to the DF interface. For example, with mousequery you can click on buildings to configure them,
hold the mouse button to draw dig designations, or click and drag to move the map around.

Usage

enable mousequery
mousequery [rbutton|track|edge|live] [enable|disable]
mousequery drag [left|right|disable]
mousequery delay [<ms>]

rbutton When the right mouse button is clicked, cancel out of menus or scroll the main map if you r-click
near an edge.

track Move the cursor with the mouse instead of the cursor keys when you are in build or designation
modes.

edge Scroll the map when you move the cursor to a map edge. See delay below. If enabled also enables
track.

delay Set delay in milliseconds for map edge scrolling. Omit the amount to display the current setting.

live Display information in the lower right corner of the screen about the items/building/tile under the
cursor, even while unpaused.

5.6. All DFHack tools alphabetically 159

DFHack Documentation, Release 50.11-r4

Examples

mousequery rbutton enable Enable using the right mouse button to cancel out of menus and scroll the map.

mousequery delay 300 When run after mousequery edge enable, sets the edge scrolling delay to 300ms.

5.6.163 multicmd

Tags: dfhack

Command: multicmd

Run multiple DFHack commands.

This utility command allows you to specify multiple DFHack commands on a single line.

The string is split around the ; character(s), and all parts are run sequentially as independent dfhack commands. This
is especially useful for hotkeys, where you only have one line to specify what the hotkey will do.

Usage

multicmd <command>; <command>[; <command> ...]

Example

multicmd :lua require('gui.dwarfmode').enterSidebarMode(df.ui_sidebar_mode.
→˓DesignateMine); locate-ore IRON; digv; digcircle 16

5.6.164 names

Tags: unavailable

Command: names

Rename units or items with the DF name generator.

This tool allows you to rename the selected unit or item (including artifacts) with the native Dwarf Fortress name
generation interface.

To modify or remove the first name, press f and edit.

160 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

names

5.6.165 necronomicon

Tags: fort | inspection | productivity | items

Command: necronomicon

Find books that contain the secrets of life and death.

Lists all books in the fortress that contain the secrets to life and death. To find the books in fortress mode, go to the
Written content submenu in Objects (O). Slabs are not shown by default since dwarves cannot read secrets from a slab
in fort mode.

Usage

necronomicon [<options>]

Options

-s, --include-slabs Also list slabs that contain the secrets of life and death. Note that dwarves cannot read the
secrets from a slab in fort mode.

5.6.166 nestboxes

Tags: fort | auto | animals

Protect fertile eggs incubating in a nestbox.

This plugin will automatically scan for and forbid fertile eggs incubating in a nestbox so that dwarves won’t come to
collect them for eating. The eggs will hatch normally, even when forbidden.

Usage

enable nestboxes

5.6. All DFHack tools alphabetically 161

DFHack Documentation, Release 50.11-r4

5.6.167 on-new-fortress

Tags: dfhack

Command: on-new-fortress

Run commands when a fortress is first started.

This utility command checks to see if the current fortress has just been created (that is, the “age” of the fortress is 0,
which is only true on the first tick after the initial embark).

You can specify multiple commands to run, separated with ;, similar to multicmd. However, if the fortress is not brand
new, the commands will not actually run.

Usage

on-new-fortress <command>[; <command> ...]

Example

You can add commands to your dfhack-config/init/onMapLoad.init file that you only want to run when a
fortress is first started:

on-new-fortress ban-cooking tallow; ban-cooking honey; ban-cooking oil
on-new-fortress 3dveins
on-new-fortress enable autobutcher; autobutcher autowatch

5.6.168 once-per-save

Tags: dfhack

Command: once-per-save

Run commands only if they haven’t been run before in this world.

If you are looking for a way to run commands once when you start a new fortress, you probably want on-new-fortress.

This tool is better for commands that you want to run once per world.

You can specify multiple commands to run, separated with ;, similar to multicmd. However, if the command has been
run (successfully) before with once-per-save in the context of the current savegame, the commands will not actually
run.

162 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

once-per-save [--rerun] <command>[; <command> ...] Run the specified commands if they haven’t been
run before. If --rerun is specified, run the commands regardless of whether they have been run before.

once-per-save --reset Forget which commands have been run before.

5.6.169 open-legends

Tags: unavailable

Command: open-legends

Open a legends screen from fort or adventure mode.

You can use this tool to open legends mode from a world loaded in fortress or adventure mode. You can browse around,
or even run exportlegends while you’re on the legends screen.

Note that this script carries a significant risk of save corruption if the game is saved after exiting legends mode. To
avoid this:

1. Pause DF before running open-legends

2. Run quicksave to save the game

3. Run open-legends (this script) and browse legends mode as usual

4. Immediately after exiting legends mode, run die to quit DF without saving (saving at this point instead may
corrupt your game!)

Note that it should be safe to run open-legends itself multiple times in the same DF session, as long as DF is killed
immediately after the last run. Unpausing DF or running other commands risks accidentally autosaving the game,
which can lead to save corruption.

Usage

open-legends [force]

The optional force argument will bypass all safety checks, as well as the save corruption warning.

5.6.170 orders

Tags: fort | productivity | workorders

Command: orders

Manage manager orders.

5.6. All DFHack tools alphabetically 163

DFHack Documentation, Release 50.11-r4

Usage

orders list Shows the list of previously exported orders, including the orders library.

orders export <name> Saves all the current manager orders in a file.

orders import <name> Imports the specified manager orders. Note this adds to your current set of manager orders.
It will not clear the orders that already exist.

orders clear Deletes all manager orders in the current embark.

orders recheck [this] Sets the status to Checking (from Active) for all work orders that have conditions that
can be re-checked. If the “this” option is passed, only sets the status for the workorder whose condition details
page is open. This makes the manager reevaluate its conditions. This is especially useful for an order that had
its conditions met when it was started, but the requisite items have since disappeared and the workorder is now
generating job cancellation spam.

orders sort Sorts current manager orders by repeat frequency so repeating orders don’t prevent one-time orders
from ever being completed. The sorting order is: one-time orders first, then yearly, seasonally, monthly, and
finally, daily.

You can keep your orders automatically sorted by adding the following command to your dfhack-config/init/
onMapLoad.init file:

repeat -name orders-sort -time 1 -timeUnits days -command [orders sort]

Exported orders are saved in the dfhack-config/orders directory, where you can view, edit, and delete them, if
desired.

Examples

orders export myorders Export the current manager orders to a file named dfhack-config/orders/
myorders.json.

orders import library/basic Import manager orders from the library that keep your fort stocked with basic
essentials.

Overlay

Orders plugin functionality is directly available when the manager orders screen is open via an overlay widget. There
are hotkeys assigned to export, import, sort, and clear. You can also click on the hotkey hints as if they were buttons.
Clearing will ask for confirmation before acting.

If you want to change where the overlay panel appears, you can move it via gui/overlay. If you just need to get the
overlay out of the way temporarily, for example to read a long description of a historical figure when choosing a subject
for a statue, click on the small arrow in the upper right corner of the overlay panel. Click on the arrow again to restore
the panel.

164 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

The orders library

DFHack comes with a library of useful manager orders that are ready for import:

library/basic

This collection of orders handles basic fort necessities:

• prepared meals and food products (and by-products like oil)

• booze/mead

• thread/cloth/dye

• pots/bins/jugs/buckets/mugs

• bags of leather, cloth, silk, and yarn

• crafts, totems, and shleggings from otherwise unusable by-products

• mechanisms/cages

• splints/crutches

• lye/soap

• ash/potash

• beds/wheelbarrows/minecarts

• scrolls

You should import it as soon as you have enough dwarves to perform the tasks. Right after the first migration wave is
usually a good time.

Note that the jugs are specifically made out of wood. This is so, as long as you don’t may any other “Tools” out of
wood, you can have a stockpile just for jugs by restricting a finished goods stockpile to only take wooden tools.

Armok’s additional note: “shleggings? Yes, shleggings.”

library/furnace

This collection creates basic items that require heat. It is separated out from library/basic to give players the
opportunity to set up magma furnaces first in order to save resources. It handles:

• charcoal (including smelting of bituminous coal and lignite)

• pearlash

• sand

• green/clear/crystal glass

• adamantine processing

• item melting

Orders are missing for plaster powder until DF Bug 11803 is fixed.

5.6. All DFHack tools alphabetically 165

https://youtu.be/bLN8cOcTjdo
https://www.bay12games.com/dwarves/mantisbt/view.php?id=11803

DFHack Documentation, Release 50.11-r4

library/military

This collection adds high-volume smelting jobs for military-grade metal ores and produces weapons and armor:

• leather backpacks/waterskins/quivers/armor

• silk cloaks

• bone/wooden bolts

• smelting for platinum, silver, steel, bronze, bismuth bronze, and copper (and their dependencies)

• bronze/bismuth bronze/copper bolts

• steel/silver/iron/bismuth bronze/bronze/copper weapons and armor, with checks to ensure only the best available
materials are being used

• wooden shields (if metal isn’t available)

If you set a stockpile to take weapons and armor of less than masterwork quality and turn on automelt (like what
Dreamfort provides on its industry level), these orders will automatically upgrade your military equipment to master-
work. Make sure you have a lot of fuel (or magma forges and furnaces) before you turn automelt on, though!

This file should only be imported, of course, if you need to equip a military.

library/smelting

This collection adds smelting jobs for all ores. It includes handling the ores already managed by library/military,
but has lower limits. This ensures all ores will be covered if a player imports library/smelting but not library/
military, but the higher-volume library/military orders will take priority if both are imported.

library/rockstock

This collection of orders keeps a small stock of all types of rock furniture. This allows you to do ad-hoc furnishings of
guildhalls, libraries, temples, or other rooms with buildingplan and your masons will make sure there is always stock
on hand to fulfill the plans.

library/glassstock

Similar to library/rockstock above, this collection keeps a small stock of all types of glass furniture. If you
have a functioning glass industry, this is more sustainable than library/rockstock since you can never run out
of sand. If you have plenty of rock and just want the variety, you can import both library/rockstock and library/
glassstock to get a mixture of rock and glass furnishings in your fort.

There are a few items that library/glassstock produces that library/rockstock does not, since there are some
items that can not be made out of rock, for example:

• tubes and corkscrews for building magma-safe screw pumps

• windows

• terrariums (as an alternative to wooden cages)

166 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.171 overlay

Tags: dfhack | interface

Command: overlay

Manage on-screen overlay widgets.

The overlay framework manages the on-screen widgets that other tools (including 3rd party plugins and scripts) can
register for display. For a graphical configuration interface, please see gui/control-panel. If you are a developer who
wants to write an overlay widget, please see the DFHack overlay dev guide.

Usage

enable overlay Display enabled widgets.

overlay enable|disable all|<name or list number> [<name or list number> ...] Enable/disable
all or specified widgets. Widgets can be specified by either their name or their number, as returned by overlay
list.

overlay list [<filter>] Show a list of all the widgets that are registered with the overlay framework, optionally
filtered by the given filter string.

overlay position <name or list number> [default|<x> <y>] Display configuration information for the
given widget or change the position where it is rendered. See the Widget position section below for details.

overlay trigger <name or list number> Intended to be used by keybindings for manually triggering a widget.
For example, you could use an overlay trigger keybinding to show a menu that normally appears when you
hover the mouse over a screen hotspot.

Examples

overlay enable all Enable all widgets. Note that they will only be displayed on the screens that they are associated
with. You can see which screens a widget will be displayed on, along with whether the widget is a hotspot, by
calling overlay position.

overlay position hotkeys.menu Show the current configuration of the hotkeys menu widget.

overlay position dwarfmonitor.cursor -2 -3 Display the dwarfmonitor cursor position reporting widget in
the lower right corner of the screen, 2 tiles from the left and 3 tiles from the bottom.

overlay position dwarfmonitor.cursor default Reset the dwarfmonitor cursor position to its default.

overlay trigger hotkeys.menu Trigger the hotkeys menu widget so that it shows its popup menu. This is what
is run when you hit CtrlShiftC.

5.6. All DFHack tools alphabetically 167

DFHack Documentation, Release 50.11-r4

Widget position

Widgets can be positioned at any (x, y) position on the screen, and can be specified relative to any edge. Coordinates
are 1-based, which means that 1 is the far left column (for x) or the top row (for y). Negative numbers are measured
from the right of the screen to the right edge of the widget or from the bottom of the screen to the bottom of the widget,
respectively.

For easy reference, the corners can be found at the following coordinates:

(1, 1) top left corner

(-1, 1) top right corner

(1, -1) lower left corner

(-1, -1) lower right corner

Overlay

The overlay plugin also provides a standard overlay itself: title_version, which displays the DFHack version on
the DF title screen, along with quick links to quickstart-guide and gui/control-panel.

5.6.172 pathable

Tags: dev | inspection | map

Marks tiles that are reachable from the cursor.

This plugin provides a Lua API, but no direct commands. See pathable for details and gui/pathable for the user
interface.

5.6.173 petcapRemover

Tags: unavailable

Command: petcapRemover

Modify the pet population cap.

In vanilla DF, pets will not reproduce unless the population is below 50 and the number of children of that species is
below a certain percentage. This plugin allows removing these restrictions and setting your own thresholds. Pets still
require PET or PET_EXOTIC tags in order to reproduce. In order to make population more stable and avoid sudden
population booms as you go below the raised population cap, this plugin counts pregnancies toward the new population
cap. It can still go over, but only in the case of multiple births.

168 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable petcapRemover Enables the plugin and starts running with default settings.

petcapRemover cap <value> Set the new population cap per species to the specified value. If set to 0, then there
is no cap (good luck with all those animals!). The default cap is 100.

petcapRemover Impregnate female pets that have access to a compatible male, up to the population cap.

petcapRemover every <ticks> Set how often the plugin will cause pregnancies. The default frequency is every
10,000 ticks (a little over 8 game days).

petcapRemover pregtime <ticks> Sets the pregnancy duration to the specified number of ticks. The default value
is 200,000 ticks, which is the natural pet pregnancy duration.

5.6.174 plants

Tags: unavailable

Provides commands that interact with plants.

Command: plant

Create a plant or make an existing plant grow up.

Usage

plant create <ID> Creates a new plant of the specified type at the active cursor position. The cursor must be on a
dirt or grass floor tile.

plant grow Grows saplings into trees. If the cursor is active, it only affects the sapling under the cursor. If no cursor
is active, it affect all saplings on the map.

To see the full list of plant ids, run the following command:

devel/query --table df.global.world.raws.plants.all --search ^id --maxdepth 1

Example

plant create TOWER_CAP Create a Tower Cap sapling at the cursor position.

5.6.175 plug

Tags: dfhack

Command: plug

List available plugins and whether they are enabled.

5.6. All DFHack tools alphabetically 169

DFHack Documentation, Release 50.11-r4

Usage

plug [<plugin> [<plugin> ...]]

If run with parameters, it lists only the named plugins. Otherwise it will list all available plugins.

5.6.176 points

Tags: embark | fort | armok

Command: points

Sets available points at the embark screen.

Run at the embark screen when you are choosing items to bring with you and skills to assign to your dwarves. You can
set the available points to any number.

Usage

points <num>

Examples

points 1000000 Grant yourself enough points to buy everything you ever dreamed of.

points 0 Embark with nothing more than what you have already selected. You can make life quite difficult for
yourself this way.

5.6.177 pop-control

Tags: unavailable

Command: pop-control

Controls population and migration caps persistently per-fort.

This script controls hermit and the various population caps per-fortress. It is intended to be run from dfhack-config/
init/onMapLoad.init as pop-control on-load.

If you edit the population caps using gui/settings-manager after running this script, your population caps will be reset
and you may get more migrants than you expect.

170 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

pop-control on-load Load population settings for this site or prompt the user for settings if not present.

pop-control reenter-settings Revise settings for this site.

pop-control view-settings Show the current settings for this site.

5.6.178 position

Tags: fort | inspection | map

Command: position

Report cursor and mouse position, along with other info.

This tool reports the current date, clock time, month, and season. It also reports the cursor position (or just the z-level
if no cursor), window size, and mouse location on the screen.

Usage

position

5.6.179 power-meter

Tags: unavailable

Allow pressure plates to measure power.

If you run gui/power-meter while building a pressure plate, the pressure plate can be modified to detect power being
supplied to gear boxes built in the four adjacent N/S/W/E tiles.

5.6.180 pref-adjust

Tags: fort | armok | units

Command: pref-adjust

Set the preferences of a dwarf to an ideal.

This tool replaces a dwarf’s preferences with an “ideal” set which is easy to satisfy:

5.6. All DFHack tools alphabetically 171

DFHack Documentation, Release 50.11-r4

... likes iron, steel, weapons, armor, shields/bucklers and plump helmets
for their rounded tops. When possible, she prefers to consume dwarven
wine, plump helmets, and prepared meals (quarry bush). She absolutely
detests trolls, buzzards, vultures and crundles.

Usage

pref-adjust all|goth_all|clear_all Changes/clears preferences for all dwarves.

pref-adjust one|goth|clear Changes/clears preferences for the currently selected dwarf.

pref-adjust list List all types of preferences. No changes will be made to any dwarves.

Examples

pref-adjust all Change preferences for all dwarves to an ideal.

Goth mode

If you select goth mode, this tool will apply the following set of preferences instead of the easy-to-satisfy ideal defaults:

... likes dwarf skin, corpses, body parts, remains, coffins, the color
black, crosses, glumprongs for their living shadows and snow demons for
their horrifying features. When possible, she prefers to consume sewer
brew, gutter cruor and bloated tubers. She absolutely detests elves,
humans and dwarves.

5.6.181 prefchange

Tags: unavailable

Command: prefchange

Set strange mood preferences.

This tool sets preferences for strange moods to include a weapon type, equipment type, and material. If you also wish
to trigger a mood, see strangemood.

172 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

prefchange <command>

Examples

Examine the preferences across all dwarves:

prefchange show

Clear a unit’s existing preferences and make them like hammers, mail shirts, and steel:

prefchange c
prefchange has

Commands

show show preferences of all units

c clear preferences of selected unit

all clear preferences of all units

axp likes axes, breastplates, and steel

has likes hammers, mail shirts, and steel

swb likes short swords, high boots, and steel

spb likes spears, high boots, and steel

mas likes maces, shields, and steel

xbh likes crossbows, helms, and steel

pig likes picks, gauntlets, and steel

log likes long swords, gauntlets, and steel

dap likes daggers, greaves, and steel

5.6.182 preserve-tombs

Tags: fort | bugfix

Command: preserve-tombs

Preserve tomb assignments when assigned units die.

If you find that the tombs you assign to units get unassigned from them when they die (e.g. your nobles), this tool can
help fix that.

5.6. All DFHack tools alphabetically 173

DFHack Documentation, Release 50.11-r4

Usage

enable preserve-tombs enable the plugin

preserve-tombs [status] check the status of the plugin, and if the plugin is enabled, lists all currently tracked
tomb assignments

preserve-tombs now forces an immediate update of the tomb assignments. This plugin automatically updates the
tomb assignments once every 100 ticks.

This tool runs in the background.

5.6.183 prioritize

Tags: fort | auto | jobs

Command: prioritize

Automatically boost the priority of selected job types.

This tool encourages specified types of jobs to get assigned and completed as soon as possible. Finally, you can be sure
your food will be hauled before rotting, your hides will be tanned before going bad, and the corpses of your enemies
will be cleared from your entranceway expediently.

You can prioritize a bunch of active jobs that you need done right now, or you can mark certain job types as high
priority, and prioritize will watch for and boost the priority of those types of jobs as they are created. This is
especially useful for ensuring important (but low-priority – according to DF) jobs don’t get ignored indefinitely in busy
forts.

It is important to automatically prioritize only the most important job types. If you add too many job types, or if there
are simply too many jobs of those types in your fort, the other tasks in your fort can get ignored. This causes the same
problem that prioritize is designed to solve. The script provides a good default set of job types to prioritize that
have been suggested and playtested by the DF community.

Usage

enable prioritize
disable prioritize
prioritize [<options>] [defaults|<job_type> ...]

Examples

prioritize Print out which job types are being automatically prioritized and how many jobs of each type we have
prioritized since we started watching them. The counts are saved with your game, so they will be accurate even
if the game has been saved and reloaded since prioritize was started.

enable prioritize, prioritize -a defaults Watch for and prioritize the default set of job types that the com-
munity has suggested and playtested (see below for details).

prioritize -j Print out the list of active jobs that you can prioritize right now.

174 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

prioritize ConstructBuilding DestroyBuilding Prioritize all current building construction and destruction
jobs.

prioritize -a --haul-labor=Food,Body StoreItemInStockpile Prioritize all current and future food and
corpse hauling jobs.

disable prioritize Remove all job types from the watch list and clear tracking data.

Options

-a, --add Prioritize all current and future jobs of the specified job types.

-d, --delete Stop automatically prioritizing new jobs of the specified job types.

-j, --jobs Print out how many unassigned jobs of each type there are. This is useful for discovering the types of the
jobs that you can prioritize right now. If any job types are specified, only jobs of those types are listed.

-l, --haul-labor <labor>[,<labor>...] For StoreItemInStockpile jobs, match only the specified hauling la-
bor(s). Valid labor strings are: “Stone”, “Wood”, “Body”, “Food”, “Refuse”, “Item”, “Furniture”, and “Ani-
mals”. If not specified, defaults to matching all StoreItemInStockpile jobs.

-n, --reaction-name <name>[,<name>...] For CustomReaction jobs, match only the specified reaction name(s).
See the registry output (-r) for the full list of reaction names. If not specified, defaults to matching all Custom-
Reaction jobs.

-q, --quiet Suppress informational output (error messages are still printed).

-r, --registry Print out the full list of valid job types, hauling labors, and reaction names.

Which job types should I prioritize?

In general, you should prioritize job types that you care about getting done especially quickly and that the game does
not prioritize for you. Time-sensitive tasks like food hauling, medical care, and lever pulling are good candidates.

For greater fort efficiency, you should also prioritize jobs that can block the completion of other jobs. For example,
dwarves often fill a stockpile up completely, ignoring the barrels, pots, and bins that could be used to organize the
items more efficiently. Prioritizing those organizational jobs can mean the difference between having space in your
food stockpile for fresh meat and being forced to let it rot in the butcher shop.

It is also convenient to prioritize tasks that block you (the player) from doing other things. When you designate a group
of trees for chopping, it’s often because you want to do something with those logs and/or that free space. Prioritizing
tree chopping will get your dwarves on the task and keep you from staring at the screen too long.

You may be tempted to automatically prioritize ConstructBuilding jobs, but beware that if you engage in megapro-
jects where many constructions must be built, these jobs can consume your entire fortress if prioritized. It is often
better to run prioritize ConstructBuilding by itself (i.e. without the -a parameter) as needed to just prioritize
the construction jobs that you have ready at the time.

5.6. All DFHack tools alphabetically 175

DFHack Documentation, Release 50.11-r4

Default list of job types to prioritize

The community has assembled a good default list of job types that most players will benefit from. They have been
playtested across a wide variety of fort types. It is a good idea to enable prioritize with at least these defaults for all
your forts.

The default prioritize list includes:

• Handling items that can rot

• Medical, hygiene, and hospice tasks

• Interactions with animals and prisoners

• Noble-specific tasks (like managing workorders)

• Dumping items, felling trees, and other tasks that you, as a player, might stare at and internally scream “why why
why isn’t this getting done??”.

5.6.184 probe

Tags: adventure | fort | inspection | buildings | map | units

Command: probe

Display low-level properties of the selected tile.

Command: bprobe

Display low-level properties of the selected building.

Command: cprobe

Display low-level properties of the selected unit.

Usage

probe Displays properties of the tile selected with k. Some of these properties can be passed into tiletypes.

bprobe Displays properties of the building selected with q or t. For deeper inspection of the building, see gui/gm-
editor.

cprobe Displays properties of the unit selected with v. It also displays the IDs of any worn items. For deeper inspection
of the unit and inventory items, see gui/gm-unit and gui/gm-editor.

176 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.185 prospector

Tags: embark | fort | armok | inspection | map

Provides commands that help you analyze natural resources.

Command: prospect

Shows a summary of resources that exist on the map.

It can also calculate an estimate of resources available in the currently highlighted embark area.

Usage

prospect [all|hell] [<options>]

By default, only the visible part of the map is scanned. Include the all keyword if you want prospect to scan the
whole map as if it were revealed. Use hell instead of all if you also want to see the Z range of HFS tubes in the
‘features’ report section.

Examples

prospect all Shows the entire report for the entire map.

prospect hell --show layers,ores,veins Shows only the layers, ores, and other vein stone report sections,
and includes information on HFS tubes (if run on a fortress map and not the pre-embark screen).

prospect all -sores Show only information about ores for the pre-embark or fortress map report.

Options

-s, --show <sections> Shows only the named comma-separated list of report sections. Report section names are:
summary, liquids, layers, features, ores, gems, veins, shrubs, and trees. If run during pre-embark, only the layers,
ores, gems, and veins report sections are available.

-v, --values Includes material value in the output. Most useful for the ‘gems’ report section.

Pre-embark estimate

If prospect is called during the embark selection screen, it displays an estimate of layer stone availability. If the all
keyword is specified, it also estimates ores, gems, and vein material. The estimate covers all tiles of the embark
rectangle.

Note: The results of pre-embark prospect are an estimate, and can at best be expected to be somewhere within +/-
30% of the true amount; sometimes it does a lot worse. In particular, it is not clear how to precisely compute how many
soil layers there will be in a given embark tile, so it can report a whole extra layer, or omit one that is actually present.

5.6. All DFHack tools alphabetically 177

DFHack Documentation, Release 50.11-r4

5.6.186 putontable

Tags: unavailable

Command: putontable

Make an item appear on a table.

To use this tool, move an item to the ground on the same tile as a built table. Then, place the cursor over the table and
item and run this command. The item will appear on the table, just like in adventure mode shops!

Usage

putontable [<options>]

Example

putontable Of the items currently on the ground under the table, put one item on the table.

putontable --all Put all items on the table that are currently on the ground under the table.

Options

-a, --all Put all items at the cursor on the table, not just one.

5.6.187 questport

Tags: unavailable

Command: questport

Teleport to your quest log map cursor.

If you open the quest log map and move the cursor to your target location, you can run this command to teleport straight
there. This can be done both within and outside of fast travel mode, and it is possible to questport in situations where
fast travel is normally prohibited.

It is not possible to questport into inaccessible locations like ocean and mountain tiles.

See reveal-adv-map if you wish to teleport into hidden map tiles.

178 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

questport

5.6.188 quickfort

Tags: fort | design | productivity | buildings | map | stockpiles

Command: quickfort

Apply layout blueprints to your fort.

Quickfort reads stored blueprint files and applies them to the game map. You can apply blueprints that designate
digging, build buildings, place stockpiles, mark zones, and/or configure settings. If you find yourself spending time
doing similar or repetitive things in your forts, this tool can be an immense help.

Note that this is the commandline tool. Please see gui/quickfort if you’d like a graphical in-game UI for selecting,
previewing, and applying blueprints.

You can create the blueprints by hand (see the Quickfort blueprint creation guide for details) or you can build your
plan “for real” in Dwarf Fortress, and then export your map using gui/blueprint. This way you can effectively copy and
paste sections of your fort if you need to.

There are many ready-to-use blueprints in the blueprint library that is distributed with DFHack, so you can use this
tool productively even if you haven’t created any blueprints yourself. Additional library blueprints can be added with
mods as well.

Usage

quickfort list [-m|--mode <mode>] [-u|--useronly] [-h|--hidden] [<search string>] Lists
blueprints in the blueprints folder. Blueprints are .csv files or sheets within .xlsx files that contain a
#<mode> comment in the upper-left cell (please see Quickfort blueprint creation guide for more information on
modes). By default, library blueprints in the hack/data/blueprints/ subfolder are included and blueprints
that contain a hidden() marker in their modeline are excluded from the returned list. Specify -u or -h to
exclude library or include hidden blueprints, respectively. The list can additionally be filtered by a specified
mode (e.g. -m build) and/or strings to search for in a path, filename, mode, or comment. The id numbers in
the reported list may not be contiguous if there are hidden or filtered blueprints that are not being shown.

quickfort gui [<filename or search terms>] Invokes the quickfort UI with the specified parameters, giving
you an interactive blueprint preview to work with before you apply it to the map. See the gui/quickfort documen-
tation for details.

quickfort <command>[,<command>...] <list_id>[,<list_id>...] [<options>] Applies the
blueprint(s) with the id number(s) reported from the list command.

quickfort <command>[,<command>...] <filename> [-n|--name <name>[,<name>...]] [<options>]
Applies a blueprint in the specified file. The optional name parameter can select a specific blueprint from a file
that contains multiple blueprints with the format <sheetname>/<label> for .xlsx files, or just /<label> for
.csv files. The label is defined in the blueprint modeline, or, if not defined, defaults to its order in the sheet or
file (e.g. /2). If the -n parameter is not specified, the first blueprint in the first sheet is used.

quickfort set [<key> <value>] Allows you to modify the global quickfort configuration. Just run quickfort
set to show current settings. See the Configuration section below for available keys and values.

5.6. All DFHack tools alphabetically 179

DFHack Documentation, Release 50.11-r4

quickfort reset Resets quickfort configuration to defaults.

<command> is one of:

run Applies the blueprint at your current in-game cursor position.

orders Uses the manager interface to queue up workorders to manufacture items needed by the specified
blueprint(s).

undo Applies the inverse of the specified blueprint. Dig tiles are undesignated, buildings are canceled or
scheduled for destruction (depending on their construction status), and stockpiles/zones are removed.

Examples

quickfort gui library/aquifer_tap.csv -n /dig Show the in-game preview for the “dig” blueprint in the
library/aquifer_tap.csv file. You can interactively reposition the blueprint and apply it where you like
(it’s intended to be applied in a light aquifer layer – run the associated “help” blueprint for more info).

quickfort list List all available blueprints.

quickfort list dreamfort help List all the blueprints that have both “dreamfort” and “help” as keywords.

quickfort run library/dreamfort.csv Run the first blueprint in the library/dreamfort.csv file (which
happens to be the “notes” blueprint that displays the help).

quickfort run library/pump_stack.csv -n /dig --repeat up,80 --transform ccw,flipv Dig a
pump stack through 160 z-levels up from the current cursor location (each repetition of the library/
pump_stack.csv -n /dig blueprint is 2 z-levels). Also transform the blueprint by rotating counterclockwise
and flipping vertically in order to fit the pump stack through some tricky-shaped caverns 50 z-levels above.
Note that this kind of careful positioning is much easier to do with gui/quickfort, but it can be done via the
commandline as well if you know exactly what transformations and positioning you need.

quickfort orders 10,11,12 --dry-run Process the blueprints with ids 10, 11, and 12 (run quickfort list
to see which blueprints these are for you) and calculate what materials will be needed by your dwarves to actually
complete the structures that the blueprints will designate. Display that list to the screen, but don’t actually enqueue
the workorders (the --dry-run option prevents actual changes to the game).

Command options

<options> can be zero or more of:

-c, --cursor <x>,<y>,<z> Use the specified map coordinates instead of the current keyboard map cursor for the
the blueprint start position. If this option is specified, then an active keyboard map cursor is not necessary.

-d, --dry-run Go through all the motions and print statistics on what would be done, but don’t actually change any
game state.

--preserve-engravings <quality> Don’t designate tiles for digging/carving if they have an engraving with at
least the specified quality. Valid values for quality are: None, Ordinary, WellCrafted, FinelyCrafted,
Superior, Exceptional, and Masterful. Specify None to ignore engravings when designating tiles. Note
that if Masterful tiles are dug out, the dwarf who engraved the masterwork will get negative thoughts. If not
specified, Masterful engravings are preserved by default.

-q, --quiet Suppress non-error console output.

-r, --repeat <direction>[,]<num levels> Repeats the specified blueprint(s) up or down the requested number
of z-levels. Direction can be up or down, and can be abbreviated with < or >. For example, the following options
are equivalent: --repeat down,5, -rdown5, and -r>5.

180 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

-s, --shift <x>[,<y>] Shifts the blueprint by the specified offset before modifying the game map. The values for
<x> and <y> can be negative. If both --shift and --transform are specified, the shift is always applied last.

-t, --transform <transformation>[,<transformation>...] Applies geometric transformations to the
blueprint before modifying the game map. See the Transformations section below for details.

-v, --verbose Output extra debugging information. This is especially useful if you’re trying to figure out why the
blueprint isn’t being applied like you expect.

Transformations

All transformations are anchored at the blueprint start cursor position. This is the upper left corner by default, but it
can be modified if the blueprint has a start() modeline marker. This means that the blueprint tile that would normally
appear under your cursor will still appear under your cursor, regardless of how the blueprint is rotated or flipped.

<transformation> is one of:

rotcw or cw Rotates the blueprint 90 degrees clockwise.

rotccw or ccw Rotates the blueprint 90 degrees counterclockwise.

fliph Flips the blueprint horizontally (left edge becomes right edge).

flipv Flips the blueprint vertically (top edge becomes bottom edge).

Configuration

The quickfort script has a few global configuration options that you can customize with the quickfort set command.
Modified settings are only kept for the current session and will be reset when you restart DF.

blueprints_user_dir (default: dfhack-config/blueprints) Directory tree to search for player-created
blueprints. It can be set to an absolute or relative path. If set to a relative path, it resolves to a directory un-
der the DF folder. Note that if you change this directory, you will not see blueprints written by the DFHack
blueprint plugin (which always writes to the dfhack-config/blueprints dir).

blueprints_library_dir (default: hack/data/blueprints) Directory tree to search for library blueprints.

force_marker_mode (default: false) If true, will designate all dig blueprints in marker mode. If false, only cells
with dig codes explicitly prefixed with m will be designated in marker mode.

stockpiles_max_barrels, stockpiles_max_bins, and stockpiles_max_wheelbarrows (defaults: -1, -1, 0)
Set to the maximum number of resources you want assigned to stockpiles of the relevant types. Set to -1 for
DF defaults (number of stockpile tiles for stockpiles that take barrels and bins, and 1 wheelbarrow for stone
stockpiles). The default here for wheelbarrows is 0 since using wheelbarrows can decrease the efficiency of
your fort unless you assign an appropriate number of wheelbarrows to the stockpile. Blueprints can override
this value for specific stockpiles.

API

The quickfort script can be called programmatically by other scripts, either via the commandline interface with
dfhack.run_script() or via the API functions defined in quickfort.lua, available from the return value of
reqscript('quickfort):

• quickfort.apply_blueprint(params)

Applies the specified blueprint data and returns processing statistics. The statistics structure is a map of stat ids to
{label=string, value=number}.

params is a table with the following fields:

5.6. All DFHack tools alphabetically 181

https://github.com/DFHack/scripts/tree/master/quickfort.lua

DFHack Documentation, Release 50.11-r4

mode (required) The name of the blueprint mode, e.g. dig, build, etc.

data (required) A sparse map populated such that data[z][y][x] yields the blueprint text that should be applied to
the tile at map coordinate (x, y, z). You can also just pass a string instead of a table and it will be interpreted
as the value of data[0][0][0].

command The quickfort command to execute, e.g. run, orders, etc. Defaults to run.

pos A coordinate that serves as the reference point for the coordinates in the data map. That is, the text at
data[z][y][x] will be shifted to be applied to coordinate (pos.x + x, pos.y + y, pos.z + z). If not
specified, defaults to {x=0, y=0, z=0}, which means that the coordinates in the data map are used without
shifting.

aliases A map of blueprint alias names to their expansions. If not specified, defaults to {}.

preserve_engravings Don’t designate tiles for digging or carving if they have an engraving with at least the spec-
ified quality. Value is a df.item_quality enum name or value, or the string None (or, equivalently, -1) to
indicate that no engravings should be preserved. Defaults to df.item_quality.Masterful.

dry_run Just calculate statistics, such as how many tiles are outside the boundaries of the map; don’t actually apply
the blueprint. Defaults to false.

verbose Output extra debugging information to the console. Defaults to false.

API usage example:

local quickfort = reqscript('quickfort')

-- dig a 10x10 block at the mouse cursor position
quickfort.apply_blueprint{mode='dig', data='d(10x10)',

pos=dfhack.gui.getMousePos()}

-- dig a 10x10 block starting at coordinate x=30, y=40, z=50
quickfort.apply_blueprint{mode='dig', data={[50]={[40]={[30]='d(10x10)'}}}}

5.6.189 quicksave

Tags: dfhack | fort

Command: quicksave

Immediately autosave the game.

Keybinding: CtrlAltS in dwarfmode

When this tool is called with a fort loaded, DF will immediately do an autosave. Note that the game only keeps the last
3 autosaves.

182 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

quicksave

5.6.190 quickstart-guide

Tags:

Command: quickstart-guide

In-game quickstart guide for new users of DFHack.

This command displays a window in-game where a player can browse the quickstart guide from the official DFHack
docs, section by section.

Usage

quickstart-guide

5.6.191 region-pops

Tags: fort | inspection | animals

Command: region-pops

Change regional animal populations.

This tool can show or modify the populations of animals in the region.

Usage

region-pops list [<pattern>] Shows race populations of the region that your civilization knows about. You
can filter the list by specifying a pattern.

region-pops list-all [<pattern>] Lists total race populations of the region, including those units that your
civilization does not know about. You can filter the list by specifying a pattern.

region-pops boost <race> <factor> Multiply all populations of the given race by the given factor. If the factor
is greater than one, the command will increase the population. If it is between 0 and 1, the command will decrease
the population.

region-pops boost-all <pattern> <factor> Same as above, but apply to all races that match the given pattern.

region-pops incr <race> <amount> Add the given amount to the population counts of the given race. If the
amount is negative, this will decrease the population.

region-pops incr-all <pattern> <amount> Same as above, but apply to all races that match the given pattern.

5.6. All DFHack tools alphabetically 183

DFHack Documentation, Release 50.11-r4

Examples

region-pops list-all BIRD List the populations of all the bird races in the region.

region-pops incr TROLL 1000 Add 1000 trolls to the region.

region-pops boost-all .* .5 Halve the population of all creatures in the region.

region-pops boost-all .* 10 Increase populations of all creatures by a factor of 10. Hashtag zoolife.

5.6.192 regrass

Tags: adventure | fort | armok | animals | map

Command: regrass

Regrow all the grass.

Use this command if your grazers have eaten everything down to the dirt.

Usage

regrass [max]

Specify the ‘max’ keyword to pack more grass onto a tile than what the game normally allows to give your grazers
extra chewing time.

5.6.193 rejuvenate

Tags: fort | armok | units

Command: rejuvenate

Resets unit age.

If your most valuable citizens are getting old, this tool can save them. It decreases the age of the selected dwarf to 20
years, or to the age specified. Age is only increased using the –force option.

184 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

rejuvenate [<options>]

Examples

rejuvenate Set the age of the selected dwarf to 20 (if they’re older).

rejuvenate --all Set the age of all dwarves over 20 to 20.

rejuvenate --all --force Set the age of all dwarves (including babies) to 20.

rejuvenate --age 149 --force Set the age of the selected dwarf to 149, even if they are younger.

Options

--all Rejuvenate all citizens, not just the selected one.

--age <num> Sets the target to the age specified. If this is not set, the target age is 20.

--force Set age for units under the specified age to the specified age. Useful if there are too many babies around. . .

--dry-run Only list units that would be changed; don’t actually change ages.

5.6.194 reload

Tags: dfhack

Command: reload

Reload a loaded plugin.

Developers use this command to reload a plugin that they are actively modifying. Also see load and unload for related
actions.

Usage

reload <plugin> [<plugin> ...]
reload -a|--all

You can reload individual named plugins or all plugins at once. Note that plugins are disabled after loading/reloading
until you explicitly enable them.

5.6. All DFHack tools alphabetically 185

DFHack Documentation, Release 50.11-r4

5.6.195 remove-stress

Tags: fort | armok | units

Command: remove-stress

Reduce stress values for fortress dwarves.

Generally happy dwarves have stress values in the range of 0 to 500,000. If they encounter things that stress them out,
or if their needs are not being met, that value will increase. When it increases too high, your dwarves will start to have
negative repercussions. This tool can magically whisk away some (or all) of their stress so they can function normally
again.

Usage

remove-stress [--all] [--value <value>]

Examples

remove-stress Makes the currently selected dwarf blissfully unstressed.

remove-stress --all Makes all dwarves blissfully unstressed.

remove-stress --all --value 10000 Reduces stress to 10,000 for all dwarves whose stress value is currently
above that number.

Options

--all Apply to all dwarves instead of just the currently selected dwarf.

--value <value> Decrease stress level to the given value. If the value is negative, prepend the negative sign with a
backslash (e.g. --value \-50,000).

5.6.196 remove-wear

Tags: fort | armok | items

Command: remove-wear

Remove wear from items in your fort.

If your clothes are all wearing out and you wish you could just repair them instead of having to make new clothes, then
this tool is for you! This tool will set the wear on items in your fort to zero, as if they were new.

186 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

remove-wear all Remove wear from all items in your fort.

remove-wear <item id> ... Remove wear from items with the given ID numbers.

You can discover the ID of an item by selecting it in the UI and running the following command:

:lua !item.id

5.6.197 rename

Tags: unavailable

Command: rename

Easily rename things.

Use gui/rename for an in-game interface.

Usage

rename squad <ordinal> "<name>" Rename the indicated squad. The ordinal is the number that corresponds to
the list of squads in the squads menu (s). The first squad is ordinal 1.

rename hotkey <ordinal> "<name>" Rename the indicated hotkey. The ordinal the the number that corresponds
to the list of hotkeys in the hotkeys menu (H). The first hotkey is ordinal 1.

rename unit "<name>" Give the selected unit the given nickname.

rename unit-profession "<name>" Give the selected unit the given profession name.

rename building "<name>" Set a custom name to the selected building. The building must be a stockpile, work-
shop, furnace, trap, siege engine, or activity zone.

Example

rename squad 1 "The Whiz Bonkers" Rename the first squad to The Whiz Bonkers.

5.6.198 rendermax

Tags: unavailable

Command: rendermax

Modify the map lighting.

This plugin provides a collection of OpenGL lighting filters that affect how the map is drawn to the screen.

5.6. All DFHack tools alphabetically 187

DFHack Documentation, Release 50.11-r4

Usage

rendermax light Light the map tiles realistically. Outside tiles are light during the day and dark at night. Inside
tiles are always dark unless a nearby unit is lighting it up, as if they were carrying torches.

rendermax light sun <hour>|cycle Set the outside lighting to correspond with the specified day hour (1-24),
or specify cycle to have the lighting follow the sun (which is the default).

rendermax light reload Reload the lighting settings file.

rendermax trippy Randomize the color of each tile. Used for fun, or testing.

rendermax disable Disable any rendermax lighting filters that are currently active.

An image showing lava and dragon breath. Not pictured here: sunlight, shining items/plants, materials that color the
light etc.

For better visibility, try changing the black color in palette to non totally black. See Bay12 forums thread 128487 for
more info.

5.6.199 repeat

Tags: dfhack

Command: repeat

Call a DFHack command at a periodic interval.

You can use this utility command to periodically call other DFHack commands. This is especially useful for setting
up “maintenance” commands that you want called every once in a while but don’t want to have to remember to run
yourself.

188 Chapter 5. DFHack tools

http://www.bay12forums.com/smf/index.php?topic=128487

DFHack Documentation, Release 50.11-r4

Usage

repeat [--name <name>] --time <delay> [--timeUnits <units>] --command [<command>] Regis-
ter the given command to be run periodically.

repeat --list Show the currently registered commands and their names.

repeat --cancel <name> Unregister the given registered command.

Examples

repeat --name orders-sort --time 600 --command [orders sort] Sort your manager workorders ev-
ery 600 ticks (about half a day).

repeat --time 10 --timeUnits days --command [warn-starving] Check for starving dwarves and pets
every 10 game days.

repeat --cancel warn-starving Unregister the warn-starving command registered above.

Options

--name <name> Registers the command under the given name. This ensures you have a memorable identifier for the
--list output so you can unregister the command if you want. It also prevents the same command from being
registered twice. If not specified, it’s set to the first argument after --command.

--time <delay> Sets the delay between invocations of the command. It must be a positive integer.

--timeUnits <units> A unit of time for the value passed with the --time option. Units can be frames (raw FPS),
ticks (unpaused game frames), or the in-world time measurements of days, months, or years. If not specified,
ticks is the default.

--command [...] The ... specifies the command to be run, just as you would write it on the commandline. Note
that the command must be enclosed in square brackets.

Registering commands

It is common that you want to register the same set of commands every time you load a game. For this, it is convenient
to add the repeat commands you want to run to the dfhack-config/init/onMapLoad.init file so they are run
whenever you load a fort.

5.6.200 resurrect-adv

Tags: unavailable

Command: resurrect-adv

Bring a dead adventurer back to life.

Have you ever died, but wish you hadn’t? This tool can help :) When you see the “You are deceased” message, run
this command to be resurrected and fully healed.

5.6. All DFHack tools alphabetically 189

DFHack Documentation, Release 50.11-r4

Usage

resurrect-adv

Note that you can only resurrect the current player character in your party, and you must run this tool immediately after
dying. It is not possible to resurrect the adventurer after the game has been ended.

5.6.201 reveal

Tags: adventure | fort | armok | inspection | map

Command: reveal

Reveals the map.

Command: unreveal

Hides previously hidden tiles again.

Command: revforget

Discard records about what was visible before revealing the map.

Command: revtoggle

Switch between reveal and unreveal.

Command: revflood

Hide everything, then reveal tiles with a path to a unit.

Command: nopause

Disable pausing.

This reveals all z-layers in fort mode. It also works in adventure mode, but any of its effects are negated once you move.
When you use it this way, you don’t need to run unreveal to hide the map again.

190 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

reveal [hell|demon] Reveal the whole map. If hell is specified, also reveal HFS areas, but you are required to
run unreveal before unpausing is allowed in order to prevent the demons from spawning. If you really want to
unpause with hell revealed, specify demon instead of hell.

unreveal Reverts the effects of reveal.

revtoggle Switches between reveal and unreveal. Convenient to bind to a hotkey.

revforget Discard info about what was visible before revealing the map. Only useful where (for example) you
abandoned with the fort revealed and no longer need the saved map data when you load a new fort.

revflood Hide everything, then reveal tiles with a path to the keyboard cursor (if enabled) or the selected unit (if a
unit is selected) or else a random citizen. This allows reparing maps that you accidentally saved while they were
revealed. Note that tiles behind constructed walls are also revealed as a workaround for Bug 1871.

nopause 1|0 Disables pausing (both manual and automatic) with the exception of the pause forced by reveal hell.
This is nice for digging under rivers. Use nopause 1 to prevent pausing and nopause 0 to allow pausing like
normal.

5.6.202 reveal-adv-map

Tags: unavailable

Command: reveal-adv-map

Reveal or hide the world map.

This tool can be used to either reveal or hide all tiles on the world map in adventure mode (visible when viewing the
quest log or fast traveling).

Note that hidden lairs, camps, etc. are not revealed. Please see reveal-hidden-sites for that functionality.

Usage

reveal-adv-map Reveal all world tiles.

reveal-adv-map --hide Hide all world tiles.

5.6.203 reveal-hidden-sites

Tags: adventure | fort | armok | map

Command: reveal-hidden-sites

Reveal all sites in the world.

5.6. All DFHack tools alphabetically 191

https://www.bay12games.com/dwarves/mantisbt/view.php?id=1871

DFHack Documentation, Release 50.11-r4

This tool reveals all sites in the world that have yet to be discovered by the player (camps, lairs, shrines, vaults, etc),
making them visible on the map.

It is usable in both fortress and adventure mode.

Please see reveal-adv-map if you also want to expose hidden world map tiles in adventure mode.

Usage

reveal-hidden-sites

5.6.204 reveal-hidden-units

Tags: adventure | fort | armok | map | units

Command: reveal-hidden-units

Reveal sneaking units.

This tool exposes all units on the map who are currently sneaking or waiting in ambush, and thus hidden from the
player’s view.

It is usable in both fortress and adventure mode.

Usage

reveal-hidden-units

5.6.205 sc-script

Tags: dfhack

Command: sc-script

Run commands when game state changes occur.

This is similar to the static Init files but is slightly more flexible since it can be set dynamically.

192 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

sc-script [help] Show the list of valid event names.

sc-script list [<event>] List the currently registered files for all events or the specified event.

sc-script add|remove <event> <file> [<file> ...] Register or unregister a file to be run for the specified
event.

Example

sc-script add SC_MAP_LOADED spawn_extra_monsters.init Registers the spawn_extra_monsters.init
file to be run whenever a new map is loaded.

5.6.206 script

Tags: dfhack

Command: script

Execute a batch file of DFHack commands.

It reads a text file and runs each line as a DFHack command as if it had been typed in by the user – treating the input
like an init file.

Some other tools, such as autobutcher and workflow, export their settings as the commands to create them - which can
later be reloaded with script.

Usage

script <filename>

Example

script startup.txt Executes the commands in startup.txt, which exists in your DF game directory.

5.6.207 season-palette

Tags: unavailable

Command: season-palette

Swap color palettes when the seasons change.

5.6. All DFHack tools alphabetically 193

DFHack Documentation, Release 50.11-r4

For this tool to work you need to add at least one color palette file to your save raw directory. These files must be in
the same format as data/init/colors.txt.

Palette file names are:

"colors.txt": The world (worldgen and default replacement) palette.
"colors_spring.txt": The palette displayed during spring.
"colors_summer.txt": The palette displayed during summer.
"colors_autumn.txt": The palette displayed during autumn.
"colors_winter.txt": The palette displayed during winter.

If you do not provide a world palette, palette switching will be disabled for the current world. The seasonal palettes
are optional; the default palette is not! The default palette will be used to replace any missing seasonal palettes and is
used during worldgen.

When the world is unloaded or this script is disabled, the system default color palette (/data/init/colors.txt) will
be loaded. The system default palette will always be used in the main menu, but your custom palettes should be used
everywhere else.

Usage

enable season-palette Begin swapping seasonal color palettes.

disable season-palette Stop swapping seasonal color palettes and load the default color palette.

API

If loaded as a module this script will export a single Lua function:

LoadPalette(path) Load a color palette from the text file at “path”. This file must be in the same format as data/
init/colors.txt. If there is an error, any changes will be reverted and this function will return false. Other-
wise, it returns true.

5.6.208 seedwatch

Tags: fort | auto | plants

Command: seedwatch

Manages seed and plant cooking based on seed stock levels.

Unlike brewing and other kinds of processing, cooking plants does not produce a usable seed. By default, all plants are
allowed to be cooked. This often leads to the situation where dwarves have no seeds left to plant crops with because
they cooked all the relevant plants. Seedwatch protects you from this problem.

Each seed type can be assigned a target stock amount. If the number of seeds of that type falls below that target, then
the plants and seeds of that type will be protected from cookery. If the number rises above the target + 20, then cooking
will be allowed again.

194 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable seedwatch Start managing seed and plant cooking. By default, all types are watched with a target of 30, but
you can adjust the list or even seedwatch clear it and start your own if you like.

seedwatch [status] Display whether seedwatch is enabled and prints out the watch list, along with the current
seed counts.

seedwatch <type> <target> Adds the specified type to the watchlist (if it’s not already there) and sets the target
number of seeds to the specified number. You can pass the keyword all instead of a specific type to set the target
for all types. If you set the target to 0, it removes the specified type from the watch list.

seedwatch clear Clears all types from the watch list. Same as seedwatch all 0.

To see a list of all plant types that you might want to set targets for, you can run this command:

devel/query --table df.global.world.raws.plants.all --search ^id --maxdepth 1

Examples

enable seedwatch Adds all seeds to the watch list, sets the targets to 30, and starts monitoring your seed stock levels.

seedwatch MUSHROOM_HELMET_PLUMP 50 Add Plump Helmets to the watch list and sets the target to 50.

seedwatch MUSHROOM_HELMET_PLUMP 0 removes Plump Helmets from the watch list.

5.6.209 set-orientation

Tags: fort | armok | units

Command: set-orientation

Alter a unit’s romantic inclinations.

This tool lets you tinker with the interest levels your dwarves have towards dwarves of the same/different sex.

Usage

set-orientation [--unit <id>] --view See the unit’s current orientation values.

set-orientation [--unit <id>] <interest options> Set the orientation values for the unit.

If a unit id is not specified or is not found, the default is to target the currently selected unit.

5.6. All DFHack tools alphabetically 195

DFHack Documentation, Release 50.11-r4

Examples

set-orientation --male 0 --female 0 Make a dwarf romantically inaccessible

set-orientation --random Re-randomize the orientation values for this dwarf.

Interest options

Interest levels are 0 for Uninterested, 1 for Romance, and 2 for Marry.

--male <INTEREST> Set the interest level towards males.

--female <INTEREST> Set the interest level towards females.

--opposite <INTEREST> Set the interest level towards the opposite sex to the unit.

--same <INTEREST> Set the interest level towards the same sex as the unit.

--random Randomise the unit’s interest towards both sexes, respecting their ORIENTATION token odds.

5.6.210 set-timeskip-duration

Tags: adventure | embark | fort | armok

Command: set-timeskip-duration

Modify the duration of the pre-game world update.

Starting a new fortress/adventurer session is preceded by an “Updating World” process which is normally 2 weeks long.
This script allows you to modify the duration of this timeskip, enabling you to jump into the game earlier or later than
usual.

You can use this tool at any point before the timeskip begins (for example, while still at the “Start Playing” menu).

It is also possible to run the script while the world is updating, which can be useful if you decide to end the process
earlier or later than initially planned.

Note that the change in timeskip duration will persist until either:

• the game is closed

• the --clear argument is used (see below)

• the timeskip duration is overwritten by setting a new duration

Usage

set-timeskip-duration --clear
set-timeskip-duration <duration options>

196 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

set-timeskip-duration --ticks 851249 Sets the end of the timeskip to 2 years, 1 month, 9 days, 8 hours, 58
minutes, and 48 seconds from the current date.

set-timeskip-duration --years 2 --months 1 --days 9 --hours 8 --ticks 49 Does the same thing
as the previous example.

Options

The <num> values passed to any option below must be positive integers (or 0).

--clear Reset the timeskip duration to its default value. Note that this won’t affect timeskips which have already
begun.

--ticks <num> Adds the specified number of ticks to the timeskip duration The following conversions may help you
calculate this:

1 tick = 72 seconds = 1 minute 12 seconds
50 ticks = 60 minutes = 1 hour
1200 ticks = 24 hours = 1 day
8400 ticks = 7 days = 1 week
33600 ticks = 4 weeks = 1 month
403200 ticks = 12 months = 1 year

--years <num>, --months <num>, --days <num>, --hours <num> Adds the appropriate number ticks to the
timeskip duration

5.6.211 setfps

Tags: dfhack | fps

Command: setfps

Set the graphics FPS cap.

This command can set the FPS cap at runtime. This is useful for when you want to speed up the game or watch combat
in slow motion.

Note that setting the cap higher than what your computer can support will not make the game go any faster.

Usage

setfps <number>

5.6. All DFHack tools alphabetically 197

DFHack Documentation, Release 50.11-r4

5.6.212 show

Tags: dfhack

Command: show

Unhides the DFHack terminal window.

Useful if you have hidden the terminal with hide and you want it back. Since the terminal window won’t be available
to run this command, you’ll need to use it from a keybinding set beforehand or the in-game command-prompt.

Only available on Windows.

Usage

show

5.6.213 showmood

Tags: fort | armok | inspection | jobs | units

Command: showmood

Shows all items needed for the active strange mood.

Usage

showmood

5.6.214 siege-engine

Tags: unavailable

Extend the functionality and usability of siege engines.

Siege engines in DF haven’t been updated since the game was 2D, and can only aim in four directions. To make them
useful above-ground, this plugin allows you to:

• link siege engines to stockpiles

• restrict operator skill levels (like workshops)

• load any object into a catapult, not just stones

• aim at a rectangular area in any direction, and across Z-levels

198 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable siege-engine

You can use the new features by selecting a built siege engine and running gui/siege-engine.

5.6.215 siren

Tags: unavailable

Command: siren

Wake up sleeping units and stop parties.

Sound the alarm! This tool can shake your sleeping units awake and knock some sense into your party animal military
dwarves so they can address a siege.

Note that this is not without consequences. Affected dwarves will receive a negative thought about noise, tiredness,
and lack of protection.

Usage

siren [<burrow> ...]

Examples

siren Wake up the whole fort!

siren barracks tavern Just affect dwarves that are within the bounds of the barracks and tavern burrows (note
that the dwarves do not need to be assigned to those burrows).

5.6.216 sort

Tags: fort | productivity | interface

Search and sort lists shown in the DF interface.

The sort tool provides search and sort functionality for lists displayed in the DF interface.

Searching and sorting functionality is provided by overlay widgets, and widgets for individual lists can be moved via
gui/overlay or turned on or off via gui/control-panel.

5.6. All DFHack tools alphabetically 199

DFHack Documentation, Release 50.11-r4

Squad assignment overlay

You can search for a dwarf by name by typing in the Search field. The search field is always focused, so any lowercase
letter you type will appear there.

The squad assignment screen can be sorted by name, by arrival order, by stress, by various military-related skills, or
by long-term military potential.

If sorted by “melee effectiveness” (the default), then the citizens are sorted according to how well they will perform in
battle when using the weapon they have the most skill in. The effectiveness rating also takes into account physical and
mental attributes as well as general fighting (non-weapon) skills.

The “ranged effectiveness” sort order does a similar sort for expected effectiveness with a crossbow. This sort also
takes into account relevant physical and mental attributes.

The “effectiveness” sorts are the ones you should be using if you need the best squad you can make right now. The
numbers to the left of the unit list indicate exactly how effective that dwarf is expected to be. Light green numbers
indicate the best of the best, while red numbers indicate dwarves that will not be effective in the military in their current
state (though see “melee potential” and “ranged potential” sorts below for predictions about future effectiveness).

The “arrival order” sorts your citizens according to the most recent time they entered your map. The numbers on the
left indicate the relative arrival order, and the numbers for the group of dwarves that most recently entered the map will
be at the top and be colored bright green. If you run this sort after you get a new group of migrants, the migrant wave
will be colored bright green. Dwarves that arrived earlier will have numbers in yellow, and your original dwarves (if
any still survive and have never left and re-entered the map) will have numbers in red.

The “stress” sort order will bring your most stressed dwarves to the top, ready for addition to a therapy squad to help
improve their mood.

Similarly, sorting by “need for training” will show you the dwarves that are feeling the most unfocused because they
are having their military training needs unmet.

Both “stress” and “need for training” sorts use the dwarf happiness indicators to show how dire the dwarf’s situation
is and how much their mood might be improved if you add them to an appropriate squad.

If sorting is done by “melee potential”, then citizens are arranged based on genetic predispositions in physical and
mental attributes, as well as body size. Dwarves (and other humanoid creatures) with higher ratings are expected to be
more effective in melee combat if they train their attributes to their genetic maximum.

Similarly, the “ranged potential” sort orders citizens by genetic predispositions in physical and mental attributes that
are relevant to ranged combat. Dwarves (and other humanoid creatures) with higher rating are expected to be more
effective in ranged combat if they train their attributes to the maximum.

The squad assignment panel also offers options for filtering which dwarves are shown. Each filter option can by cycled
through “Include”, “Only”, and “Exclude” settings. “Include” does no filtering, “Only” shows only units that match
the filter, and “Exclude” shows only units that do not match the filter.

The following filters are provided:

• Units that are assigned to other squads

• Elected and appointed officials (e.g. mayor, priests, tavern keepers, etc.)

• Nobility (e.g. monarch, barons, counts, etc.)

• Mothers with infants (you may not want mothers using their babies as shields)

• Weak mental fortitude (units that have facets and values that indicate that they will react poorly to the stresses of
battle)

• Critically injured (units that have lost their ability to see, grasp weapons, or walk)

200 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Stress#Recovering_unhappy_dwarves

DFHack Documentation, Release 50.11-r4

“Melee skill effectiveness”, “ranged skill effectiveness”, “melee combat potential” and “ranged combat potential” are
explained in detail here: https://www.reddit.com/r/dwarffortress/comments/163kczo/enhancing_military_candidate_
selection_part_3/ “Mental stability” is explained here: https://www.reddit.com/r/dwarffortress/comments/1617s11/
enhancing_military_candidate_selection_part_2/

Info tabs overlay

The Info overlay adds search support to many of the fort-wide “Info” panels (e.g. “Creatures”, “Tasks”, etc.). When
searching for units, you can search by name (with either English or native language last names), profession, or special
status (like “necromancer”). If there is text in the second column, you can search for that text as well. This is often a
job name or a status, like “caged”. The work animal assignment page can also filter by squad or burrow membership.

Work animals overlay

In addition to the search and filter widgets provided by the Info tabs overlay, the work animal assignment screen has an
additional overlay that annotates each visible unit with the number of work animals that unit already has.

Interrogation overlay

In the interrogation and conviction screens under the “Justice” tab, you can search for units by name. You can also
filter by the classification of the unit. The classification groups are ordered by how likely a member of that group is to
be involved in a plot. The groups are: All, Risky visitors, Other visitors, Residents, Citizens, Animals, Deceased, and
Others. “Risky” visitors are those who are especially likely to be involved in plots, such as criminals, necromancers,
necromancer experiments, and intelligent undead.

On the interrogations screen, you can also filter units by whether they have already been interrogated.

Candidates overlay

When you select the button to choose a candidate to assign to a noble role on the nobles screen, you can search for
units by name, profession, or any of the skills in which they have achieved at least “novice” level. For example, when
assigning a broker, you can search for “appraisal” to find candidates that have at least some appraisal skill.

Location selection overlay

When choosing the type of guildhall or temple to dedicate, you can search for the relevant profession, religion, or deity
by name. For temples, you can also search for the “spheres” associated with the deity or religion, such as “wealth” or
“lies”.

You can also choose whether to filter out temple or guildhall types that you have already established.

Slab engraving overlay

When choosing a unit to engrave a slab for, you can search for units by name, either in their native language or in
English (though only their native name will be displayed). This overlay also adds a filter for showing only units that
would need a slab in order to prevent them rising as a ghost.

5.6. All DFHack tools alphabetically 201

https://www.reddit.com/r/dwarffortress/comments/163kczo/enhancing_military_candidate_selection_part_3/
https://www.reddit.com/r/dwarffortress/comments/163kczo/enhancing_military_candidate_selection_part_3/
https://www.reddit.com/r/dwarffortress/comments/1617s11/enhancing_military_candidate_selection_part_2/
https://www.reddit.com/r/dwarffortress/comments/1617s11/enhancing_military_candidate_selection_part_2/

DFHack Documentation, Release 50.11-r4

World overlay

Searching is supported for the Artifacts list when viewing the world map (where you can initiate raids).

5.6.217 source

Tags: fort | armok | map

Command: source

Create an infinite magma or water source.

This tool can create an infinite magma or water source or drain on a tile. For more complex liquid placement, try liquids
or gui/liquids.

Map tiles registered with this tool as a liquid source will be set to have the configured amount of liquid every 12 game
ticks. A standard liquid source sets the level to 7, and a standard drain sets the level to 0, but you can set the target
anywhere in between as well.

Usage

source add water|magma [0-7] Add a source or drain at the selected tile position. If the target level is not spec-
ified, it defaults to 7. The cursor must be over a flow-passable tile (e.g. empty space, floor, staircase, etc.) and
not too high in the sky.

source list List all currently registered source tiles.

source delete Remove the source under the cursor.

source clear Remove all liquid sources that have been added with source.

Examples

source add water Create an infinite water source under the cursor.

source add water 3 Create an infinite water source under the cursor, but equalize the water depth at 3/7. This is
useful when creating a swimming pool for your dwarves.

source add water 0 Create a water drain under the cursor.

source add magma Create an infinite magma source under the cursor.

5.6.218 spawnunit

Tags: unavailable

Command: spawnunit

Create a unit.

202 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

This tool allows you to easily spawn a unit of your choice. It is a simplified interface to modtools/create-unit, which
this tool uses to actually create the requested unit.

Usage

spawnunit [-command] <race> <caste> [<name> [<x> <y> <z>]] [...]

If -command is specified, the generated modtools/create-unit command is printed to the terminal instead of being run.

The name and coordinates of the unit are optional. Any further arguments are simply passed on to modtools/create-unit.
See documentation for that tool for information on what you can pass through.

To see the full list of races and castes for your world, run the following command:

devel/query --table df.global.world.raws.creatures.all --search [creature_id caste_id]␣
→˓--maxdepth 3 --maxlength 5000

Examples

spawnunit GOBLIN MALE Warp in a (male) goblin for your squads to beat on.

spawnunit JABBERER FEMALE --domesticate Spawn a tame female jabberer for breeding an army!

5.6.219 spectate

Tags: fort | interface

Command: spectate

Automatically follow productive dwarves.

Usage

enable spectate
spectate set <setting> <value>
spectate enable|disable <feature>

When enabled, the plugin will automatically switch which dwarf is being followed periodically, preferring dwarves on
z-levels with the highest job activity.

Changes to plugin settings will be saved per world. Whether the plugin itself is enabled or not is not saved.

5.6. All DFHack tools alphabetically 203

DFHack Documentation, Release 50.11-r4

Examples

spectate The plugin reports its configured status.

spectate enable auto-unpause Enable the spectate plugin to automatically dismiss pause events caused by the
game. Siege events are one example of such a game event.

spectate set tick-threshold 50 Set the tick interval the followed dwarf can be changed at back to its default
value.

Features

auto-unpause Toggle auto-dismissal of game pause events. (default: disabled)

auto-disengage Toggle auto-disengagement of plugin through player intervention while unpaused. (de-
fault: disabled)

animals Toggle whether to sometimes follow animals. (default: disabled)

hostiles Toggle whether to sometimes follow hostiles (eg. undead, titan, invader, etc.) (default: disabled)

visiting Toggle whether to sometimes follow visiting units (eg. diplomat)

Settings

tick-threshold Set the plugin’s tick interval for changing the followed dwarf. (default: 1000)

5.6.220 startdwarf

Tags: embark | fort | armok

Command: startdwarf

Change the number of dwarves you embark with.

You must use this tool before you get to the embark preparation screen (e.g. at the site selection screen or any time
before) to change the number of dwarves you embark with from the default of 7. The value that you set will remain in
effect until DF is restarted (or you use startdwarf to set a new value).

The maximum number of dwarves you can have is 32,767, but that is far more than the game can handle.

Usage

startdwarf <number>

204 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

startdwarf 10 Start with a few more warm bodies to help you get started.

startdwarf 1 Hermit fort! (also see the hermit tool for keeping it that way)

startdwarf 500 Start with a teeming army of dwarves (leading to immediate food shortage and FPS issues).

Overlay

The vanilla DF screen doesn’t provide a way to scroll through the starting dwarves, so if you start with more dwarves
than can fit on your screen, this tool provides a scrollbar that you can use to scroll through them. The vanilla list was
not designed for scrolling, so there is some odd behavior. When you click on a dwarf to set skills, the list will jump so
that the dwarf you clicked on will be at the top of the page.

5.6.221 starvingdead

Tags: fort | fps | gameplay | units

Command: starvingdead

Prevent infinite accumulation of roaming undead.

With this tool running, all undead that have been on the map for one month gradually decay, losing strength, speed,
and toughness. After six months, they collapse upon themselves, never to be reanimated.

Strength lost is proportional to the time until death, all units will have roughly 10% of each of their attributes’ values
when close to being removed.

In any game, this can be a welcome gameplay feature, but it is especially useful in preventing undead cascades in
the caverns in reanimating biomes, where constant combat can lead to hundreds of undead roaming the caverns and
destroying your FPS.

Usage

enable starvingdead
starvingdead [<options>]

Examples

enable starvingdead Start starving the dead with default settings.

starvingdead --decay-rate 28 Undead will lose strength roughly once a month.

starvingdead --decay-rate 1 --death-threshold 1 Undead will lose strength each day and die after they
have spent a month on the map.

5.6. All DFHack tools alphabetically 205

DFHack Documentation, Release 50.11-r4

Options

--decay-rate <days> Specify how often, in days, undead should lose strength.

--death-threshold <months> How many months should undead lose strength for before being removed.

5.6.222 steam-engine

Tags: unavailable

Allow modded steam engine buildings to function.

The steam-engine plugin detects custom workshops with the string STEAM_ENGINE in their token, and turns them into
real steam engines!

The plugin auto-enables itself when it detects the relevant tags in the world raws. It does not need to be enabled with
the enable command.

Rationale

The vanilla game contains only water wheels and windmills as sources of power, but windmills give relatively little
power, and water wheels require flowing water, which must either be a real river and thus immovable and limited in
supply, or actually flowing and thus laggy.

Compared to the dwarven water reactor exploit, steam engines make a lot of sense!

Construction

The workshop needs water as its input, which it takes via a passable floor tile below it, like usual magma workshops
do. The magma version also needs magma.

Due to DF game limits, the workshop will collapse over true open space. However, down stairs are passable but support
machines, so you can use them.

After constructing the building itself, machines can be connected to the edge tiles that look like gear boxes. Their exact
position is extracted from the workshop raws.

Like with collapse above, due to DF game limits the workshop can only immediately connect to machine components
built AFTER it. This also means that engines cannot be chained without intermediate axles built after both engines.

Operation

In order to operate the engine, queue the Stoke Boiler job (optionally on repeat). A furnace operator will come, possibly
bringing a bar of fuel, and perform it. As a result, a “boiling water” item will appear in the t view of the workshop.

Note: The completion of the job will actually consume one unit of the appropriate liquids from below the work-
shop. This means that you cannot just raise 7 units of magma with a piston and have infinite power. However, liquid
consumption should be slow enough that water can be supplied by a pond zone bucket chain.

Every such item gives 100 power, up to a limit of 300 for coal, or 500 for a magma engine. The building can host twice
that amount of items to provide longer autonomous running. When the boiler gets filled to capacity, all queued jobs
are suspended. Once it drops back to 3+1 or 5+1 items, they are re-enabled.

206 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Water_wheel#Dwarven_Water_Reactor

DFHack Documentation, Release 50.11-r4

While the engine is providing power, steam is being consumed. The consumption speed includes a fixed 10% waste
rate, and the remaining 90% is applied proportionally to the actual load in the machine. With the engine at nominal
300 power with 150 load in the system, it will consume steam for actual 300*(10% + 90%*150/300) = 165 power.

A masterpiece mechanism and chain will decrease the mechanical power drawn by the engine itself from 10 to 5. A
masterpiece barrel decreases waste rate by 4%. A masterpiece piston and pipe decrease it by further 4%, and also
decrease the whole steam use rate by 10%.

Explosions

The engine must be constructed using barrel, pipe, and piston from fire-safe, or, in the magma version, magma-safe
metals.

During operation, weak parts gradually wear out, and eventually the engine explodes. It should also explode if toppled
during operation by a building destroyer or a tantruming dwarf.

Save files

It should be safe to load and view engine-using fortresses from a DF version without DFHack installed, except that
in such case the engines, of course, won’t work. However actually making modifications to them or machines they
connect to (including by pulling levers) can easily result in inconsistent state once this plugin is available again. The
effects may be as weird as negative power being generated.

5.6.223 stockflow

Tags: unavailable

Command: stockflow

Queue manager jobs based on free space in stockpiles.

With this plugin, the fortress bookkeeper can tally up free space in specific stockpiles and queue jobs through the
manager to produce items to fill the free space.

When the plugin is enabled, the q menu of each stockpile will have two new options:

• j: Select a job to order, from an interface like the manager’s screen.

• J: Cycle between several options for how many such jobs to order.

Whenever the bookkeeper updates stockpile records, new work orders will be placed on the manager’s queue for each
such selection, reduced by the number of identical orders already in the queue.

This plugin is similar to workflow, but uses stockpiles to manage job triggers instead of abstract stock quantities.

5.6. All DFHack tools alphabetically 207

DFHack Documentation, Release 50.11-r4

Usage

enable stockflow Enable the plugin.

stockflow status Display whether the plugin is enabled.

stockflow list List any work order settings for your stockpiles.

stockflow fast Enqueue orders once per day instead of waiting for the bookkeeper.

5.6.224 stockpiles

Tags: fort | design | productivity | stockpiles

Command: stockpiles

Import, export, or modify stockpile settings.

Commands act upon the stockpile selected in the UI unless another stockpile identifier is specified on the commandline.

Usage

stockpiles [status]
stockpiles list [<search>]
stockpiles import <name> [<options>]
stockpiles export <name> [<options>]

Exported stockpile settings are saved in the dfhack-config/stockpiles folder, where you can view and delete them,
if desired. Names can only contain numbers, letters, periods, and underscores.

The names of library settings files are all prefixed by the string library/. You can specify library files explicitly by
including the prefix, or you can just write the short name to use a player-exported file by that name if it exists, and the
library file if it doesn’t.

Examples

stockpiles Shows the list of all your stockpiles and some relevant statistics.

stockpiles list Shows the list of previously exported stockpile settings files, including the stockpile configuration
library.

stockpiles list plants Shows the list of exported stockpile settings files that include the substring plants.

stockpiles import library/plants Imports the library plants settings file into the currently selected stockpile.

stockpiles import plants Imports a player-exported settings file named plants, or the library plants settings
file if a player-exported file by that name doesn’t exist.

stockpiles import -m enable plants Enables plants in the selected stockpile.

stockpiles import -m disable cat_food -f tallow Disables all tallow in the selected food stockpile.

stockpiles export mysettings Export the settings for the currently selected stockpile to a file named
dfhack-config/stockpiles/mysettings.dfstock.

208 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

stockpiles export mysettings -i categories,types Export the stockpile category and item settings, but
ignore the container and general settings. This allows you to import the configuration later without touching the
container and general settings of the target stockpile.

Options

-s, --stockpile <name or id> Specify a specific stockpile by name or internal ID instead of using the stockpile
currently selected in the UI.

-i, --include <comma separated list of elements to include> When exporting, you can include this op-
tion to select only specific elements of the stockpile to record. If not specified, everything is included. When the
file is later imported, only the included settings will be modified. The options are explained below in the next
section.

-m, --mode (set|enable|disable) When importing, choose the algorithm used to apply the settings. In setmode
(the default), the stockpile is cleared and the settings in the file are enabled. In enable mode, enabled settings
in the file are added to the stockpile, but no other settings are changed. In disable mode, enabled settings in
the file are removed from the current stockpile configuration, and nothing else is changed.

-f, --filter <search>[,<search>...] When importing, only modify the settings that contain at least one of the
given substrings.

Configuration elements

The different configuration elements you can include in an exported settings file are:

containers Max bins, max barrels, and num wheelbarrows.

general Whether the stockpile takes from links only and whether organic and/or inorganic materials are
allowed.

categories The top-level categories of items that are enabled for the stockpile, like Ammo, Finished goods,
or Stone.

types The elements below the categories, which include the sub-categories, the specific item types, and
any toggles the category might have (like Prepared meals for the Food category).

Overlay

This plugin provides a panel that appears when you select a stockpile via an overlay widget. You can use it to easily
toggle logistics plugin features like autotrade, automelt, or autotrain. There are also buttons along the top frame for:

• minimizing the panel (if it is in the way of the vanilla stockpile configuration widgets)

• showing help for the overlay widget in gui/launcher (this page)

• configuring advanced settings for the stockpile, such as whether automelt will melt masterworks

5.6. All DFHack tools alphabetically 209

DFHack Documentation, Release 50.11-r4

The stockpiles settings library

DFHack comes with a library of useful stockpile settings files that are ready for import. If the stockpile configuration
that you need isn’t directly represented, you can often use the enable and disable modes and/or the filter option
to transform an existing saved stockpile setting. Some stockpile configurations can only be achieved with filters since
the stockpile lists are different for each world. For example, to disable all tallow in your main food stockpile, you’d run
this command:

stockpiles import cat_food -m disable -f tallow

Top-level categories

Each stockpile category has a file that allows you to enable or disable the entire category, or with a filter, any matchable
subset thereof:

cat_ammo
cat_animals
cat_armor
cat_bars_blocks
cat_cloth
cat_coins
cat_corpses
cat_finished_goods
cat_food
cat_furniture
cat_gems
cat_leather
cat_refuse
cat_sheets
cat_stone
cat_weapons
cat_wood

In addition, there are files for all, which includes all categories except refuse and corpses (mirroring the “all” config-
uration in-game), and everything, which really includes all categories.

For many of the categories, there are also flags, subcategory prefixes, and item properties that you can match with filters.
In addition, there are normally at least a few convenient pre-made settings files that manipulate interesting category
subsets.

Cross-category stockpile adjustments

Settings files:

artifacts
masterworks

Example command for a meltable weapons stockpile:

stockpiles import cat_weapons
stockpiles import -m disable cat_weapons -f other/

(continues on next page)

210 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

stockpiles import -m disable artifacts
stockpiles import -m disable masterworks

Ammo stockpile adjustments

Subcategory prefixes:

type/
mats/
other/
core/
total/

Settings files:

bolts
metalammo
boneammo
woodammo

Example commands for a stockpile of metal bolts:

stockpiles import cat_ammo -f mats/,core/,total/
stockpiles import -m enable bolts

Animal stockpile adjustments

Flags:

cages
traps

Properties:

tameable

Settings files:

cages
traps

Example commands for a stockpile of empty cages:

stockpiles import cages

Or, using the flag for the same effect:

stockpiles import cat_animals -f cages

5.6. All DFHack tools alphabetically 211

DFHack Documentation, Release 50.11-r4

Armor stockpile adjustments

Flags and subcategory prefixes:

nouse
canuse
body/
head/
feet/
hands/
legs/
shield/
mats/
other/
core/
total/

Settings files:

metalarmor
otherarmor
ironarmor
bronzearmor
copperarmor
steelarmor
usablearmor
unusablearmor

Example commands for a stockpile of sub-masterwork meltable armor:

stockpiles import cat_armor
stockpiles import -m disable -f other/,core/mas,core/art cat_armor

Bar stockpile adjustments

Subcategory prefixes:

mats/bars/
other/bars/
mats/blocks/
other/blocks/

Settings files:

bars
metalbars
ironbars
pigironbars
steelbars
otherbars
coal
potash

(continues on next page)

212 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

ash
pearlash
soap
blocks

Example commands for a stockpile of blocks:

stockpiles import blocks

Cloth stockpile adjustments

Subcategory prefixes:

thread/silk/
thread/plant/
thread/yarn/
thread/metal/
cloth/silk/
cloth/plant/
cloth/yarn/
cloth/metal/

Settings files:

thread
adamantinethread
cloth
adamantinecloth

Notes:

• thread and cloth settings files set all materials that are not adamantine.

Corpse stockpile adjustments

Properties:

tameable

Finished goods stockpile adjustments

Subcategory prefixes:

type/
mats/
other/
core/
total/

Settings files:

5.6. All DFHack tools alphabetically 213

DFHack Documentation, Release 50.11-r4

stonetools
woodtools
crafts
goblets
toys

Example commands for a toy stockpile:

stockpiles import cat_finished_goods -f mats/,other/,core/,total/
stockpiles import -m enable toys

Food stockpile adjustments

Flags and subcategory prefixes:

preparedmeals
meat/
fish/prepared/
fish/unprepared/
egg/
plants/
drink/plant/
drink/animal/
cheese/plant/
cheese/animal/
seeds/
leaves/
powder/plant/
powder/animal/
glob/
liquid/plant/
liquid/animal/
liquid/misc/
paste/
pressed/

Settings files:

preparedmeals
unpreparedfish
plants
booze
seeds
dye
miscliquid
wax

Example commands for a kitchen ingredients stockpile:

stockpiles import cat_food -f meat/,fish/prepared/,egg/,cheese/,leaves/,powder/,glob/,
→˓liquid/plant/,paste/,pressed/
stockpiles import cat_food -m enable -f milk,royal_jelly

(continues on next page)

214 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

stockpiles import dye -m disable
stockpiles import cat_food -m disable -f tallow,thread,liquid/misc/

Furniture stockpile adjustments

Subcategory prefixes:

type/
mats/
other/
core/
total/

Settings files:

pots
barrels
bags
buckets
sand

• Because of the limitations of Dwarf Fortress, bags cannot distinguish between empty bags and bags filled with
gypsum powder.

Example commands for a sand bag stockpile:

stockpiles import cat_furniture
stockpiles import cat_furniture -m disable -f type/
stockpiles import sand -m enable

Gem stockpile adjustments

Subcategory prefixes:

mats/rough/
mats/cut/
other/rough/
other/cut/

Settings files:

roughgems
roughglass
cutgems
cutglass
cutstone

5.6. All DFHack tools alphabetically 215

DFHack Documentation, Release 50.11-r4

Refuse stockpile adjustments

Flags and subcategory prefixes:

rawhide/fresh
rawhide/rotten
type/
corpses/
bodyparts/
skulls/
bones/
hair/
shells/
teeth/
horns/

Properties:

tameable

Settings files:

rawhides
tannedhides
usablehair

Notes:

• usablehair Only hair and wool that can make usable clothing is included, i.e. from sheep, llamas, alpacas, and
trolls.

Example commands for a craftable refuse stockpile:

stockpiles import cat_refuse -f skulls/,bones/,shells',teeth/,horns/
stockpiles import usablehair -m enable

Sheet stockpile adjustments

Subcategory prefixes:

paper/
parchment/

Stone stockpile adjustments

Settings files:

metalore
ironore
economic
flux
plasterproducing

(continues on next page)

216 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

coalproducing
otherstone
bauxite
clay

Weapon stockpile adjustments

Flags and subcategory prefixes:

nouse
canuse
type/weapon/
type/trapcomp/
mats/
other/
core/
total/

Settings files:

metalweapons
stoneweapons
otherweapons
trapcomponents
ironweapons
silverweapons
bronzeweapons
copperweapons
steelweapons
platinumweapons
adamantineweapons
usableweapons
unusableweapons

Example commands for a non-metallic trap components stockpile:

stockpiles import cat_weapons
stockpiles import cat_weapons -m disable -f type/weapon/
stockpiles metalweapons -m disable

5.6.225 stocks

Tags: unavailable

Command: stocks

Enhanced fortress stock management interface.

5.6. All DFHack tools alphabetically 217

DFHack Documentation, Release 50.11-r4

When the plugin is enabled, two new hotkeys become available:

• e on the vanilla DF stocks screen (z and then select Stocks) will launch the fortress-wide stock management
screen.

• i when a stockpile is selected in q mode will launch the stockpile inventory management screen.

Usage

enable stocks
stocks show

Running stocks show will bring you to the fortress-wide stock management screen from wherever you are.

5.6.226 stonesense

Tags: adventure | fort | graphics | map

Command: stonesense

A 3D isometric visualizer.

Command: ssense

An alias for stonesense.

Usage

stonesense or ssense Open the visualiser in a new window.

The viewer window has read-only access to the game, and can follow the game view or be moved independently.
Configuration for stonesense can be set in the stonesense/init.txt file in your DF game directory. If the window
refresh rate is too low, change SEGMENTSIZE_Z to 2 in this file, and if you are unable to see the edges of the map with
the overlay active, try decreasing the value for SEGMENTSIZE_XY – normal values are 50 to 80, depending on your
screen resolution.

Controls

Mouse controls are hard-coded and cannot be changed.

Left click Move debug cursor (if available)

Right click Recenter screen

Scrollwheel Move up and down

Ctrl-Scroll Increase/decrease Z depth shown

Follow mode makes the Stonesense view follow the location of the DF window. The offset can be adjusted by holding
Ctrl while using the keyboard window movement keys. When you turn on cursor follow mode, the Stonesense debug
cursor will follow the DF cursor when the latter exists.

218 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Fig. 1: The above-ground part of the fortress Roadtruss.

5.6. All DFHack tools alphabetically 219

http://www.bay12forums.com/smf/index.php?topic=48172.msg3198664#msg3198664

DFHack Documentation, Release 50.11-r4

You can take screenshots with F5, larger screenshots with CtrlF5, and screenshot the whole map at full resolution
with CtrlShiftF5. Screenshots are saved to the DF directory. Note that feedback is printed to the DFHack console,
and you may need to zoom out before taking very large screenshots.

See stonesense/keybinds.txt to learn or set keybindings, including zooming, changing the dimensions of the
rendered area, toggling various views, fog, and rotation. Here’s the important section:

INSTRUCTIONS:

This document specifies the keys and associated actions stonesense
can recognize. The syntax is:

[<action name>:<action key 1>:<action key 2> ...]
If the closing brace is preceeded by an asterisk:

[<stuff>*]
then the keys specified will repeat each frame until released,
otherwise it will occur exactly once each time the character is
registered.

It is possible to specify the same action on multiple lines, or
to leave action names out of the list completely.

Listing multiple actions on the same line is not supported.
Likewise listing the same key for multiple actions will result
in only the last action listed being the one taken when the key is
pressed. Currently only keyboard events are supported;
stonesense's mouse events are all hardcoded.

A complete listing of valid actions and key values can be found at
the bottom of this file.

KEYBINDINGS:

[ROTATE:KEYS_ENTER]
[RELOAD_SEGMENT:KEY_R]
[TOGGLE_DESIGNATIONS:KEY_D]
[TOGGLE_STOCKS:KEY_I]
[TOGGLE_ZONES:KEY_U]
[TOGGLE_OCCLUSION:KEY_O]
[TOGGLE_CREATURE_MOODS:KEY_M]
[TOGGLE_CREATURE_PROFS:KEY_P]
[TOGGLE_CREATURE_JOBS:KEY_J]
[TOGGLE_CREATURE_NAMES:KEY_N]
[CHOP_WALLS:KEY_C]
[CYCLE_TRACKING_MODE:KEY_F]
[RESET_VIEW_OFFSET:KEY_Z]
[DECR_SEGMENT_Z:KEY_1]
[INCR_SEGMENT_Z:KEY_2]
[TOGGLE_SINGLE_LAYER:KEY_S]
[TOGGLE_SHADE_HIDDEN_TILES:KEY_B]
[TOGGLE_SHOW_HIDDEN_TILES:KEY_H]
[TOGGLE_OSD:KEYF_2]
[TOGGLE_KEYBINDS:KEYS_SLASH]
[INCR_ZOOM:KEYS_FULLSTOP]
[DECR_ZOOM:KEYS_COMMA]
[SCREENSHOT:KEYF_5]

220 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

[INCR_RELOAD_TIME:KEYPAD_PLUS]
[DECR_RELOAD_TIME:KEYPAD_MINUS]
[CREDITS:KEYF_9]

[DECR_Y:KEYS_UP*]
[INCR_Y:KEYS_DOWN*]
[DECR_X:KEYS_LEFT*]
[INCR_X:KEYS_RIGHT*]
[DECR_Z:KEYS_PGDN:KEY_9]
[INCR_Z:KEYS_PGUP:KEY_0]

Known Issues

If Stonesense gives an error saying that it can’t load creatures/large_256/*.png, your video card cannot handle
the high detail sprites used. Either open creatures/init.txt and remove the line containing that folder, or use these
smaller sprites.

Stonesense requires working graphics acceleration, and we recommend at least a dual core CPU to avoid slowing down
your game of DF.

Useful links

• Official Stonesense thread for feedback, questions, requests or bug reports

• Screenshots thread

• Main wiki page

• How to add content

• Stonesense on Github

5.6.227 strangemood

Tags: fort | armok | units

Command: strangemood

Trigger a strange mood.

5.6. All DFHack tools alphabetically 221

https://dffd.bay12games.com/file.php?id=6096
https://dffd.bay12games.com/file.php?id=6096
http://www.bay12forums.com/smf/index.php?topic=106497
http://www.bay12forums.com/smf/index.php?topic=48172
https://dwarffortresswiki.org/Utility:Stonesense
https://dwarffortresswiki.org/Utility:Stonesense/Adding_Content
https://github.com/DFHack/stonesense

DFHack Documentation, Release 50.11-r4

Usage

strangemood [<options>]

Example

strangemood --force --unit --type secretive --skill armorsmith Trigger a strange mood for the se-
lected unit that will cause them to become a legendary armorsmith.

Options

--force Ignore normal strange mood preconditions (no recent mood, minimum moodable population, artifact limit
not reached, etc.).

--unit Make the strange mood strike the selected unit instead of picking one randomly. Unit eligibility is still enforced
(unless -force is also specified).

--type <type> Force the mood to be of a particular type instead of choosing randomly based on happiness. Valid
values are “fey”, “secretive”, “possessed”, “fell”, and “macabre”.

--skill <skill> Force the mood to use a specific skill instead of choosing the highest moodable skill. Valid values
are “miner”, “carpenter”, “engraver”, “mason”, “tanner”, “weaver”, “clothier”, “weaponsmith”, “armorsmith”,
“metalsmith”, “gemcutter”, “gemsetter”, “woodcrafter”, “stonecrafter”, “metalcrafter”, “glassmaker”, “leather-
worker”, “bonecarver”, “bowyer”, and “mechanic”.

Known limitations: if the selected unit is currently performing a job, the mood will not be triggered.

5.6.228 stripcaged

Tags: fort | productivity | items

Command: stripcaged

Remove items from caged prisoners.

This tool helps with the tedious task of going through all your cages and marking the items inside for dumping. This
lets you get leftover seeds out of cages after you tamed the animals inside. The most popular use, though, is to strip the
weapons and armor from caged prisoners. After you run stripcaged, your dwarves will come and take the items to
the garbage dump, leaving your cages clean and your prisoners stripped bare.

If you don’t want to wait for your dwarves to dump all the items, you can use autodump to speed the process along.

222 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

stripcaged list
stripcaged items|weapons|armor|all [here|<cage id> ...] [<options>]

Examples

stripcaged list Display a list of all cages and their item contents.

stripcaged all Dump all items in all cages, equipped by a creature or not.

stripcaged items Dump loose items in all cages, such as seeds left over from animal training.

stripcaged weapons Dump weapons equipped by caged creatures.

stripcaged armor here --skip-forbidden Dumps unforbidden armor equipped by the caged creature in the
selected cage.

stripcaged all 25321 34228 Dumps all items out of the specified cages.

stripcaged items here --include-pets --include-vermin Dumps loose items in the selected cage, includ-
ing any tamed/untamed vermin.

Options

--include-pets, --include-vermin Live tame (pets) and untamed vermin are considered items by the game. They
are normally excluded from dumping since that risks them escaping or dying from your cats. Use these options
to dump them anyway.

-f, --skip-forbidden Items to be marked for dumping are unforbidden by default. Use this option to instead only
act on unforbidden items, and leave forbidden items forbidden. This allows you to, for example, manually un-
forbid high-value items from the stocks menu (like steel) and then have stripcaged just act on the unforbidden
items.

5.6.229 superdwarf

Tags: fort | armok | units

Command: superdwarf

Make a dwarf supernaturally speedy.

Select a dwarf in-game and run this tool to make them super fast. They will complete tasks instantly and never need to
rest.

Sets each action timer every tick to 1, effectively giving all actions such as work, movement, combat, etc. no cooldown.

5.6. All DFHack tools alphabetically 223

DFHack Documentation, Release 50.11-r4

Usage

superdwarf add Give superspeed to selected creature.

superdwarf add <ID> Give superspeed to a creature by its unit ID.

superdwarf all Give superspeed to all of your citizens.

superdwarf del Remove superspeed from selected creature.

superdwarf del <ID> Remove superspeed to a creature by its unit ID.

superdwarf clear Remove superspeed from all creatures.

superdwarf list List creatures with superspeed.

5.6.230 suspend

Tags: fort | productivity | jobs

Command: suspend

Suspends building construction jobs.

This tool will suspend jobs. It can either suspend all the current jobs, or only construction jobs that are likely to block
other jobs. When building walls, it’s common that wall corners get stuck because dwarves build the two adjacent walls
before the corner. The --onlyblocking option will only suspend jobs that can potentially lead to this situation.

See suspendmanager in gui/control-panel to automatically suspend and unsuspend jobs.

Usage

suspend

Options

-b, --onlyblocking Only suspend jobs that are likely to block other jobs.

Note: --onlyblocking does not check pathing (which would be very expensive); it only looks at immediate neigh-
bours. As such, it is possible that this tool will miss suspending some jobs that prevent access to other farther away
jobs, for example when building a large rectangle of solid walls.

224 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.231 suspendmanager

Tags: fort | auto | jobs

Command: suspendmanager

Intelligently suspend and unsuspend jobs.

This tool will watch your active jobs and:

• unsuspend jobs that have become suspended due to inaccessible materials, items temporarily in the way, or
worker dwarves getting scared by wildlife

• suspend most construction jobs that would prevent a dwarf from reaching another construction job, such
as when building a wall corner or high walls

• suspend construction jobs on top of a smoothing, engraving or track carving designation. This prevents the
construction job from being completed first, which would erase the designation.

• suspend construction jobs that would cave in immediately on completion, such as when building walls or floors
next to grates/bars.

Usage

suspendmanager Display the current status

suspendmanager (enable|disable) Enable or disable suspendmanager

suspendmanager set preventblocking (true|false) Prevent construction jobs from blocking each others
(enabled by default). See suspend.

5.6.232 sync-windmills

Tags: fort | buildings

Command: sync-windmills

Synchronize or randomize windmill movement.

Windmills cycle between two graphical states to simulate movement. This is the polarity of the appearance. Each
windmill also has a timer that controls when the windmill switches polarity. Each windmill’s timer starts from zero at
the instant that it is built, so two different windmills will rarely have exactly the same state. This tool can adjust the
alignment of polarity and timers across your active windmills to your preference.

Note that this tool will not affect windmills that have just been activated and are still rotating to adjust to the regional
wind direction.

5.6. All DFHack tools alphabetically 225

DFHack Documentation, Release 50.11-r4

Usage

sync-windmills [<options>]

Examples

sync-windmills Synchronize movement of all active windmills.

sync-windmills -r Randomize the movement of all active windmills.

Options

-q, --quiet Suppress non-error console output.

-r, --randomize Randomize the polarity and timer value for all windmills.

-t, --timing-only Randomize windmill polarity, but synchronize windmill timers.

5.6.233 tags

Tags: dfhack

Command: tags

List the categories of DFHack tools or the tools with those tags.

DFHack tools are labeled with tags so you can find groups of related commands. This builtin command lists the tags
that you can explore, or, if called with the name of a tag, lists the tools that have that tag.

Usage

tags List the categories of DFHack tools and a description of those categories.

tags <tag> List the tools that are tagged with the given tag.

Examples

tags List the defined tags.

tags design List all the tools that have the design tag.

226 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.234 tailor

Tags: fort | auto | workorders

Command: tailor

Automatically keep your dwarves in fresh clothing.

Once a day, this plugin will scan the clothing situation in the fort. If there are fresh cloths available, dwarves who are
wearing tattered clothing will have their rags confiscated (in the same manner as the cleanowned tool) so that they’ll
reequip with replacement clothes.

If there are not enough clothes available, manager orders will be generated to manufacture some more. tailor will
intelligently create orders using raw materials that you have on hand in the fort. For example, if you have lots of silk,
but no cloth, then tailor will order only silk clothing to be made.

Usage

enable tailor
tailor [status]
tailor now
tailor materials <material> [<material> ...]

By default, tailor will prefer using materials in this order:

silk cloth yarn leather

but you can use the tailor materials command to restrict which materials are used, and in what order. tailor
supports adamantine cloth (using the keyword adamantine) but does not use it by default, as most players find adaman-
tine too precious to routinely make into cloth. tailor does not support modded “cloth” types which utilize custom
reactions to making clothing out of those cloth types.

Examples

enable tailor Start replacing tattered clothes with default settings.

tailor now Run a scan and order cycle right now, regardless of whether the plugin is enabled.

tailor materials silk cloth yarn Restrict the materials used for automatically manufacturing clothing to silk,
cloth, and yarn, preferred in that order. This saves leather for other uses, like making armor.

Note

The reason for the limitation on modded cloth-like materials is because custom reactions do not support the in-game
mechanic which allows a manager order to specify a different size for clothing items. This mechanic only works for
reactions that use the default make-clothing or make-armor reactions, and is a limitation of the game itself.

5.6. All DFHack tools alphabetically 227

DFHack Documentation, Release 50.11-r4

5.6.235 tame

Tags: fort | armok | animals

Command: tame

Tame and train animals.

Instantly set the training level of the selected animal or tame them completely.

Usage

tame --read
tame --set <level>

Examples

tame --read Show the training level for the selected animal.

tame --set 7 Tame the selected animal.

tame --set 8 Make the selected animal revert to a wild state.

Levels

The level numbers have the following definitions:

0 semi-wild

1 trained

2 well-trained

3 skillfully trained

4 expertly trained

5 exceptionally trained

6 masterfully trained

7 tame

8 wild

9 wild

228 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.236 teleport

Tags: fort | armok | units

Command: teleport

Teleport a unit anywhere.

This tool teleports any unit, friendly or hostile, to somewhere else on the map.

Note: gui/teleport is an in-game UI for this script.

Usage

teleport [--unit <id>] [-x <x> -y <y> -z <z>]

When teleporting, if no unit id is specified, the unit under the cursor is used. If no coordinates are specified, then the
coordinates under the cursor are used. Either the unit id or the coordinates must be specified for this command to be
useful.

You can use the cprobe command to discover a unit’s id, or the position command to discover the map coordinates
under the cursor.

Examples

Discover the id of the unit beneath the cursor and then teleport that unit to a new cursor position:

cprobe
teleport --unit 2342

Discover the coordinates under the cursor, then teleport a selected unit to that position:

position
teleport -x 34 -y 20 -z 163

Teleport unit 1234 to 56,115,26:

teleport -unit 1234 -x 56 -y 115 -z 26

5.6. All DFHack tools alphabetically 229

DFHack Documentation, Release 50.11-r4

5.6.237 tidlers

Tags: unavailable

Command: tidlers

Change where the idlers count is displayed.

This tool simply cycles the idlers count among the possible positions where the idlers count can be placed, including
making it disappear entirely.

Usage

tidlers

5.6.238 tiletypes

Tags: adventure | fort | armok | map

Command: tiletypes

Paints tiles of specified types onto the map.

Command: tiletypes-command

Run tiletypes commands.

Command: tiletypes-here

Paint map tiles starting from the cursor.

Command: tiletypes-here-point

Paint the map tile under the cursor.

You can use the probe command to discover properties of existing tiles that you’d like to copy. If you accidentally paint
over a vein that you want back, fixveins may help.

The tool works with a brush, a filter, and a paint specification. The brush determines the shape of the area to affect, the
filter selects which tiles to affect, and the paint specification determines how to affect those tiles.

Both paint and filter can have many different properties, like general shape (WALL, FLOOR, etc.), general material
(SOIL, STONE, MINERAL, etc.), specific materials (MICROCLINE, MARBLE, etc.), state of ‘designated’, ‘hidden’,
and ‘light’ flags, and many others.

230 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

tiletypes Start the interactive terminal prompt where you can iteratively modify the brush, filter, and paint specifi-
cation and get help on syntax elements. When in the interactive prompt, type quit to get out.

tiletypes-command <command> [; <command> ...] Run tiletypes commands from outside the interactive
prompt. You can use this form from hotkeys or dfhack-run to set specific tiletypes properties. You can run
multiple commands on one line by separating them with ; – that’s a semicolon with a space on either side.
See the Commands section below for an overview of commands you can run.

tiletypes-here [<options>] Apply the current options set in tiletypes and/or tiletypes-command at the
in-game cursor position, including the brush. Can be used from a hotkey.

tiletypes-here-point [<options>] Apply the current options set in tiletypes and/or tiletypes-command
at the in-game cursor position to a single tile (ignoring brush settings). Can be used from a hotkey.

Examples

tiletypes-command filter material STONE ; f shape WALL ; paint shape FLOOR Turn all stone walls
into floors, preserving the material.

tiletypes-command p any ; p s wall ; p sp normal Clear the paint specification and set it to unsmoothed
walls.

tiletypes-command f any ; p stone marble ; p sh wall ; p sp normal ; r 10 10 Prepare to paint
a 10x10 area of marble walls, ready for harvesting for flux.

tiletypes-command f any ; f designated 1 ; p any ; p hidden 0 ; block ; run Set the filter to
match designated tiles, the paint specification to unhide them, and the brush to cover all tiles in the current
block. Then run itThis is useful for unhiding tiles you wish to dig out of an aquifer so the game doesn’t pause
and undesignate adjacent tiles every time a new damp tile is “discovered”.

Options

-c, --cursor <x>,<y>,<z> Use the specified map coordinates instead of the current cursor position. If this option
is specified, then an active game map cursor is not necessary.

-q, --quiet Suppress non-error status output.

Commands

Commands can set the brush or modify the filter or paint options. When at the interactive tiletypes> prompt, the
command run (or hitting enter on an empty line) will apply the current filter and paint specification with the current
brush at the current cursor position. The command quit will exit.

5.6. All DFHack tools alphabetically 231

DFHack Documentation, Release 50.11-r4

Brush commands

p, point Use the point brush.

r, range <width> <height> [<depth>] Use the range brush with the specified width, height, and depth. If not
specified, depth is 1, meaning just the current z-level. The range starts at the position of the cursor and goes to
the east, south and up (towards the sky).

block Use the block brush, which includes all tiles in the 16x16 block that includes the cursor.

column Use the column brush, which ranges from the current cursor position to the first solid tile above it. This is
useful for filling the empty space in a cavern.

Filter and paint commands

The general forms for modifying the filter or paint specification are:

f, filter <options> Modify the filter.

p, paint <options> Modify the paint specification.

The options identify the property of the tile and the value of that property:

any Reset to default (no filter/paint).

s, sh, shape <shape> Tile shape information. Run :lua @df.tiletype_shape to see valid shapes, or use a shape
of any to clear the current setting.

m, mat, material <material> Tile material information. Run :lua @df.tiletype_material to see valid mate-
rials, or use a material of any to clear the current setting.

sp, special <special> Tile special information. Run :lua @df.tiletype_special to see valid special values,
or use a special value of any to clear the current setting.

v, var, variant <variant> Tile variant information. Run :lua @df.tiletype_variant to see valid variant val-
ues, or use a variant value of any to clear the current setting.

a, all [<shape>] [<material>] [<special>] [<variant>] Set values for any or all of shape, material, spe-
cial, and/or variant, in any order.

d, designated 0|1 Only useful for the filter, since you can’t “paint” designations.

h, hidden 0|1 Whether a tile is hidden. A value of 0 means “revealed”.

l, light 0|1 Whether a tile is marked as “Light”. A value of 0 means “dark”.

st, subterranean 0|1 Whether a tile is marked as “Subterranean”.

sv, skyview 0|1 Whether a tile is marked as “Outside”. A value of 0 means “inside”.

aqua, aquifer 0|1 Whether a tile is marked as an aquifer.

stone <stone type> Set a particular type of stone, creating veins as required. To see a list of valid stone types,
run: :lua for _,mat in ipairs(df.global.world.raws.inorganics) do if mat.material.
flags.IS_STONE and not mat.material.flags.NO_STONE_STOCKPILE then print(mat.id) end
end Note that this command paints under ice and constructions, instead of overwriting them. Also note that
specifying a specific stone will cancel out anything you have specified for material, and vice-versa.

veintype <vein type> Set a particular vein type for the stone option to take advantage of the different boulder
drop rates. To see valid vein types, run :lua @df.inclusion_type, or use vein type CLUSTER to reset to the
default.

232 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.239 timestream

Tags: unavailable

Command: timestream

Fix FPS death.

Do you remember when you first start a new fort, your initial 7 dwarves zip around the screen and get things done so
quickly? As a player, you never had to wait for your initial dwarves to move across the map. Don’t you wish that your
fort of 200 dwarves could be as zippy? This tool can help.

timestream keeps the game running quickly by dynamically adjusting the calendar speed relative to the frames per
second that your computer can support. Your dwarves spend the same amount of in-game time to do their tasks, but
the time that you, the player, have to wait for the dwarves to do things speeds up. This means that the dwarves in your
fully developed fort appears as energetic as a newly created one, and mature forts are much more fun to play.

If you just want to change the game calendar speed without adjusting dwarf speed, this tool can do that too. Your
dwarves will just be able to get less/more done per season (depending on whether you speed up or slow down the
calendar).

Usage

timestream --units [--fps <target FPS>] Keep the game running as responsively as it did when it was run-
ning at the given frames per second. Dwarves get the same amount done per game day, but game days go by
faster. If a target FPS is not given, it defaults to 100.

timestream --rate <rate>, timestream --fps <target FPS> Just change the rate of the calendar, without
corresponding adjustments to units. Game responsiveness will not change, but dwarves will be able to get more
(or less) done per game day. A rate of 1 is “normal” calendar speed. Alternately, you can run the calendar at a
rate that it would have moved at while the game was running at the specified frames per second.

Examples

timestream --units Keep the game running as quickly and smoothly as it did when it ran “naturally” at 100 FPS.
This mode makes things much more pleasant for the player without giving any advantage/disadvantage to your
in-game dwarves.

timestream --rate 2 Calendar runs at 2x normal speed and units get half as much done as usual per game day.

timestream --fps 100 Calendar runs at a dynamic speed to simulate 100 FPS. Units get a varying amount of work
done per game day, but will get less and less done as your fort grows and your unadjusted FPS decreases.

timestream --rate 1 Reset everything back to normal.

5.6. All DFHack tools alphabetically 233

DFHack Documentation, Release 50.11-r4

5.6.240 title-folder

Tags: unavailable

Displays the DF folder name in the window title bar.

Usage

enable title-folder

5.6.241 toggle-kbd-cursor

Tags: interface

Command: toggle-kbd-cursor

Toggles the keyboard cursor.

Keybinding: AltK in dwarfmode

This tool simply toggles the keyboard cursor so you can quickly switch it on when you need it. Many other tools, like
autodump, need a keyboard cursor for selecting a target tile. Note that you’ll still need to enter an interface mode where
the keyboard cursor is visible, like mining mode or dumping mode, in order to use the cursor.

Usage

toggle-kbd-cursor

5.6.242 trackstop

Tags: fort | buildings | interface

Command: trackstop

Add dynamic configuration options for track stops.

This script provides 2 overlays that are managed by the overlay framework. The script does nothing when executed.
The trackstop overlay allows the player to change the friction and dump direction of a selected track stop after it has
been constructed. The rollers overlay allows the player to change the roller direction and speed of a selected roller after
it has been constructed.

234 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.243 troubleshoot-item

Tags: fort | inspection | items

Command: troubleshoot-item

Inspect properties of the selected item.

This tool lets you inspect internal properties of the selected item. This is useful for troubleshooting issues such as
dwarves refusing to touch certain items.

Usage

troubleshoot-item

5.6.244 tubefill

Tags: fort | armok | map

Command: tubefill

Replenishes mined-out adamantine.

This tool replaces mined-out tiles of adamantine spires with fresh, undug adamantine walls, ready to be re-harvested.
Empty tiles within the spire that used to contain special gemstones, obsidian, water, or magma will also be replaced
with fresh adamantine. Adamantine spires that were originally hollow will be left hollow. See below for more details.

Usage

tubefill [hollow]

Specify hollow to fill in naturally hollow veins too, but be aware that this will trigger a demon invasion on top of your
miner when you dig into the region that used to be hollow. You have been warned!

5.6.245 twaterlvl

Tags: interface

Command: twaterlvl

Show/hide numeric liquid depth on the map.

You can use this tool to toggle between displaying/not displaying liquid depth as numbers on the map.

5.6. All DFHack tools alphabetically 235

DFHack Documentation, Release 50.11-r4

Usage

twaterlvl

5.6.246 tweak

Tags: unavailable

Command: tweak

A collection of tweaks and bugfixes.

Usage

tweak <command> [disable]

Run the tweak command to run the tweak or enable its effects. For tweaks that have persistent effects, append the
disable keyword to disable them.

One-shot commands:

clear-missing Remove the missing status from the selected unit. This allows engraving slabs for ghostly, but not
yet found, creatures.

clear-ghostly Remove the ghostly status from the selected unit and mark it as dead. This allows getting rid of
bugged ghosts which do not show up in the engraving slab menu at all, even after using clear-missing. It
works, but is potentially very dangerous - so use with care. Probably (almost certainly) it does not have the same
effects like a proper burial. You’ve been warned.

fixmigrant Remove the resident/merchant flag from the selected unit. Intended to fix bugged migrants/traders who
stay at the map edge and don’t enter your fort. Only works for dwarves (or generally the player’s race in modded
games). Do NOT abuse this for ‘real’ caravan merchants (if you really want to kidnap them, use tweak makeown
instead, otherwise they will have their clothes set to forbidden).

makeown Force selected unit to become a member of your fort. Can be abused to grab caravan merchants and escorts,
even if they don’t belong to the player’s race. Foreign sentients (humans, elves) can be put to work, but you
can’t assign rooms to them and they don’t show up in labor management programs (like manipulator or Dwarf
Therapist) because the game treats them like pets. Grabbing draft animals from a caravan can result in weirdness
(animals go insane or berserk and are not flagged as tame), but you are allowed to mark them for slaughter.
Grabbing wagons results in some funny spam, then they are scuttled.

Commands that persist until disabled or DF quits:

adamantine-cloth-wear Prevents adamantine clothing from wearing out while being worn (Bug 6481).

advmode-contained Fixes custom reactions with container inputs in advmode (Bug 6202) in advmode. The issue is
that the screen tries to force you to select the contents separately from the container. This forcefully skips child
reagents.

block-labors Prevents labors that can’t be used from being toggled.

burrow-name-cancel Implements the “back” option when renaming a burrow, which currently does nothing in
vanilla DF (Bug 1518).

236 Chapter 5. DFHack tools

https://www.bay12games.com/dwarves/mantisbt/view.php?id=6481
https://www.bay12games.com/dwarves/mantisbt/view.php?id=6202
https://www.bay12games.com/dwarves/mantisbt/view.php?id=1518

DFHack Documentation, Release 50.11-r4

cage-butcher Adds an option to butcher units when viewing cages with q.

civ-view-agreement Fixes overlapping text on the “view agreement” screen.

condition-material Fixes a crash in the work order condition material list (Bug 9905).

craft-age-wear Fixes crafted items not wearing out over time (Bug 6003). With this tweak, items made from cloth
and leather will gain a level of wear every 20 years.

do-job-now Adds a job priority toggle to the jobs list.

embark-profile-name Allows the use of lowercase letters when saving embark profiles.

eggs-fertile Displays a fertility indicator on nestboxes.

farm-plot-select Adds “Select all” and “Deselect all” options to farm plot menus.

fast-heat Improves temperature update performance by ensuring that 1 degree of item temperature is crossed in no
more than specified number of frames when updating from the environment temperature. This reduces the time
it takes for tweak stable-temp to stop updates again when equilibrium is disturbed.

fast-trade Makes Shift-Down in the Move Goods to Depot and Trade screens toggle the current item (fully, in case
of a stack), and scroll down one line. Shift-Up undoes the last Shift-Down by scrolling up one line and then
toggle the item.

fps-min Fixes the in-game minimum FPS setting (Bug 6277).

hide-priority Adds an option to hide designation priority indicators.

hotkey-clear Adds an option to clear currently-bound hotkeys (in the H menu).

import-priority-category When meeting with a liaison, makes Shift+Left/Right arrow adjust all items in cate-
gory when discussing an import agreement with the liaison.

kitchen-prefs-all Adds an option to toggle cook/brew for all visible items in kitchen preferences.

kitchen-prefs-color Changes color of enabled items to green in kitchen preferences.

kitchen-prefs-empty Fixes a layout issue with empty kitchen tabs (Bug 9000).

max-wheelbarrow Allows assigning more than 3 wheelbarrows to a stockpile.

military-color-assigned Color squad candidates already assigned to other squads in yellow/green to make them
stand out more in the list.

military-stable-assign Preserve list order and cursor position when assigning to squad, i.e. stop the rightmost
list of the Positions page of the military screen from constantly resetting to the top.

nestbox-color Makes built nestboxes use the color of their material.

partial-items Displays percentages on partially-consumed items such as hospital cloth.

pausing-fps-counter Replace fortress mode FPS counter with one that stops counting when paused.

reaction-gloves Fixes reactions to produce gloves in sets with correct handedness (Bug 6273).

shift-8-scroll Gives Shift-8 (or *) priority when scrolling menus, instead of scrolling the map.

stable-cursor Saves the exact cursor position between t/q/k/d/b/etc menus of fortress mode, if the map view is near
enough to its previous position.

stone-status-all Adds an option to toggle the economic status of all stones.

title-start-rename Adds a safe rename option to the title screen “Start Playing” menu.

tradereq-pet-gender Displays pet genders on the trade request screen.

5.6. All DFHack tools alphabetically 237

https://www.bay12games.com/dwarves/mantisbt/view.php?id=9905
https://www.bay12games.com/dwarves/mantisbt/view.php?id=6003
https://www.bay12games.com/dwarves/mantisbt/view.php?id=6277
https://www.bay12games.com/dwarves/mantisbt/view.php?id=9000
https://www.bay12games.com/dwarves/mantisbt/view.php?id=6273

DFHack Documentation, Release 50.11-r4

5.6.247 type

Tags: dfhack

Command: type

Describe how a command is implemented.

DFHack commands can be provided by plugins, scripts, or by the core library itself. The type command can tell you
which is the source of a particular command.

Usage

type <command>

5.6.248 undump-buildings

Tags: unavailable

Command: undump-buildings

Undesignate building base materials for dumping.

If you designate a bunch of tiles in dump mode, all the items on those tiles will be marked for dumping. Unfortunately,
if there are buildings on any of those tiles, the items that were used to build those buildings will also be uselessly and
confusingly marked for dumping.

This tool will scan for buildings that have their construction materials marked for dumping and will unmark them.

Usage

undump-buildings

5.6.249 unforbid

Tags: fort | productivity | items

Command: unforbid

Unforbid all items.

This tool quickly and easily unforbids all items. This is especially useful after a siege to allow cleaning up the mess (or
dumping of caged prisoner’s equipment with stripcaged).

238 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

unforbid all [<options>]

Options

-u, --include-unreachable Allows the tool to unforbid unreachable items.

-q, --quiet Suppress non-error console output.

-X, --include-worn Include worn (X) and tattered (XX) items when unforbidding.

5.6.250 ungeld

Tags: fort | armok | animals

Command: ungeld

Undo gelding for an animal.

This tool will restore an animal’s ability to reproduce after it has been gelded. Also see geld if you’d like to re-geld the
animal.

Usage

ungeld [--unit <id>]

Options

--unit <id> Ungelds the unit with the specified ID. If this option is not specified, the default is to use the currently
selected unit.

5.6.251 uniform-unstick

Tags: unavailable

Command: uniform-unstick

Make military units reevaluate their uniforms.

This tool prompts military units to reevaluate their uniform, making them remove and drop potentially conflicting worn
items.

5.6. All DFHack tools alphabetically 239

DFHack Documentation, Release 50.11-r4

Unlike a “replace clothing” designation, it won’t remove additional clothing if it’s coexisting with a uniform item already
on that body part. It also won’t remove clothing (e.g. shoes, trousers) if the unit has yet to claim an armor item for that
bodypart (e.g. if you’re still manufacturing them).

Uniforms that have no issues are being properly worn will not be affected.

Usage

uniform-unstick [--all] List problems with the uniform for the currently selected unit (or all units).

uniform-unstick [--all] <strategy options> Fix the problems with the unit’s uniform (or all units’ uni-
forms) using the specified strategies.

Examples

uniform-unstick --all --drop --free Fix all issues with uniforms that have only one item per body part (like
all default uniforms).

Strategy options

--drop Force the unit to drop conflicting worn items onto the ground, where they can then be reclaimed in the correct
order.

--free Remove to-equip items from containers or other’s inventories and place them on the ground, ready to be
claimed. This is most useful when someone else is wearing/holding the required items.

5.6.252 unload

Tags: dfhack

Command: unload

Unload a plugin from memory.

Also see load and reload for related actions.

Usage

unload <plugin> [<plugin> ...]
unload -a|--all

You can unload individual named plugins or all plugins at once.

240 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.253 unretire-anyone

Tags: unavailable

Command: unretire-anyone

Adventure as any living historical figure.

This tool allows you to play as any living (or undead) historical figure (except for deities) in adventure mode.

To use, simply run the command at the start of adventure mode character creation. You will be presented with a
searchable list from which you may choose your desired historical figure.

This figure will be added to the “Specific Person” list at the bottom of the creature selection page. They can then be
picked for use as a player character, the same as when regaining control of a retired adventurer.

Usage

unretire-anyone

Options

-d, --dead Enables user to unretire a dead historical figure to play as in adventure mode. For instance, a user may
wish to unretire and then play as a particular megabeast that had died during world-gen.

5.6.254 unsuspend

Tags: fort | productivity | jobs

Command: unsuspend

Unsuspends building construction jobs.

Unsuspends building construction jobs, except for jobs managed by buildingplan and those where water flow is greater
than 1. This allows you to quickly recover if a bunch of jobs were suspended due to the workers getting scared off by
wildlife or items temporarily blocking building sites.

See suspendmanager in gui/control-panel to automatically suspend and unsuspend jobs.

5.6. All DFHack tools alphabetically 241

DFHack Documentation, Release 50.11-r4

Usage

unsuspend

Options

-q, --quiet Disable text output

-s, --skipblocking Don’t unsuspend construction jobs that risk blocking other jobs

Overlay

This script also provides an overlay that is managed by the overlay framework. When the overlay is enabled, an icon
or letter will appear over suspended buildings:

• A clock icon (green P in ASCII mode) indicates that the building is still in planning mode and is waiting on
materials. The buildingplan plugin will unsuspend it for you when those materials become available.

• A white xmeans that the building is maintained suspended by suspendmanager, selecting it will provide a reason
for the suspension

• A yellow x means that the building is suspended. If you don’t have suspendmanager managing suspensions for
you, you can unsuspend it manually or with the unsuspend command.

• A red X means that the building has been re-suspended multiple times. You might need to look into whatever is
preventing the building from being built (e.g. the building material for the building is inaccessible or there is an
in-use item blocking the building site).

Note that in ASCII mode the letter will only appear when the game is paused since it takes up the whole tile and makes
the underlying building invisible. In graphics mode, the icon only covers part of the building and so can always be
visible.

5.6.255 view-item-info

Tags: unavailable

Command: view-item-info

Extend item and unit descriptions with more information.

This tool extends the item or unit description viewscreen with additional information, including a custom description of
each item (when available), and properties such as material statistics, weapon attacks, armor effectiveness, and more.

242 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable view-item-info

Info for modded items

The associated scripts/internal/view-item-info/item-descriptions script supplies custom descriptions of
items. Mods can extend or override the descriptions in that file by supplying a similarly formatted file named raw/
scripts/more-item-descriptions.lua. Both work as sparse lists, so missing items simply go undescribed if not
defined in the fallback.

5.6.256 view-unit-reports

Tags: unavailable

Command: view-unit-reports

Show combat reports for a unit.

Show combat reports specifically for the selected unit. You can select a unit with the cursor in v mode, from the list in
u mode, or from the unit/corpse/splatter list in k mode. You can also select the newest unit with a particular race when
looking at a race-specific blood spatter in k mode.

Usage

view-unit-reports

5.6.257 warn-starving

Tags: fort | animals | units

Command: warn-starving

Report units that are dangerously hungry, thirsty, or drowsy.

If any (live) units are starving, very thirsty, or very drowsy, the game will pause and you’ll get a warning dialog telling
you which units are in danger. This gives you a chance to rescue them (or take them out of their cages) before they die.

You can enable warn-starving notifications in gui/control-panel on the “Maintenance” tab.

5.6. All DFHack tools alphabetically 243

DFHack Documentation, Release 50.11-r4

Usage

warn-starving [all] [sane]

Examples

warn-starving all sane Report on all currently distressed units, excluding insane units that you wouldn’t be able
to save anyway.

Options

all Report on all distressed units, even if they have already been reported. By default, only newly distressed units that
haven’t already been reported are listed.

sane Ignore insane units.

5.6.258 warn-stealers

Tags: unavailable

Command: warn-stealers

Watch for and warn about units that like to steal your stuff.

This script will watch for new units entering the map and will make a zoomable announcement whenever a creature
that can eat food, guzzle drinks, or steal items moves into a revealed location. It will also re-warn about all revealed
stealers when enabled.

Usage

enable warn-stealers

5.6.259 warn-stranded

Tags: fort | units

Command: warn-stranded

Reports citizens that are stranded and can’t reach any other citizens.

If any (live) groups of fort citizens are stranded from the main (largest) group, the game will pause and you’ll get a
warning dialog telling you which citizens are isolated. This gives you a chance to rescue them before they get overly
stressed or start starving.

Each citizen will be put into a group with the other citizens stranded together.

244 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

There is a command line interface that can print status of citizens without pausing or bringing up a window.

The GUI and command-line both also have the ability to ignore citizens so they don’t trigger a pause and window.

You can enable warn-stranded notifications in gui/control-panel on the “Maintenance” tab.

Usage

warn-stranded
warn-stranded status
warn-stranded clear
warn-stranded (ignore|ignoregroup|unignore|unignoregroup) <id>

Examples

warn-stranded Standard command that checks citizens and pops up a warning if any are stranded. Does nothing
when there are no unignored stranded citizens.

warn-stranded status List all stranded citizens and all ignored citizens. Includes citizen unit ids.

warn-stranded clear Clear (unignore) all ignored citizens.

warn-stranded ignore 1 Ignore citizen with unit id 1.

warn-stranded ignoregroup 2 Ignore stranded citizen group 2.

warn-stranded unignore 1 Unignore citizen with unit id 1.

warn-stranded unignoregroup 3 Unignore stranded citizen group 3.

5.6.260 weather

Tags: fort | armok | inspection | map

Command: weather

Change the weather.

This tool allows you to inspect or control the weather.

Usage

weather Print a map of the local weather.

weather clear|rain|snow Change the weather as specified.

5.6. All DFHack tools alphabetically 245

DFHack Documentation, Release 50.11-r4

Examples

weather clear Make it stop raining/snowing.

5.6.261 work-now

Tags: fort | auto | jobs

Command: work-now

Reduce the time that dwarves idle after completing a job.

After finishing a job, dwarves will wander away for a while before picking up a new job. This plugin will automatically
poke them to pick up a new task quicker.

Usage

enable work-now
work-now [status]

5.6.262 workflow

Tags: unavailable

Command: workflow

Manage automated item production rules.

Manage repeat jobs according to stock levels. gui/workflow provides a simple front-end integrated in the game UI.

When the plugin is enabled, it protects all repeat jobs from removal. If they do disappear due to any cause (raw materials
not available, manual removal by the player, etc.), they are immediately re-added to their workshop and suspended.

If any constraints on item amounts are set, repeat jobs that produce that kind of item are automatically suspended and
resumed as the item amount goes above or below the limit.

There is a good amount of overlap between this plugin and the vanilla manager workorders, and both systems have their
advantages. Vanilla manager workorders can be more expressive about when to enqueue jobs. For example, you can
gate the activation of a vanilla workorder based on availability of raw materials, which you cannot do in workflow.
However, workflow is often more convenient for quickly keeping a small stock of various items on hand without having
to configure all the vanilla manager options. Also see the orders plugin for a library of manager orders that may make
managing your stocks even more convenient than workflow can.

246 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

enable workflow Start monitoring for and managing workshop jobs that are set to repeat.

workflow enable|disable drybuckets Enables/disables automatic emptying of abandoned water buckets.

workflow enable|disable auto-melt Enables/disables automatic resumption of repeat melt jobs when there are
objects to melt.

workflow count <constraint-spec> <target> [gap] Set a constraint, counting every stack as 1 item. If a gap
is specified, stocks are allowed to dip that many items below the target before relevant jobs are resumed.

workflow amount <constraint-spec> <target> [gap] Set a constraint, counting all items within stacks. If a
gap is specified, stocks are allowed to dip that many items below the target before relevant jobs are resumed.

workflow unlimit <constraint-spec> Delete a constraint.

workflow unlimit-all Delete all constraints.

workflow jobs List workflow-controlled jobs (if in a workshop, filtered by it).

workflow list List active constraints, and their job counts.

workflow list-commands List active constraints as workflow commands that re-create them; this list can be copied
to a file, and then reloaded using the script built-in command.

Examples

Keep metal bolts within 900-1000, and wood/bone within 150-200:

workflow amount AMMO:ITEM_AMMO_BOLTS/METAL 1000 100
workflow amount AMMO:ITEM_AMMO_BOLTS/WOOD,BONE 200 50

Keep the number of prepared food & drink stacks between 90 and 120:

workflow count FOOD 120 30
workflow count DRINK 120 30

Make sure there are always 25-30 empty bins/barrels/bags:

workflow count BIN 30
workflow count BARREL 30
workflow count BOX/CLOTH,SILK,YARN 30

Make sure there are always 15-20 coal and 25-30 copper bars:

workflow count BAR//COAL 20
workflow count BAR//COPPER 30

Produce 15-20 gold crafts:

workflow count CRAFTS//GOLD 20

Collect 15-20 sand bags and clay boulders:

workflow count POWDER_MISC/SAND 20
workflow count BOULDER/CLAY 20

Make sure there are always 80-100 units of dimple dye:

5.6. All DFHack tools alphabetically 247

DFHack Documentation, Release 50.11-r4

workflow amount POWDER_MISC//MUSHROOM_CUP_DIMPLE:MILL 100 20

Note: In order for this to work, you have to set the material of the PLANT input on the Mill Plants job to MUSH-
ROOM_CUP_DIMPLE using the job item-material command. Otherwise the plugin won’t be able to deduce the output
material.

Maintain 10-100 locally-made crafts of exceptional quality:

workflow count CRAFTS///LOCAL,EXCEPTIONAL 100 90

Constraint format

The constraint spec consists of 4 parts, separated with / characters:

ITEM[:SUBTYPE]/[GENERIC_MAT,...]/[SPECIFIC_MAT:...]/[LOCAL,<quality>]

The first part is mandatory and specifies the item type and subtype, using the raw tokens for items (the same syntax
used for custom reaction inputs). For more information, see this wiki page.

The subsequent parts are optional:

• A generic material spec constrains the item material to one of the hard-coded generic classes, which currently
include:

PLANT WOOD CLOTH SILK LEATHER BONE SHELL SOAP TOOTH HORN PEARL YARN
METAL STONE SAND GLASS CLAY MILK

• A specific material spec chooses the material exactly, using the raw syntax for reaction input materials, e.g.
INORGANIC:IRON, although for convenience it also allows just IRON, or ACACIA:WOOD etc. See the link above
for more details on the unabbreviated raw syntax.

• A comma-separated list of miscellaneous flags, which currently can be used to ignore imported items (LOCAL)
or items below a certain quality (1-5, with 5 being masterwork).

5.6.263 workorder

Tags: fort | productivity | workorders

Command: workorder

Create manager workorders.

This tool can enqueue work orders as if you were using the j-m-q interface. It also has some convenience functions,
such as automatically counting how many creatures can be milked or sheared for MilkCreature or ShearCreature
jobs. It can also take existing orders into account to ensure that the quantity produced by all enqueued workorders for
a specified job type totals to a specified amount.

248 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Material_token

DFHack Documentation, Release 50.11-r4

Usage

workorder -l <filter>, workorder --listtypes <filter> Print all values for relevant DF types (job_type,
item_type etc.) that will be useful for assembling the workorder json. You can pass a filter to only print types
that match a pattern.

workorder <jobtype> [<amount>] The job type is the number or name from df.job_type and the amount is
the quantity for the generated workorder. The amount can be omitted for MilkCreature and ShearCreature
jobs, and workorder will scan your pets for milkable or shearable creatures and fill the correct number in. Note
that this syntax cannot specify the material of the item produced by the job. If you need more specificity, you
can describe the job in JSON format (see the next two command forms).

workorder <json> Create a workorder whose properties are specified in the given JSON. See below for examples
and the complete format specification.

workorder --file <filename> Loads the json representation of a workorder from the specified file in
dfhack-config/workorder/.

Examples

workorder MakeCharcoal 100 Enqueue a workorder to make 100 bars of charcoal.

workorder MakeTable 10 Enqueue a workorder to make 10 tables of unspecified material. The material will be
determined by which workshop ends up picking up the job.

repeat --name autoShearCreature --time 14 --timeUnits days --command [workorder ShearCreature]
Automatically shear any pets that are ready to be sheared.

repeat --name autoMilkCreature --time 14 --timeUnits days --command [workorder "{\"job\":\"MilkCreature\",\"item_conditions\":[{\"condition\":\"AtLeast\",\"value\":5,\"flags\":[\"empty\"],\"item_type\":\"BUCKET\"}]}"]
Automatically milk any pets that are ready to be milked (but only if there are at least 5 empty buckets available
to receive the milk).

workorder "{\"job\":\"EncrustWithGems\",\"item_category\":[\"finished_goods\"],\"amount_total\":5}"
Add an order to EncrustWithGems five finished_goods using any material (since a material is not specified).

JSON string specification

The JSON representation of a workorder must be a valid Lua string literal (note usage of \ in the JSON examples
above). You can export existing manager orders with the orders command and look at the created .json file in
dfhack-config/orders to see how a particular order can be represented.

Note that, unlike orders, workorder is meant for dynamically creating new orders, so even if fields like amount_left,
is_active or is_validated are specified in the JSON, they will be ignored in the generated orders.

Also:

• You only need to fill in id if it is used for order conditions

• If frequency is unspecified, it defaults to OneTime

• The amount_total field can be missing (only valid for MilkCreature or ShearCreature jobs) or it can be
raw Lua code called as load(code)(order, orders) that must return an integer.

A custom field __reduce_amount can be set if existing open orders should be taken into account. The first matching
existing order will be modified to have the desired quantity remaining. If the desired quantity is negative, the existing
order will be removed. An empty amount_total implies "__reduce_amount": true.

5.6. All DFHack tools alphabetically 249

DFHack Documentation, Release 50.11-r4

5.6.264 xlsxreader

Tags: dev

Provides a Lua API for reading xlsx files.

See xlsxreader for details.

5.6.265 zone

Tags: unavailable

Command: zone

Manage activity zones, cages, and the animals therein.

Usage

enable zone Add helpful filters to the pen/pasture sidebar menu (e.g. show only caged grazers).

zone set Set zone or cage under cursor as default for future assign or tocages commands.

zone assign [<zone id>] [<filter>] Assign unit(s) to the zone with the given ID, or to the most recent pen or
pit marked with the set command. If no filters are set, then a unit must be selected in the in-game ui.

zone unassign [<filter>] Unassign selected creature from its zone.

zone nick <nickname> [<filter>] Assign the given nickname to the selected animal or the animals matched by
the given filter.

zone remnick [<filter>] Remove nicknames from the selected animal or the animals matched by the given filter.

zone enumnick <nickname prefix> [<filter>] Assign enumerated nicknames (e.g. “Hen 1”, “Hen 2”. . .).

zone tocages [<filter>] Assign unit(s) to cages that have been built inside the pasture selected with the set
command.

zone uinfo [<filter>] Print info about unit(s). If no filters are set, then a unit must be selected in the in-game ui.

zone zinfo Print info about the zone(s) and any buildings under the cursor.

Examples

Before any assign or tocages examples can be used, you must first move the cursor over a pen/pasture or pit zone
and run zone set to select the zone.

zone assign all own ALPACA minage 3 maxage 10 Assign all of your alpacas who are between 3 and 10 years
old to the selected pasture.

zone assign all own caged grazer nick ineedgrass Assign all of your grazers who are sitting in cages on
stockpiles (e.g. after buying them from merchants) to the selected pasture and give them the nickname ‘ineed-
grass’.

250 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

zone assign all own not grazer not race CAT Assign all of your animals who are not grazers (excluding
cats) to the selected pasture. ” zone assign all own milkable not grazern”

zone assign all own female milkable not grazer Assign all of your non-grazing milkable creatures to the
selected pasture or cage.

zone assign all own race DWARF maxage 2 Throw all useless kids into a pit :) They’ll be fine I’m sure.

zone nick donttouchme Nicknames all units in the current default zone or cage to ‘donttouchme’. This is especially
useful for protecting a group of animals assigned to a pasture or cage from being “processed” by autobutcher.

zone tocages count 50 own tame male not grazer Stuff up to 50 of your tame male animals who are not
grazers into cages built on the current default zone.

Filters

all Process all units.

count <n> Process only up to n units.

unassigned Not assigned to zone, chain or built cage.

minage <years> Minimum age. Must be followed by a number.

maxage <years> Maximum age. Must be followed by a number.

not Negates the next filter keyword. All of the keywords documented below are negatable.

race Must be followed by a race RAW ID (e.g. BIRD_TURKEY, ALPACA, etc).

caged In a built cage.

own From own civilization. You’ll usually want to include this filter.

war Trained war creature.

hunting Trained hunting creature.

tamed Creature is tame.

trained Creature is trained. Finds war/hunting creatures as well as creatures who have a training level
greater than ‘domesticated’. If you want to specifically search for war/hunting creatures use war or
hunting.

trainablewar Creature can be trained for war (and is not already trained for war/hunt).

trainablehunt Creature can be trained for hunting (and is not already trained for war/hunt).

male Creature is male.

female Creature is female.

egglayer Race lays eggs. If you want units who actually lay eggs, also specify female.

grazer Race is a grazer.

milkable Race is milkable. If you want units who actually can be milked, also specify female.

merchant Is a merchant / belongs to a merchant. Should only be used for pitting or slaughtering, not for
stealing animals.

5.6. All DFHack tools alphabetically 251

DFHack Documentation, Release 50.11-r4

Usage with single units

One convenient way to use the zone tool is to bind the commands zone assign and zone set to hotkeys. Place the
in-game cursor over a pen/pasture or pit and use the zone set hotkey to mark it. Then you can select units on the map
(in ‘v’ or ‘k’ mode), in the unit list or from inside cages and use the zone assign hotkey to assign them to their new
home. Allows pitting your own dwarves, by the way.

Matching with filters

All filters can be used together with the assign and tocages commands.

Note that it’s not possible to reassign units who are inside built cages or chained, though this likely won’t matter because
if you have gone to the trouble of creating a zoo or chaining a creature, you probably wouldn’t want them reassigned
anyways. Also, zone will avoid caging owned pets because the owner uncages them after a while which results in
infinite hauling back and forth.

Most filters should include an own element (which implies tame) unless you want to use zone assign for pitting
hostiles. The own filter ignores dwarves unless you explicitly specify race DWARF (so it’s safe to use assign all
own to one big pasture if you want to have all your animals in the same place).

The egglayer and milkable filters should be used together with female unless you want the males of the race
included. Merchants and their animals are ignored unless you specify merchant (pitting them should be no problem,
but stealing and pasturing their animals is not a good idea since currently they are not properly added to your own
stocks; slaughtering them should work).

Most filters can be negated (e.g. not grazer -> race is not a grazer).

Mass-renaming

Using the nick command, you can set the same nickname for multiple units. If used without assign, all, or count,
it will rename all units in the current default target zone. Combined with assign, all, or count (and likely further
optional filters) it will rename units matching the filter conditions.

Cage zones

The tocages command assigns units to a set of cages, for example a room next to your butcher shop(s). Units will be
spread evenly among available cages to optimize hauling to and butchering from them. For this to work you need to
build cages and then place one pen/pasture activity zone above them, covering all cages you want to use. Then use zone
set (like with assign) and run zone tocages <filter>. tocages can be used together with nick or remnick to
adjust nicknames while assigning to cages.

Overlay

Advanced unit selection is available via an overlay widget that appears when you select a cage, restraint, pasture zone,
or pit/pond zone.

In the window that pops up when you click the hotkey hint or hit the hotkey on your keyboard, you can:

• search for units by name

• sort or filter by status (Assigned here, Pastured elsewhere, On restraint, On display in cage, In movable
cage, or Roaming)

• sort or filter by disposition (Pet, Domesticated, Partially trained, Wild (trainable), Wild (untrainable), or
Hostile)

252 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• sort by gender

• sort by name

• filter by whether the unit lays eggs

• filter by whether the unit needs a grazing area

The window is fully navigatable via keyboard or mouse. Hit Enter or click on a unit to assign/unassign it to the currently
selected zone or building. Shift click to assign/unassign a range of units.

You can also keep the window open and click around on different cages, restraints, pastures, or pit/ponds, so you can
manage multiple buildings/zones without having to close and reopen the window.

Just like all other overlays, you can disable this one in gui/control-panel on the Overlays tab if you don’t want the option
of using it.

5.6.266 devel/all-bob

Tags: dev

Command: devel/all-bob

Changes the first name of all units to “Bob”..

Useful for testing modtools/interaction-trigger events.

Usage

devel/all-bob

5.6.267 devel/annc-monitor

Tags: dev

Command: devel/annc-monitor

Track announcements and reports and echo them to the console.

This tool monitors announcements and reports and echoes their contents to the console.

5.6. All DFHack tools alphabetically 253

DFHack Documentation, Release 50.11-r4

Usage

enable devel/annc-monitor
devel/annc-monitor report enable|disable

Combat report monitoring is disabled by default.

5.6.268 devel/block-borders

Tags: unavailable

Command: devel/block-borders

Outline map blocks on the map screen.

This tool displays an overlay that highlights the borders of map blocks. See Maps API for details on map blocks.

Usage

devel/block-borders

5.6.269 devel/check-other-ids

Tags: dev

Command: devel/check-other-ids

Verify that game entities are referenced by the correct vectors.

This script runs through all world.items.other and world.buildings.other vectors and verifies that the items
contained in them have the expected types.

Usage

devel/check-other-ids

254 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.270 devel/check-release

Tags: dev

Command: devel/check-release

Perform basic checks for DFHack release readiness.

This script is run as part of the DFHack release process to check that release flags are properly set.

Usage

devel/check-release

5.6.271 devel/clear-script-env

Tags: dev

Command: devel/clear-script-env

Clear a lua script environment.

This tool can clear the environment of the specified lua script(s). This is useful during development since if you remove
a global function, an old version of the function will stick around in the environment until it is cleared.

Usage

devel/clear-script-env <script name> [<script name> ...]

Example

devel/clear-script-env gui/quickfort Clear the gui/quickfort global environment, resetting state that nor-
mally persists from run to run.

5.6.272 devel/click-monitor

Tags: dev

Command: devel/click-monitor

Displays the grid coordinates of mouse clicks in the console.

5.6. All DFHack tools alphabetically 255

DFHack Documentation, Release 50.11-r4

This tool will watch for mouse activity and print relevant information to the console. Useful for plugin/script develop-
ment.

Usage

enable devel/click-monitor

5.6.273 devel/cmptiles

Tags: unavailable

Command: devel/cmptiles

List or compare two tiletype material groups.

Lists and/or compares two tiletype material groups. You can see the list of valid material groups by running:

:lua @df.tiletype_material

Usage

devel/cmptiles material1 [material2]

5.6.274 devel/dump-offsets

Tags: dev

Command: devel/dump-offsets

Dump the contents of the table of global addresses.

Warning: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

Running this script on a new DF version will NOT MAKE IT RUN CORRECTLY if any data structures changed,
thus possibly leading to CRASHES AND/OR PERMANENT SAVE CORRUPTION.

This script dumps the contents of the table of global addresses (new in 0.44.01).

256 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/dump-offsets all|<global var>

Passing global names as arguments calls setAddress() to set those globals’ addresses in-game. Passing “all” does
this for all globals.

5.6.275 devel/dump-rpc

Tags: dev

Command: devel/dump-rpc

Dump RPC endpoint info.

Write RPC endpoint information to the specified file.

Usage

devel/dump-rpc <filename>

5.6.276 devel/eventful-client

Tags: dev

Command: devel/eventful-client

Simple client for testing event callbacks.

You can use this tool to discover when specific events fire and to test when callbacks are called for different callback
frequency settings.

Note this script does not handle the eventful reaction or workshop events.

Usage

devel/eventful-client help
devel/eventful-client add <event type> <frequency>
devel/eventful-client add all <frequency>
devel/eventful-client list
devel/eventful-client clear

help shows this help text and a list of valid event types

add add a handler for the named event type at the requested tick frequency

5.6. All DFHack tools alphabetically 257

DFHack Documentation, Release 50.11-r4

list lists active handlers and their metadata

clear unregisters all handlers

5.6.277 devel/export-dt-ini

Tags: dev

Command: devel/export-dt-ini

Export memory addresses for Dwarf Therapist configuration.

This tool exports an ini file containing memory addresses for Dwarf Therapist.

Usage

devel/export-dt-ini

5.6.278 devel/find-offsets

Tags: unavailable

Command: devel/find-offsets

Find memory offsets of DF data structures.

Warning: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

Running this script on a new DF version will NOT MAKE IT RUN CORRECTLY if any data structures changed,
thus possibly leading to CRASHES AND/OR PERMANENT SAVE CORRUPTION.

To find the first few globals, you must run this script immediately after loading the game, WITHOUT first loading a
world. The rest expect a loaded save, not a fresh embark. Finding current_weather requires a special save previously
processed with devel/prepare-save on a DF version with working DFHack.

The script expects vanilla game configuration, without any custom tilesets or init file changes. Never unpause the game
unless instructed. When done, quit the game without saving using die.

258 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/find-offsets all|<global names> [nofeed] [nozoom]

• global names to force finding them

• all to force all globals

• nofeed to block automated fake input searches

• nozoom to disable neighboring object heuristics

5.6.279 devel/find-primitive

Tags: dev

Command: devel/find-primitive

Discover memory offsets for new variables.

This tool helps find a primitive variable in DF’s data section, relying on the user to change its value and then scanning
for memory that has changed to that new value. This is similar to devel/find-offsets, but useful for new variables whose
locations are unknown (i.e. they could be part of an existing global).

Usage

devel/find-primitive <data type> val1 val2 [val3...]

where data type is a primitive type (int32_t, uint8_t, long, etc.) and each val is a valid value for that type.

Run devel/find-primitive help for a list of valid data types.

5.6.280 devel/find-twbt

Tags: unavailable

Command: devel/find-twbt

Display the memory offsets of some important TWBT functions.

Finds some TWBT-related offsets - currently just twbt_render_map.

5.6. All DFHack tools alphabetically 259

DFHack Documentation, Release 50.11-r4

Usage

devel/find-twbt

5.6.281 devel/hello-world

Tags: dev

Command: devel/hello-world

A basic GUI example script.

A basic example for testing, or to start your own script from.

Usage

devel/hello-world

5.6.282 devel/inject-raws

Tags: unavailable

Command: devel/inject-raws

Add objects and reactions into an existing world.

WARNING: THIS SCRIPT CAN PERMANENTLY DAMAGE YOUR SAVE.

This script attempts to inject new raw objects into your world. If the injected references do not match the actual edited
raws, your save will refuse to load, or load but crash.

This script can handle reaction, item, and building definitions.

The savegame contains a list of the relevant definition tokens in the right order, but all details are read from raws every
time. This allows just adding stub definitions, and then simply saving and reloading the game.

This is useful enough for modders and some users to justify the danger.

260 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/inject-raws reaction|<building type>|<item type> TOKEN [TOKEN ...]

Example

devel/inject-raws trapcomp ITEM_TRAPCOMP_STEAM_PISTON workshop STEAM_ENGINE MAGMA_STEAM_
→˓ENGINE reaction STOKE_BOILER

5.6.283 devel/inspect-screen

Tags: dev

Command: devel/inspect-screen

Show glyph, color, and texture info for screen and map tiles.

This script pops up a panel that shows all known information about the tile under the mouse cursor. This includes the
displayed character or text for the selected tile and foreground/background color information. All textures associated
with the tile and flags associated with those textures are also displayed.

You can toggle between seeing information for the UI grid tiles or the map tiles. Click on a tile to freeze the displayed
information so you can scroll the information about the tile or move/resize the inspector window without changing the
active tile.

Usage

devel/inspect-screen

5.6.284 devel/kill-hf

Tags: unavailable

Command: devel/kill-hf

Kill a historical figure.

This tool can kill the specified historical figure, even if off-site, or terminate a pregnancy. Useful for working around
Bug 11549.

5.6. All DFHack tools alphabetically 261

https://www.bay12games.com/dwarves/mantisbt/view.php?id=11549

DFHack Documentation, Release 50.11-r4

Usage

devel/kill-hf [-p|--pregnancy] [-n|--dry-run] <histfig_id>

Options

histfig_id The ID of the historical figure to target.

-p, --pregnancy If specified, and if the historical figure is pregnant, terminate the pregnancy instead of killing the
historical figure.

-n, --dry-run If specified, only print the name of the historical figure instead of making any changes.

5.6.285 devel/light

Tags: unavailable

Command: devel/light

Experiment with lighting overlays.

This is an experimental lighting engine for DF, using the rendermax plugin.

Press ~ to recalculate lighting. Press ` to exit.

Usage

devel/light [static]

Pass static to not recalculate lighting when in game.

5.6.286 devel/list-filters

Tags: unavailable

Command: devel/list-filters

List input items for the selected building type.

This tool lists input items for the building that is currently being built. You must be in build mode and have a building
type selected for placement. This is where the filters in lua/dfhack/buildings.lua come from.

262 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/list-filters

5.6.287 devel/lsmem

Tags: dev

Command: devel/lsmem

Print memory ranges of the DF process.

Useful for checking whether a pointer is valid, whether a certain library/plugin is loaded, etc.

Usage

devel/lsmem [<address> ...] [<name|pattern> ...]

Examples

devel/lsmem 0x1234 5678 90ab List any ranges containing the addresses 0x1234, 0x5678, or 0x90ab. Ad-
dresses are interpreted as hex; the 0x prefix is optional.

devel/lsmem dwarf g_src List any ranges corresponding to files matching dwarf or g_src (case-insensitive).

devel/lsmem .+ List any ranges with non-empty filenames. Any Lua patterns are allowed.

5.6.288 devel/lua-example

Tags: unavailable

Command: devel/lua-example

An example lua script.

This is an example Lua script which just reports the number of times it has been called. Useful for testing environment
persistence.

5.6. All DFHack tools alphabetically 263

DFHack Documentation, Release 50.11-r4

5.6.289 devel/luacov

Tags: unavailable

Command: devel/luacov

Lua script coverage report generator.

This script generates a coverage report from collected statistics. By default it reports on every Lua file in all of DFHack.
To filter filenames, specify one or more Lua patterns matching files or directories to be included. Alternately, you can
configure reporting parameters in the .luacov file in your DF directory. See https://keplerproject.github.io/luacov/doc/
modules/luacov.defaults.html for details.

Statistics are cumulative across reports. That is, if you run a report, run a lua script, and then run another report, the
report will include all activity from the first report plus the recently run lua script. Restarting DFHack will clear the
statistics. You can also clear statistics after running a report by passing the –clear flag to this script.

Note that the coverage report will be empty unless you have started DFHack with the
“DFHACK_ENABLE_LUACOV=1” environment variable defined, which enables the coverage monitoring.

Also note that enabling both coverage monitoring and lua profiling via the “profiler” module can produce strange
results. Their interceptor hooks override each other. Usage of the “kill-lua” command will likewise override the luacov
interceptor hook and may prevent coverage statistics from being collected.

Usage

luacov [options] [pattern...]

Examples

devel/luacov Report on all DFHack lua scripts.

devel/luacov -c quickfort Report only on quickfort source files and then clear the stats. This is useful to run
between test runs to see the coverage of your test changes.

devel/luacov quickfort hack/lua Report only on quickfort and DFHack library lua source files.

Options

-c, --clear Remove accumulated metrics after generating the report, ensuring the next report starts from a clean
slate.

264 Chapter 5. DFHack tools

https://keplerproject.github.io/luacov/doc/modules/luacov.defaults.html
https://keplerproject.github.io/luacov/doc/modules/luacov.defaults.html

DFHack Documentation, Release 50.11-r4

5.6.290 devel/modstate-monitor

Tags: dev

Command: devel/modstate-monitor

Display changes in key modifier state.

This tool will show changes in Ctrl, Alt, and Shift modifier states.

Usage

enable devel/modstate-monitor

5.6.291 devel/nuke-items

Tags: unavailable

Command: devel/nuke-items

Deletes all free items in the game.

This tool deletes ALL items not referred to by units, buildings, or jobs. Intended solely for lag investigation.

Usage

devel/nuke-items

5.6.292 devel/pop-screen

Tags: dev | interface

Command: devel/pop-screen

Forcibly closes the current screen.

Running this tool is usually equivalent to pressing Esc (LEAVESCREEN), but will bypass the screen’s input handling.
This is intended primarily for development, if you have created a screen whose input handling throws an error before
it handles Esc (or if you have forgotten to handle Esc entirely).

5.6. All DFHack tools alphabetically 265

DFHack Documentation, Release 50.11-r4

Warning: If you run this script when the current screen does not have a parent, this will cause DF to exit imme-
diately. These screens include:

• The main fortress mode screen (viewscreen_dwarfmodest)

• The main adventure mode screen (viewscreen_dungeonmodest)

• The main legends mode screen (viewscreen_legendsst)

• The title screen (viewscreen_titlest)

Usage

devel/pop-screen

5.6.293 devel/prepare-save

Tags: unavailable

Command: devel/prepare-save

Set internal game state to known values for memory analysis.

Warning: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

This script prepares the current savegame to be used with devel/find-offsets. It CHANGES THE GAME STATE to
predefined values, and initiates an immediate quicksave, thus PERMANENTLY MODIFYING the save.

Usage

devel/prepare-save

5.6.294 devel/print-args

Tags: dev

Command: devel/print-args

Echo parameters to the output.

Prints all the arguments you supply to the script, one per line.

266 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/print-args [<args>]

5.6.295 devel/print-args2

Tags: dev

Command: devel/print-args2

Echo parameters to the output.

Prints all the arguments you supply to the script, one per line, with quotes around them.

Usage

devel/print-args2 [<args>]

5.6.296 devel/print-event

Tags: unavailable

Command: devel/print-event

Show historical events.

This tool displays the description of a historical event.

Usage

devel/print-event --index <num> Displays the historical event at the given index.

devel/print-event --id <id> Displays the historical event by the given id.

5.6.297 devel/query

Tags: dev | inspection

Command: devel/query

Search/print data algorithmically.

5.6. All DFHack tools alphabetically 267

DFHack Documentation, Release 50.11-r4

Query is a useful script for finding and reading values of data structure fields. Players can use it to explore data structures
or list elements of enums that they might need for another command. Developers can even integrate this script into
another script to print data out for a player.

This script takes your data selection (e.g. a data table, unit, item, tile, etc.) and recursively iterates through it, outputting
names and values of what it finds.

As it iterates, you can have it do other things, like search for fields that match a Lua pattern or set the value of specific
fields.

Warning: This script searches recursive data structures. You can, fairly easily, cause an infinite loop. You can
even more easily run a query that simply requires an inordinate amount of time to complete. Set your limits wisely!

Tip: Should the need arise, you can stop devel/query from another shell with kill-lua, e.g. by running dfhack-run
kill-lua from another terminal.

Usage

devel/query <source option> <query options> [<additional options>]

Examples

devel/query --unit --getfield id Prints the id of the selected unit.

devel/query --unit --search STRENGTH --maxdepth 3 Prints out information about the selected unit’s
STRENGTH attribute.

devel/query --unit --search physical_attrs --maxdepth 3 Prints out information about all of the se-
lected unit’s physical attributes.

devel/query --tile --search designation Prints out information about the selected tile’s designation struc-
ture.

devel/query --tile --search "occup.*carv" Prints out information about the carving configuration for the
selected tile.

devel/query --table df --maxdepth 0 List the top-level fields in the df data structure.

devel/query --table df.profession --findvalue FISH Lists the enum values in the df.profession table
that contain the substring FISH.

Source options

--table <identifier> Selects the specified table. You must use dot notation to denote sub-tables, e.g. df.
global.world.

--block Selects the highlighted tile’s block.

--building Selects the highlighted building.

--item Selects the highlighted item.

--job Selects the highlighted job.

268 Chapter 5. DFHack tools

https://www.lua.org/manual/5.3/manual.html#6.4.1

DFHack Documentation, Release 50.11-r4

--plant Selects the highlighted plant.

--tile Selects the highlighted tile’s block, and then uses the tile’s local position to index the 2D data.

--unit Selects the highlighted unit.

--script <script> Selects the specified script (which must support being included with reqscript()).

--json <file> Loads the specified json file as a table to query. The path starts at the DF root directory, e.g. hack/
scripts/dwarf_profiles.json.

Query options

--getfield <field> Gets the specified field from the source.

--search <pattern> [<pattern>] Searches the source for field names with substrings matching any of the spec-
ified patterns.

--findvalue <value> Searches the source for field values matching the specified value.

--maxdepth <value> Limits the field recursion depth (default: 7).

--maxlength <value> Limits the number of items that the script will iterate through in a list (default: 2048).

--excludetypes [a|bfnstu0] Excludes native Lua data types. Single letters correspond to (in order): (a)ll types
listed here, (b)oolean, (f)unction, (n)umber, (s)tring, (t)able, (u)serdata, nil values.

--excludekinds [a|bces] Excludes DF data types. Single letters correspond to (in order): (a)ll types listed here,
(b)itfields, (c)lasses, (e)nums, (s)tructs.

--dumb Disables intelligent checking for recursive data structures (loops) and increases the --maxdepth to 25 if a
value is not already present.

General options

--showpaths Displays the full path of a field instead of indenting.

--setvalue <value> Attempts to set the values of any printed fields. Supported types: boolean, string, integer.

--oneline Reduces output to one line (except with --debugdata) in cases where multiple lines of information is
displayed for a field.

--alignto <value> Specifies the alignment column.

--nopointers Disables printing values which contain memory addresses.

--debug <value> Enables debug log verbosity for entries equal to or less than the value provided (valid values: 0-3).

--debugdata Prints type information under each field.

5.6.298 devel/save-version

Tags: dev

Command: devel/save-version

Display what DF version has handled the current save.

5.6. All DFHack tools alphabetically 269

DFHack Documentation, Release 50.11-r4

This tool displays the DF version that created the game, the most recent DF version that has loaded and saved the game,
and the current DF version.

Usage

devel/save-version

5.6.299 devel/sc

Tags: dev

Command: devel/sc

Scan DF structures for errors.

Size Check: scans structures for invalid vectors, misaligned structures, and unidentified enum values.

Note: This script can take a very long time to complete, and DF may be unresponsive while it is running. You can
use kill-lua to interrupt this script.

Usage

devel/sc Scan world.

devel/sc -all Scan all globals.

devel/sc <expr> Scan the result of the given expression.

5.6.300 devel/scan-vtables

Tags: dev

Command: devel/scan-vtables

Scan for and print likely vtable addresses.

Warning: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

Running this script on a new DF version will NOT MAKE IT RUN CORRECTLY if any data structures changed,
thus possibly leading to CRASHES AND/OR PERMANENT SAVE CORRUPTION.

This script scans for likely vtables in memory pages mapped to the DF executable, and prints them in a format ready
for inclusion in symbols.xml

270 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/scan-vtables

5.6.301 devel/scanitemother

Tags: dev

Command: devel/scanitemother

Display the item lists that the selected item is part of.

When an item is selected in the UI, this tool will list the indices in world.item.other[] where the item appears. For
example, if a piece of good meat is selected in the UI, this tool might output:

IN_PLAY
ANY_GOOD_FOOD
ANY_EDIBLE_RAW
ANY_EDIBLE_CARNIVORE
ANY_EDIBLE_BONECARN
ANY_EDIBLE_VERMIN
ANY_EDIBLE_VERMIN_BOX
ANY_CAN_ROT
ANY_COOKABLE
MEAT

Usage

devel/scanitemother

5.6.302 devel/send-key

Tags: dev | interface

Command: devel/send-key

Deliver key input to a viewscreen.

This tool can send a key to the current screen or to a parent screen. Note that if you are trying to dismiss a screen,
devel/pop-screen may be more useful, particularly if the screen is unresponsive to Esc.

5.6. All DFHack tools alphabetically 271

DFHack Documentation, Release 50.11-r4

Usage

devel/send-key <key> [<depth>]

The key to send is the name of an interface_key (see valid values by running :lua @df.interface_key, looking
in data/init/interface.txt, or by checking df.keybindings.xml in the df-structures repository.

You can optionally specify the depth of the screen that you want to send the key to. 1 corresponds to the current screen’s
parent.

5.6.303 devel/spawn-unit-helper

Tags: dev

Command: devel/spawn-unit-helper

Prepares the game for spawning creatures by switching to arena.

This script initializes game state to allow you to switch to arena mode, spawn creatures, and then switch back to fortress
mode.

Usage

1. Enter the k menu and change mode using rb_eval df.gametype = :DWARF_ARENA

2. Spawn creatures with the normal arena mode UI (c ingame)

3. Revert to forgress mode using rb_eval df.gametype = #{df.gametype.inspect}

4. To convert spawned creatures to livestock, select each one with the v menu, and enter rb_eval df.
unit_find.civ_id = df.ui.civ_id

5.6.304 devel/test-perlin

Tags: unavailable

Command: devel/test-perlin

Generate an image based on perlin noise.

Generates an image using multiple octaves of perlin noise.

272 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

devel/test-perlin <fname.pgm> <density> <expr> [-xy <xyscale>] [-z <zscale>]

The inquisitive will have to inspect the code to determine the meaning of the parameters.

5.6.305 devel/tile-browser

Tags: dev

Command: devel/tile-browser

Browse graphical tile textures by their texpos values.

This script pops up a panel that shows a page of 1000 textures. You can change the starting texpos index with CtrlA
or scan forward or backwards in increments of 1000 with Shift Up/Down.

Textures that take up more than one grid position may have only their upper-left tiles shown. Increase the tile browser
window (drag the bottom right corner to resize) to see larger tiles Note there may be transparent space visible through
the window for tiles that don’t take up the entire allotted space.

Usage

devel/tile-browser

5.6.306 devel/unit-path

Tags: unavailable

Command: devel/unit-path

Inspect where a unit is going and how it’s getting there.

When run with a unit selected, the path that the unit is currently following is highlighted on the map. You can jump
between the unit and the destination tile.

5.6. All DFHack tools alphabetically 273

DFHack Documentation, Release 50.11-r4

Usage

devel/unit-path

5.6.307 devel/visualize-structure

Tags: dev

Command: devel/visualize-structure

Display raw memory of a DF data structure.

Displays the raw memory of a structure, field by field. Useful for checking if structures are aligned.

Usage

devel/visualize-structure <lua expression>

Example

devel/visualize-structure df.global.cursor

5.6.308 devel/watch-minecarts

Tags: unavailable

Command: devel/watch-minecarts

Inspect minecart coordinates and speeds.

When running, this tool will log minecart coordinates and speeds to the console.

Usage

devel/watch-minecarts start|stop

274 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.309 fix/blood-del

Tags: fort | bugfix

Command: fix/blood-del

Removes unusable liquids from caravan manifests.

This fix ensures future caravans won’t bring barrels full of blood, ichor, or goo.

Usage

fix/blood-del

5.6.310 fix/civil-war

Tags: fort | bugfix

Command: fix/civil-war

Removes a civil war.

This script removes a negative relation with your own government (civil war).

If caravans/migrants do not return after fixing the civil war, try running “force Caravan” and trading to increase wealth
exported to parent civ.

Usage

fix/civil-war

5.6.311 fix/corrupt-equipment

Tags: unavailable

Command: fix/corrupt-equipment

Fixes some game crashes caused by corrupt military equipment.

This fix corrects some kinds of corruption that can occur in equipment lists, as in Bug 11014. Run this script at least
every time a squad comes back from a raid.

5.6. All DFHack tools alphabetically 275

https://www.bay12games.com/dwarves/mantisbt/view.php?id=11014

DFHack Documentation, Release 50.11-r4

Usage

fix/corrupt-equipment

Examples

fix/corrupt-equipment Run the fix manually a single time.

repeat --time 100 --timeUnits ticks --command [fix/corrupt-equipment] Automatically run the
fix in the background every 100 ticks so you don’t have to remember to run it manually.

Technical details

There are several types of corruption that have been identified:

1. Items that have been deleted without being removed from the equipment lists

2. Items of the wrong type being stored in the equipment lists

3. Items of the wrong type being assigned to squad members

This script currently only fixes the first two, as they have been linked to the majority of crashes.

Note that in some cases, multiple issues may be present, and may only be present for a short window of time before DF
crashes. To address this, running this script with repeat is recommended.

Running this script with repeat on all saves is not recommended, as it can have overhead (sometimes over 0.1 seconds
on a large save). In general, running this script with repeat is recommended if:

• You have experienced crashes likely caused by Bug 11014, and running this script a single time produces output
but does not fix the crash

• You are running large military operations, or have sent squads out on raids

5.6.312 fix/corrupt-jobs

Tags: fort | bugfix

Command: fix/corrupt-jobs

Removes jobs with an id of -1 from units.

This fix cleans up corrupt jobs so they don’t cause crashes. It runs automatically on fort load, so you don’t have to run
it manually.

276 Chapter 5. DFHack tools

https://www.bay12games.com/dwarves/mantisbt/view.php?id=11014

DFHack Documentation, Release 50.11-r4

Usage

fix/corrupt-jobs

5.6.313 fix/dead-units

Tags: fort | bugfix | units

Command: fix/dead-units

Remove dead units from the list so migrants can arrive again.

If so many units have died at your fort that your dead units list exceeds about 3000 units, migrant waves can stop
coming. This fix removes uninteresting units (like slaughtered animals and nameless goblins) from the unit list, allowing
migrants to start coming again.

It also supports scanning burrows and cleaning out dead units from burrow assignments. The vanilla UI doesn’t provide
any way to remove dead units, and the dead units artificially increase the reported count of units that are assigned to
the burrow.

Usage

fix/dead-units [--active] [-q]
fix/dead-units --burrow [-q]

Options

--active Scrub units that have been dead for more than a month from the active vector. This is the default if no
option is specified.

--burrow Scrub dead units from burrow membership lists.

-q, --quiet Surpress console output (final status update is still printed if at least one item was affected).

5.6.314 fix/drop-webs

Tags: fort | bugfix | items

Command: fix/drop-webs

Make floating webs drop to the ground.

Webs can be left floating in mid-air for a variety of reasons, such as getting caught in a tree and the tree subsequently
being chopped down (Bug 595). This tool finds the floating webs and makes them fall to the ground.

See clear-webs if you want to remove webs entirely.

5.6. All DFHack tools alphabetically 277

https://www.bay12games.com/dwarves/mantisbt/view.php?id=595

DFHack Documentation, Release 50.11-r4

Usage

fix/drop-webs Make webs that are floating in mid-air drop to the ground

fix/drop-webs --all Make webs that are above the ground for any reason (including being stuck in tree branches)
fall to the ground.

5.6.315 fix/dry-buckets

Tags: fort | bugfix | items

Command: fix/dry-buckets

Allow discarded water buckets to be used again.

Sometimes, dwarves drop buckets of water on the ground if their water hauling job is interrupted. These buckets then
become unavailable for any other kind of use, such as making lye. This tool finds those discarded buckets and removes
the water from them.

This tool also fixes over-full buckets that are blocking well operations.

Usage

fix/dry-buckets

5.6.316 fix/empty-wheelbarrows

Tags: fort | bugfix | items

Command: fix/empty-wheelbarrows

Empties stuck items from wheelbarrows.

Empties all wheelbarrows which contain rocks that have become ‘stuck’ in them.

This works around the issue encountered with Bug 6074, and should be run if you notice wheelbarrows lying around
with rocks in them that aren’t being used in a task. This script can also be set to run periodically in the background by
toggling the Maintenance task in gui/control-panel.

278 Chapter 5. DFHack tools

https://www.bay12games.com/dwarves/mantisbt/view.php?id=6074

DFHack Documentation, Release 50.11-r4

Usage

fix/empty-wheelbarrows [<options>]

Examples

fix/empty-wheelbarrows Empties all items, listing all wheelbarrows emptied and their contents.

fix/empty-wheelbarrows --dry-run Lists all wheelbarrows that would be emptied and their contents without
performing the action.

fix/empty-wheelbarrows --quiet Does the action while surpressing output to console.

Options

-q, --quiet Surpress console output (final status update is still printed if at least one item was affected).

-d, --dry-run Dry run, don’t commit changes.

5.6.317 fix/general-strike

Tags: fort | bugfix

Command: fix/general-strike

Prevent dwarves from getting stuck and refusing to work.

This script attempts to fix known causes of the “general strike bug”, where dwarves just stop accepting work and stand
around with “No job”.

You can enable automatic running of this fix in the “Maintenance” tab of gui/control-panel.

Usage

fix/general-strike [<options>]

Options

-q, --quiet Only output status when something was actually fixed.

5.6. All DFHack tools alphabetically 279

DFHack Documentation, Release 50.11-r4

5.6.318 fix/item-occupancy

Tags: unavailable

Command: fix/item-occupancy

Fixes errors with phantom items occupying site.

This tool diagnoses and fixes issues with nonexistent ‘items occupying site’, usually caused by hacking mishaps with
items being improperly moved about.

Usage

fix/item-occupancy

Technical details

This tool checks that:

1. Item has flags.on_ground <=> it is in the correct block item list

2. A tile has items in block item list <=> it has occupancy.item

3. The block item lists are sorted

5.6.319 fix/loyaltycascade

Tags: fort | bugfix | units

Command: fix/loyaltycascade

Halts loyalty cascades where dwarves are fighting dwarves.

This tool aborts loyalty cascades by fixing units who consider their own civilization to be the enemy.

Usage

fix/loyaltycascade

280 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.320 fix/population-cap

Tags: unavailable

Command: fix/population-cap

Ensure the population cap is respected.

Run this after every migrant wave to ensure your population cap is not exceeded.

The reason this tool is needed is that the game only updates the records of your current population when a dwarven
caravan successfully leaves for the mountainhomes. If your population was under the cap at that point, you will continue
to get migrant waves. If another caravan never comes (or is never able to leave), you’ll get migrant waves forever.

This tool ensures the population value always reflects the current population of your fort.

Note that even with this tool, a migration wave can still overshoot the limit by 1-2 dwarves because the last migrant
might choose to bring their family. Likewise, monarch arrival ignores the population cap.

Usage

fix/population-cap

Examples

repeat --time 1 --timeUnits months --command [fix/population-cap] Automatically run this fix af-
ter every migrant wave to keep the population values up to date.

5.6.321 fix/protect-nicks

Tags: fort | bugfix | units

Command: fix/protect-nicks

Fix nicknames being erased or not displayed

Due to a bug, units nicknames are not displayed everywhere and are occasionally lost.

fix/protect-nicks will save the nicknames of the units once an in-game day. It works by setting the same nickname to
the unit’s corresponding “historical figure”, which was the behavior on pre-Steam releases.

After running it, the nicknames are properly displayed in locations such as legends or image descriptions. Additionally,
they are no longer lost after killing a forgotten beast or retiring a fort.

5.6. All DFHack tools alphabetically 281

DFHack Documentation, Release 50.11-r4

Usage

enable fix/protect-nicks Enable daily saving of the nicknames.

disable fix/protect-nicks Disable the daily check.

fix/protect-nicks now Immediately save the nicknames.

5.6.322 fix/retrieve-units

Tags: fort | bugfix | units

Command: fix/retrieve-units

Allow stuck offscreen units to enter the map.

This script finds units that are marked as pending entry to the active map and forces them to enter. This can fix issues
such as:

• Stuck [SIEGE] tags due to invisible armies (or parts of armies)

• Forgotten beasts that never appear

• Packs of wildlife that are missing from the surface or caverns

• Caravans that are partially or completely missing

Note: For caravans that are missing entirely, this script may retrieve the merchants but not the items. Using fix/stuck-
merchants to dismiss the caravan followed by force Caravan to create a new one may work better.

Usage

fix/retrieve-units

5.6.323 fix/stable-temp

Tags: fort | bugfix | fps | map

Command: fix/stable-temp

Solve FPS issues caused by fluctuating temperature.

This tool instantly sets the temperature of all free-lying items to be in equilibrium with the environment. This effectively
halts FPS-draining temperature updates until something changes, such as letting magma flow to new tiles.

To maintain this efficient state, use tweak fast-heat.

282 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

fix/stable-temp

5.6.324 fix/stuck-instruments

Tags: fort | bugfix | items

Command: fix/stuck-instruments

Allow bugged instruments to be interacted with again.

Fixes instruments that were picked up for a performance, but were instead simulated and are now stuck permanently in
a job that no longer exists.

This works around the issue encountered with Bug 9485, and should be run if you notice any instruments lying on the
ground that seem to be stuck in a job.

Usage

fix/stuck-instruments Fixes item data for all stuck instruments on the map.

fix/stuck-instruments -n, fix/stuck-instruments --dry-run List how many instruments would be fixed
without performing the action.

5.6.325 fix/stuck-merchants

Tags: fort | bugfix | units

Command: fix/stuck-merchants

Dismiss merchants that are stuck off the edge of the map.

This tool dismisses merchants that haven’t entered the map yet. This can fix Bug 9593. Where you get a trade caravan
announcement, but no merchants ever enter the map.

This script should not be run if any merchants are on the map, so using it with repeat is not recommended.

5.6. All DFHack tools alphabetically 283

https://www.bay12games.com/dwarves/mantisbt/view.php?id=9485
https://www.bay12games.com/dwarves/mantisbt/view.php?id=9593

DFHack Documentation, Release 50.11-r4

Usage

fix/stuck-merchants Dismiss merchants that are stuck off the edge of the map.

fix/stuck-merchants -n, fix/stuck-merchants --dry-run List the merchants that would be dismissed, but
make no changes.

5.6.326 fix/stuckdoors

Tags: fort | bugfix | buildings

Command: fix/stuckdoors

Allow doors that are stuck open to close.

This tool can fix doors that are stuck open due to incorrect map occupancy flags. If you see a door that never closes
with no obvious cause, try running this tool.

Usage

fix/stuckdoors

5.6.327 fix/tile-occupancy

Tags: unavailable

Command: fix/tile-occupancy

Fix tile occupancy flags.

This tool clears bad occupancy flags at the selected tile. It is useful for getting rid of phantom “building present”
messages when trying to build something in an obviously empty tile.

To use, select a tile with the in-game “look” (k mode) cursor.

Usage

fix/tile-occupancy

284 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.328 gui/advfort

Tags: unavailable

Command: gui/advfort

Perform fort-like jobs in adventure mode.

This script allows performing jobs in adventure mode. For interactive help, press ? while the script is running.

Warning: Note that changes are only saved for non-procedural sites, i.e. caves, camps, and player forts. Other
sites will lose the changes you make when you leave the area.

Usage

gui/advfort [<job type>] [<options>]

You can specify a job type (e.g. Dig, FellTree, etc.) to pre-select it in the gui/advfort UI. Otherwise you can just
select the desired job type in the UI after it comes up.

Examples

gui/advfort Brings up the GUI for interactive job selection. Items that dwarves can use will be available in item
selection lists.

gui/advfort -e Brings up the GUI for interactive job selection. Items that the adventurer’s civilization can use will
be available in item selection lists.

Options

-c, --cheat Relaxes item requirements for buildings (e.g. you can make walls from bones, which you cannot normally
do).

-e [NAME], --entity [NAME] Use the given civ (specified as an entity raw ID) to determine which resources are
usable. Defaults to MOUNTAIN (i.e. Dwarf). If -e is specified but the entity name is omitted then it defaults to
the adventurer’s civ.

Screenshot

Here is an example of a player digging in adventure mode:

5.6. All DFHack tools alphabetically 285

DFHack Documentation, Release 50.11-r4

5.6.329 gui/autobutcher

Tags: fort | auto | fps | animals

Command: gui/autobutcher

Automatically butcher excess livestock.

This is an in-game interface for autobutcher, which allows you to set thresholds for how many animals you want to
keep and will automatically butcher the extras.

Usage

gui/autobutcher

5.6.330 gui/autochop

Tags: fort | auto | plants

Command: gui/autochop

Auto-harvest trees when low on stockpiled logs.

This is the configuration interface for the autochop plugin. You can configure which burrows will be used for tree
chopping, your target stock quantities, and other options. You can also see how many logs you have, the number of
logs that the trees on the map are estimated to yield, and how many of each are currently inaccessible.

286 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/autochop

5.6.331 gui/autodump

Tags: fort | armok | items

Command: gui/autodump

Teleport or destroy items.

Keybinding: CtrlH in dwarfmode

This is a general point and click interface for teleporting or destroying items. By default, it will teleport items you
have marked for dumping, but if you draw boxes around items on the map, it will act on the selected items instead.
Double-click anywhere on the map to teleport the items there. Be wary (or excited) that if you teleport the items into
an unsupported position (e.g. mid-air), then they will become projectiles and fall.

There are options to include or exclude forbidden items, items that are currently tagged as being used by an active job,
and items dropped by traders. If trader items are included, the trader flag will be cleared upon teleport so the items
can be used.

Usage

gui/autodump

Destroying items

This tool also allows you to destroy the target items instead of teleporting them. When you click the destroy button
(or hit the hotkey), gui/autodump will force-pause the game and enable an “Undo” button, just in case you want those
items back. Once you exit the gui/autodump tool, those items will be unrecoverable.

5.6.332 gui/autofish

Tags: fort | auto | labors

Command: gui/autofish

Auto-manage fishing labors to control your stock of fish.

This is the configuration interface for the autofish module. You can configure the number of fish you’d like to keep
in stock, and whether or not the script should also count your raw fish. You can also check whether or not autofish is
currently fishing or not.

5.6. All DFHack tools alphabetically 287

DFHack Documentation, Release 50.11-r4

Usage

gui/autofish

5.6.333 gui/autogems

Tags: unavailable

Command: gui/autogems

Automatically cut rough gems.

This is a frontend for the autogems plugin that allows interactively configuring the gem types that you want to be cut.

The following controls apply to the gems currently listed:

• s: Searches for matching gems

• Shift+Enter: Toggles the status of all listed gems

The following controls apply to the gems currently listed, as well as gems listed before the current search with s, if
applicable:

• r: Displays only “rock crystal” gems

• c: Displays only gems whose color matches the selected gem

• m: Displays only gems where at least one rough (uncut) gem is available somewhere on the map

This behavior is intended to allow for things like a search for “lazuli” followed by pressing c to select all gems with the
same color as lapis lazuli (5 blue gems in vanilla DF), rather than further restricting that to gems with “lazuli” in their
name (only 1).

x clears all filters, which is currently the only way to undo filters (besides searching), and is useful to verify the gems
selected.

Usage

gui/autogems

5.6.334 gui/blueprint

Tags: fort | design | buildings | map | stockpiles

Command: gui/blueprint

Record a live game map in a quickfort blueprint.

288 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

The blueprint plugin records the structure of a portion of your fortress in a blueprint file that you (or anyone else) can
later play back with quickfort.

This script provides a visual, interactive interface to make configuring and using the blueprint plugin much easier.

Usage

gui/blueprint [<name> [<phases>]] [<options>]

All parameters are optional, but, if specified, they will override the initial values set in the interface. See the blueprint
documentation for information on the possible options.

Examples

gui/blueprint Start the blueprint GUI with default initial values.

gui/blueprint tavern dig build --format pretty Start the blueprint GUI with the blueprint name pre-set
to tavern, the dig and build blueprint phases enabled (and all other phases turned off), and with the output
format set to pretty.

5.6.335 gui/choose-weapons

Tags: unavailable

Command: gui/choose-weapons

Ensure military dwarves choose appropriate weapons.

Activate in the Equip->View/Customize page of the military screen.

A weapon specification of “individual choice” is unreliable when there is a weapon shortage. Your military dwarves
often end up equipping weapons with which they have no experience using.

Depending on the cursor location, this tool rewrites all ‘individual choice weapon’ entries in the selected squad or
position to use a specific weapon type matching the unit’s top skill. If the cursor is in the rightmost list over a weapon
entry, this tool rewrites only that entry, and does it even if it is not ‘individual choice’.

Usage

gui/choose-weapons

5.6. All DFHack tools alphabetically 289

DFHack Documentation, Release 50.11-r4

5.6.336 gui/civ-alert

Tags: fort | gameplay | interface | military | units

Command: gui/civ-alert

Quickly get your civilians to safety.

Normally, assigning a unit to a burrow is treated more like a suggestion than a command. This can be frustrating when
you’re assigning units to burrows in order to get them out of danger. In contrast, triggering a civilian alert with gui/civ-
alert will cause all your non-military citizens to immediately rush to a burrow ASAP and stay there. This gives you a
way to keep your civilians safe when there is danger about.

Usage

gui/civ-alert

How to set up and use a civilian alert

A civ alert needs a burrow to send civilians to. Go set one up if you haven’t already. If you have walls around a secure
interior, you can include all your below-ground area and the safe parts inside your walls. You can name the burrow
“Inside” or “Safety” or “Panic room” or whatever you like.

Then, start up gui/civ-alert and select the burrow from the list. You can activate the civ alert right away with the button
in the upper right corner. You can also access this button at any time from the squads panel.

When danger appears, open up the squads menu and click on the new “Activate civilian alert” button in the lower left
corner. It’s big and red; you can’t miss it. Your civilians will rush off to safety and you can concentrate on dealing with
the incursion without Urist McArmorsmith getting in the way.

When the civ alert is active, the civilian alert button will stay on the screen, even if the squads menu is closed. After the
danger has passed, remember to turn the civ alert off again by clicking the button. Otherwise, your units will continue
to be confined to their burrow and may eventually become unhappy or starve.

Overlay

The position of the “Activate civilian alert” button that appears when the squads panel is open is configurable via
gui/overlay. The overlay panel also gives you a way to launch gui/civ-alert if you need to change which burrow civilians
should be gathering at.

290 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Technical notes

The functionality for civilian alerts is actually already inside the vanilla game. The ability to configure civilian alerts
was lost when the DF UI was updated for the v50 release. This tool simply provides an interface layer for the vanilla
functionality.

5.6.337 gui/clone-uniform

Tags: unavailable

Command: gui/clone-uniform

Duplicate an existing military uniform.

When invoked, this tool duplicates the currently selected uniform template and selects the newly created copy. Activate
in the Uniforms page of the military screen with the cursor in the leftmost list.

Usage

gui/clone-uniform

5.6.338 gui/color-schemes

Tags: unavailable

Command: gui/color-schemes

Modify the colors in the DF UI.

This is an in-game interface for color-schemes, which allows you to modify the colors in the Dwarf Fortress interface.
This script must be called from either the title screen (shown when you first start the Dwarf Fortress game) or the
fortress main map screen.

Usage

gui/color-schemes

5.6. All DFHack tools alphabetically 291

DFHack Documentation, Release 50.11-r4

5.6.339 gui/companion-order

Tags: unavailable

Command: gui/companion-order

Issue orders to companions.

This tool allows you to issue orders to your adventurer’s companions. Select which companions to issue orders to with
lower case letters (green when selected), then issue orders with upper case letters. You must be in look or talk mode to
issue commands that refer to a tile location (e.g. move/equip/pick-up).

Usage

gui/companion-order [-c]

Call with -c to enable “cheating” orders (see below).

Orders

move Order selected companions to move to a location. If the companions are currently following you,
they will move no more than 3 tiles from you.

equip Try to equip the items on the ground at the selected tile.

pick-up Try to take items at the selected tile and wield them.

unequip Remove and drop equipment.

unwield Drop held items.

wait Temporarily leave party.

follow Rejoin the party after “wait”.

leave Permanently leave party (can be rejoined by talking).

If gui/companion-order was called with the -c option, the following orders will be available:

patch up Heal all wounds.

get in Ride thing (e.g. minecart) at cursor. There may be some graphical anomalies when pushing a
minecart with a companion riding in it.

Screenshot

Here is a screenshot of the tool in action:

292 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.340 gui/confirm

Tags: fort | interface

Command: gui/confirm

Configure which confirmation dialogs are enabled.

This tool is a basic configuration interface for the confirm plugin. You can see and modify which confirmation dialogs
are enabled.

Usage

gui/confirm

5.6.341 gui/control-panel

Tags: dfhack

Command: gui/control-panel

Configure DFHack.

Keybinding: CtrlShiftE

The DFHack control panel allows you to quickly see and change what DFHack tools are enabled now, which tools will
run when you start a new fort, and how global DFHack configuration options are set. It also provides convenient links
to relevant help pages and GUI configuration frontends. The control panel has several pages that you can switch among
by clicking on the tabs at the top of the window. Each page has a search filter so you can quickly find the tools and
options that you’re looking for.

5.6. All DFHack tools alphabetically 293

DFHack Documentation, Release 50.11-r4

Fort Services

The fort services page shows tools that you can enable in fort mode. You can select the tool name to see a short
description at the bottom of the list. Hit Enter, double click on the tool name, or click on the toggle on the far left to
enable or disable that tool.

Note that the fort services displayed on this page can only be enabled when a fort is loaded. They will be disabled in
the list and cannot be enabled or have their GUI config screens shown until you have loaded a fortress. Once you do
enable them (after you’ve loaded a fort), they will save their state with your fort and automatically re-enable themselves
when you load your fort again.

You can hit CtrlH or click on the help icon to show the help page for the selected tool in gui/launcher. You can also
use this as shortcut to run custom commandline commands to configure that tool manually. If the tool has an associated
GUI config screen, a gear icon will also appear next to the help icon. Hit CtrlG or click on that icon to launch the
relevant configuration interface.

New Fort Autostart Commands

This page shows the tools that you can configure DFHack to auto-enable or auto-run when you start a new fort. You’ll
recognize many tools from the previous page here, but there are also useful one-time commands that you might want
to run at the start of a fort, like ban-cooking all.

Periodic Maintenance Operations

This page shows commands that DFHack can regularly run for you in order to keep your fort (and the game) running
smoothly. For example, there are commands to periodically enqueue orders for shearing animals that are ready to be
shorn or sort your manager orders so slow-moving daily orders won’t prevent your high-volume one-time orders from
ever being completed.

System Services

The system services page shows “core” DFHack tools that provide background services to other tools. It is generally
not advisable to turn these tools off. If you do toggle them off in the control panel, they will be re-enabled when you
restart the game. If you really need to turn these tools off permanently, add a line like disable toolname to your
dfhack-config/init/dfhack.init file.

Overlays

The overlays page allows you to easily see which overlays are enabled and lets you toggle them on and off and see the
help for the owning tools. If you want to reposition any of the overlay widgets, hit CtrlG or click on the the hotkey
hint to launch gui/overlay.

294 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Preferences

The preferences page allows you to change DFHack’s internal settings and defaults, like whether DFHack tools pause
the game when they come up, or how long you can wait between clicks and still have it count as a double-click. Hit
CtrlG or click on the hotkey hint at the bottom of the page to restore all preferences to defaults.

Usage

gui/control-panel

5.6.342 gui/cp437-table

Tags: dfhack

Command: gui/cp437-table

Virtual keyboard for typing with the mouse.

Keybinding: CtrlShiftK

This tool provides an in-game virtual keyboard. You can choose from all the characters that DF supports (code page
437). Just click on the characters to build the text that you want to send to the parent screen. The text is sent as soon as
you hit Enter, so make sure there is a text field selected in the parent window before starting this UI!

Usage

gui/cp437-table

5.6.343 gui/create-item

Tags: fort | armok | items

Command: gui/create-item

Summon items from the aether.

This tool provides a graphical interface for creating items of your choice. It walks you through the creation process
with a series of prompts, asking you for the type of item, the material, the quality, and the quantity.

If a unit is selected, that unit will be designated the creator of the summoned items. The items will appear at that unit’s
feet. If no unit is selected, the first citizen unit will be used as the creator.

5.6. All DFHack tools alphabetically 295

DFHack Documentation, Release 50.11-r4

Usage

gui/create-item [<options>]

Examples

gui/create-item Walk player through the creation of an item that can normally exist in the game.

gui/create-item --unrestricted --count 1 Create one item made of anything in the game. For example, you
can create a bar of vomit, if you please.

Options

-c, --count <num> Set the quantity of items to create instead of prompting for it.

-u, --unit <id> Use the specified unit as the “creator” of the generated item instead of the selected unit or the first
citizen.

-f, --unrestricted Don’t restrict the material options to only those that are normally appropriate for the selected
item type.

--startup Instead of showing the item creation interface, start monitoring for a modded reaction with a code of
DFHACK_WISH. When a reaction with that code is completed, show the item creation gui (with --count 1).
This allows you to mod in “wands of wishing” that can let your adventurer make wishes for an item.

5.6.344 gui/create-tree

Tags: unavailable

Command: gui/create-tree

Create a tree.

This tool provides a graphical interface for creating trees.

Place the cursor wherever you want the tree to appear before you run the script.

Then, select the desired tree type from the list, and then the age. If you just hit Enter for the age, it will default to 1
(the youngest age for a non-sapling tree).

For full-grown trees, try an age of 100.

296 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/create-tree

5.6.345 gui/design

Tags: fort | design | productivity | map

Command: gui/design

Design designation utility with shapes.

Keybinding: CtrlD in dwarfmode/Default

This tool provides a point and click interface to make designating shapes and patterns easier. Supports both digging
designations and placing constructions.

Usage

gui/design

Overlay

This script provides an overlay that shows the selected dimensions when designating something with vanilla tools, for
example when painting a burrow or designating digging. The dimensions show up in a tooltip that follows the mouse
cursor.

5.6.346 gui/dfstatus

Tags: unavailable

Command: gui/dfstatus

Show a quick overview of critical stock quantities.

This tool show a quick overview of stock quantities for:

• drinks

• wood

• fuel

• prepared_meals

• tanned_hides

• cloth

5.6. All DFHack tools alphabetically 297

DFHack Documentation, Release 50.11-r4

• various metal bars

Sections can be enabled/disabled/configured by modifying dfhack-config/dfstatus.lua. In particular, you can
customize the list of metals that you want to report on.

Usage

gui/dfstatus

5.6.347 gui/extended-status

Tags: unavailable

Command: gui/extended-status

Add information on beds and bedrooms to the status screen.

Adds an additional page to the z status screen where you can see information about beds, bedrooms, and whether your
dwarves have bedrooms of their own.

Usage

enable gui/extended-status Show a hotkey on the status screen to invoke the bedroom_list screen.

gui/extended-status bedroom_list Show the bedroom status screen.

5.6.348 gui/family-affairs

Tags: unavailable

Command: gui/family-affairs

Inspect or meddle with romantic relationships.

This tool provides a user-friendly interface to view romantic relationships, with the ability to add, remove, or otherwise
change them at your whim - fantastic for depressed dwarves with a dead spouse (or matchmaking players. . .).

The target/s must be alive, sane, and in fortress mode.

298 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/family-affairs [unitID] Show GUI for the selected unit, or the unit with the specified unit ID.

gui/family-affairs divorce [unitID] Remove all spouse and lover information from the unit and their partner.

gui/family-affairs [unitID] [unitID] Divorce the two specified units and their partners, then arrange for the
two units to marry.

Screenshot

5.6.349 gui/gm-editor

Tags: dfhack | armok | inspection | animals | buildings | items | jobs | map | plants | stockpiles | units | workorders

Command: gui/gm-editor

Inspect and edit DF game data.

This editor allows you to inspect or modify almost anything in DF. Press ? for in-game help.

Select a field and hit Enter or double click to edit, or, for structured fields, hit Enter or single click to inspect their
contents. Right click or hit Esc to go back to the previous structure you were inspecting. Right clicking when viewing
the structure you started with will exit the tool. Hold down Shift and right click to exit, even if you are inspecting a
substructure, no matter how deep.

If you just want to browse without fear of accidentally changing anything, hit CtrlD to toggle read-only mode. If you
want gui/gm-editor to automatically pick up changes to game data in realtime, hit AltA to switch to auto update mode.

Usage

gui/gm-editor [-f] Open the editor on whatever is selected or viewed (e.g. unit/item description screen)

gui/gm-editor [-f] <lua expression> Evaluate a lua expression and opens the editor on its results. Field pre-
fixes of df.global can be omitted.

gui/gm-editor [-f] dialog Show an in-game dialog to input the lua expression to evaluate. Works the same as
the version above.

5.6. All DFHack tools alphabetically 299

DFHack Documentation, Release 50.11-r4

Examples

gui/gm-editor Opens the editor on the selected unit/item/job/workorder/stockpile etc.

gui/gm-editor world.items.all Opens the editor on the items list.

gui/gm-editor --freeze scr Opens the editor on the current DF viewscreen data (bypassing any DFHack layers)
and prevents the underlying viewscreen from getting updates while you have the editor open.

Options

-f, --freeze Freeze the underlying viewscreen so that it does not receive any updates. This allows you to be sure
that whatever you are inspecting or modifying will not be read or changed by the game until you are done with
it. Note that this will also prevent any rendering refreshes, so the background is replaced with a blank screen.
You can open multiple instances of gui/gm-editor as usual when the game is frozen. The black background will
disappear when the last gui/gm-editor window that was opened with the --freeze option is dismissed.

Screenshot

5.6.350 gui/gm-unit

Tags: dfhack | armok | inspection | animals | units

Command: gui/gm-unit

Inspect and edit unit attributes.

This tool provides an editor for unit attributes. Select a unit in-game before running this command or pass a target unit
ID on the commandline.

300 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/gm-unit [unit id]

5.6.351 gui/guide-path

Tags: unavailable

Command: gui/guide-path

Visualize minecart guide paths.

This tool displays the cached path that will be used by the minecart guide order. The game computes this path when
the order is executed for the first time, so you have to wait for a dwarf to have started pushing the minecart at least once
before you can visualize the path.

To use, select a Guide order in the Hauling menu with the cursor and run this tool.

Usage

gui/guide-path

Screenshot

5.6. All DFHack tools alphabetically 301

DFHack Documentation, Release 50.11-r4

5.6.352 gui/kitchen-info

Tags: unavailable

Command: gui/kitchen-info

Show food item uses in the kitchen status screen.

This tool is an overlay that adds more info to the Kitchen screen, such as the potential alternate uses of the items that
you could mark for cooking.

Usage

enable gui/kitchen-info

5.6.353 gui/launcher

Tags: dfhack

Command: gui/launcher

In-game DFHack command launcher with integrated help.

Keybinding: `

Keybinding: CtrlShiftD

Keybinding: CtrlShiftP -> "gui/launcher --minimal"

This tool is the primary GUI interface for running DFHack commands. You can open it from any screen with the `
hotkey. Tap ` again (or hit Esc) to close. Users with keyboard layouts that make the ` key difficult (or impossible) to
press can use the alternate hotkey of CtrlShiftD.

Usage

gui/launcher [initial commandline]
gui/launcher -m|--minimal [initial commandline]

302 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Examples

gui/launcher Open the launcher dialog with a blank initial commandline.

gui/launcher --minimal Open the launcher dialog in minimal mode with a blank initial commandline.

gui/launcher prospect --show ores,veins Open the launcher dialog with the edit area pre-populated with the
given command, ready for modification or running. Tools related to prospect will appear in the autocomplete
list, and help text for prospect will be displayed in the lower panel.

Editing and running commands

Enter the command you want to run by typing its name. If you want to start over, CtrlC will clear the line. When you
are happy with the command, hit Enter or click on the run button to run it. Any output from the command will appear
in the lower panel after you run it. If you want to run the command but close the dialog immediately so you can get
back to the game, hold down the Shift key and click on the run button instead. The dialog also closes automatically
if you run a command that brings up a new GUI screen. In any case, the command output will also be written to the
DFHack terminal console (the separate window that comes up when you start DF) if you need to find it later.

To pause or unpause the game while gui/launcher is open, hit the spacebar once or twice. If you are typing a command,
the first space will go into the edit box for your commandline. If the commandline is empty or if it already ends in a
space, space key will be passed through to the game to affect the pause button.

If your keyboard layout makes any key impossible to type (such as [and] on German QWERTZ keyboards), use
CtrlShiftK to bring up the on-screen keyboard. You can “type” the text you need by clicking on the characters with
the mouse.

Autocomplete

As you type, autocomplete options for DFHack commands appear in the right column. If the first word of what you’ve
typed matches a valid command, then the autocomplete options will also include commands that have similar func-
tionality to the one that you’ve named. Click on an autocomplete list option to select it or cycle through them with
ShiftLeft and ShiftRight. You can run a command quickly without parameters by double-clicking on the tool
name in the list. Holding down shift while you double-click allows you to run the command and close gui/launcher at
the same time.

Context-sensitive help and command output

When you start gui/launcher without parameters, it shows some useful information in the lower panel about how to
get started with browsing DFHack tools by their category tags.

Once you have typed (or autocompleted) a word that matches a valid command, the lower panel shows the help for that
command, including usage instructions and examples. You can scroll the help text with the mouse or with PgUp and
PgDn. You can also scroll line by line with ShiftUp and ShiftDown.

Once you run a command, the lower panel will switch to command output mode, where you can see any text the
command printed to the screen. If you want to see more help text as you run further commands, you can switch the
lower panel back to help mode with CtrlT. The output text is kept for all the commands you run while the launcher
window is open, but is cleared if you dismiss the launcher window and bring it back up.

5.6. All DFHack tools alphabetically 303

DFHack Documentation, Release 50.11-r4

Command history

gui/launcher keeps a history of commands you have run to let you quickly run those commands again. You can
scroll through your command history with the Up and Down arrow keys, or you can search your history for something
specific with the AltS hotkey. When you hit AltS, start typing to search your history for a match. To find the next
match for what you’ve already typed, hit AltS again. You can run the matched command immediately with Enter, or
hit Esc to edit the command before running it.

Dev mode

By default, commands intended for developers and modders are filtered out of the autocomplete list. This includes any
tools tagged with unavailable. You can toggle this filtering by hitting CtrlD at any time.

5.6.354 gui/liquids

Tags: fort | armok | map

Command: gui/liquids

Interactively paint liquids onto the map.

This tool is a gui for spawning water, magma, and river sources on the map, allowing you to click and paint liquid onto
the map. It can optionally clean existing liquids on the map from salt or being stagnant.

Warning: There is no undo support. Be sure you know what you are doing before spawning any liquid, especially
river sources!

Usage

gui/liquids

5.6.355 gui/load-screen

Tags: unavailable

Command: gui/load-screen

Replace DF’s continue game screen with a searchable list.

If you tend to have many ongoing games, this tool can make it much easier to load the one you’re looking for. It replaces
DF’s “continue game” screen with a dialog that has search and filter options.

The primary view is a list of saved games, much like the default list provided by DF. Several filter options are available:

• s: search for folder names containing specific text

304 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• t: filter by active game type (e.g. fortress, adventurer)

• b: toggle display of backup folders, as created by DF’s AUTOBACKUP option (see data/init/init.txt for a
detailed explanation). This defaults to hiding backup folders, since they can take up significant space in the list.

When selecting a game with Enter, a dialog will give options to load the selected game (Enter again), cancel (Esc),
or rename the game’s folder (r).

Also see the title-start-rename tweak to rename folders in the “start playing” menu.

Usage

enable gui/load-screen

5.6.356 gui/manager-quantity

Tags: unavailable

Command: gui/manager-quantity

Set the quantity of the selected manager workorder.

There is no way in the base DF game to change the quantity for an existing manager workorder. Select a workorder on
the j-m or u-m screens and run this tool to set a new total requested quantity. The number of items remaining in the
workorder will be modified accordingly.

Usage

gui/manager-quantity

5.6.357 gui/mass-remove

Tags: fort | design | productivity | buildings | stockpiles

Command: gui/mass-remove

Mass select buildings and constructions to suspend or remove.

This tool lets you remove buildings/constructions or suspend/unsuspend construction jobs using a mouse-driven box
selection.

The following marking modes are available.

Suspend Suspend the construction of a planned building/construction.

5.6. All DFHack tools alphabetically 305

DFHack Documentation, Release 50.11-r4

Unsuspend Resume the construction of a suspended planned building/construction. Note that buildings
planned with buildingplan that are waiting for items cannot be unsuspended until all pending items
are attached.

Remove Construction Designate a construction (wall, floor, etc.) for removal.

Unremove Construction Cancel removal of a construction (wall, floor, etc.).

Remove Building Designate a building (door, workshop, etc) for removal.

Unremove Building Cancel removal of a building (door, workshop, etc.).

Remove All Designate both constructions and buildings for removal, and deletes planned build-
ings/constructions.

Unremove All Cancel removal designations for both constructions and buildings.

Note: Unremove Construction and Unremove Building are not yet available for the latest release of Dwarf
Fortress.

Usage

gui/mass-remove

5.6.358 gui/masspit

Tags: fort | productivity | animals

Command: gui/masspit

Designate creatures for pitting.

Using this tool you can designate all caged creatures in an animal stockpile to be sent to a pit.

The script provides a visual interface, you can select the stockpile/pit using keyboard controls or click the map.

Usage

gui/masspit

5.6.359 gui/mod-manager

Tags: dfhack | interface

Command: gui/mod-manager

Save and restore lists of active mods.

306 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Adds an optional overlay to the mod list screen that allows you to save and load mod list presets, as well as set a default
mod list preset for new worlds.

Usage

gui/mod-manager

5.6.360 gui/overlay

Tags: dfhack | interface

Command: gui/overlay

Reposition DFHack overlay widgets.

Whereas gui/control-panel provides a way to browse installed overlays, enable them, and see their help, this tool allows
you to reposition the overlay widgets to your liking. You can either see all overlay widgets or just the ones configured
to appear on the current DF screen. Each visible overlay widget will be highlighted in a frame so you can find them
easily. You can click on the frame and drag the widget around the screen to reposition it, or hit Enter with the widget
selected and reposition with the cursor keys.

The frame around the selected widget will show a yellow highlight to indicate which screen edge the widget is anchored
to. For example, if the bottom and right edges of the frame are highlighted, the widget will move relative to the bottom
and right screen edge when the DF window is resized.

Usage

gui/overlay

5.6.361 gui/pathable

Tags: fort | inspection | map

Command: gui/pathable

Highlights tiles reachable from the selected tile.

This tool highlights each visible map tile to indicate whether it is possible to path to that tile from the tile under the
mouse cursor. You can move the mouse (and the map) around and the highlight will change dynamically.

If graphics are enabled, then tiles show a small yellow box if they are pathable and a small black box if not.

In ASCII mode, the tiles are highlighted in green if pathing is possible and red if not.

While the UI is active, you can use the following hotkeys to change the behavior:

5.6. All DFHack tools alphabetically 307

DFHack Documentation, Release 50.11-r4

• Ctrlt: Lock target: when enabled, you can move the map around and the target tile will not change. This is
useful to check whether parts of the map far away from the target tile can be pathed to from the target tile.

• Ctrld: Draw: allows temporarily disabling the highlighting entirely. This allows you to see the map without the
highlights, if desired.

• Ctrlu: Skip unrevealed: when enabled, unrevealed tiles will not be highlighted at all instead of being highlighted
as not pathable. This might be useful to turn off if you want to see the pathability of unrevealed cavern sections.

You can drag the informational panel around while it is visible if it’s in the way.

Note: This tool uses a cache used by DF, which currently does not account for climbing or flying. If an area of the
map is only accessible by climbing or flying, this tool may report it as inaccessible. Care should be taken when digging
into the upper levels of caverns, for example.

Usage

gui/pathable

5.6.362 gui/petitions

Tags: unavailable

Command: gui/petitions

Show information about your fort’s petitions.

Show your fort’s petitions, both pending and fulfilled.

Usage

gui/petitions

5.6.363 gui/power-meter

Tags: unavailable

Command: gui/power-meter

Allow pressure plates to measure power.

If you run this tool after selecting Pressure Plate in the build menu, you will build a power meter building instead of a
regular pressure plate. This means that, once the building is built, you can select it to see a readout of how much power
is being supplied to gear boxes built in the four adjacent N/S/W/E tiles.

308 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/power-meter

Screenshot

5.6.364 gui/prerelease-warning

Tags: dfhack

Command: gui/prerelease-warning

Shows a warning if you are using a pre-release build of DFHack.

This tool shows a warning on world load for pre-release builds.

Usage

gui/prerelease-warning [force]

With no arguments passed, the warning is shown unless the “do not show again” option has been selected. With the
force argument, the warning is always shown.

5.6. All DFHack tools alphabetically 309

DFHack Documentation, Release 50.11-r4

5.6.365 gui/quantum

Tags: unavailable

Command: gui/quantum

Quickly and easily create quantum stockpiles.

This tool provides a visual, interactive interface for creating quantum stockpiles.

Quantum stockpiles simplify fort management by allowing a small stockpile to contain an infinite number of items.
This reduces the complexity of your storage design, lets your dwarves be more efficient, and increases FPS.

Quantum stockpiles work by linking a “feeder” stockpile to a one-tile minecart hauling route. As soon as an item
from the feeder stockpile is placed in the minecart, the minecart is tipped and all items land on an adjacent tile. The
single-tile stockpile in that adjacent tile that holds all the items is your quantum stockpile.

Before you run this tool, create and configure your “feeder” stockpile. The size of the stockpile determines how many
dwarves can be tasked with bringing items to this quantum stockpile. Somewhere between 1x3 and 5x5 is usually a
good size. Make sure to assign an appropriate number of wheelbarrows to feeder stockpiles that will contain heavy
items like corpses, furniture, or boulders.

The UI will walk you through the steps:

1) Select the feeder stockpile by clicking on it or selecting it with the cursor and hitting Enter.

2) Configure the orientation of your quantum stockpile and select whether to allow refuse and corpses with the
onscreen options.

3) Select a spot on the map to build the quantum stockpile by clicking on it or moving the cursor so the preview
“shadow” is in the desired location. Then hit Enter.

If there are any minecarts available, one will be automatically assigned to the hauling route. If you don’t have a free
minecart, gui/quantum will enqueue a manager order to make one for you. Once it is built, run assign-minecarts all
to assign it to the route, or enter the (h)auling menu and assign one manually. The quantum stockpile needs a minecart
to function.

Quantum stockpiles work much more efficiently if you add the following line to your dfhack-config/init/
onMapLoad.init file:

prioritize -a StoreItemInVehicle

This prioritizes moving of items from the feeder stockpile to the minecart. Otherwise, the feeder stockpile can get full
and block the quantum pipeline.

See the wiki for more information on quantum stockpiles.

310 Chapter 5. DFHack tools

https://dwarffortresswiki.org/Quantum_stockpile

DFHack Documentation, Release 50.11-r4

Usage

gui/quantum

5.6.366 gui/quickcmd

Tags: dfhack

Command: gui/quickcmd

Quickly run saved commands.

Keybinding: CtrlShiftA

This tool lets you keep a list of commands that you use often enough to not want to type it every time, but not often
enough to be bothered to find a free keybinding. You can edit and save the commands from the UI.

Also see gui/launcher, whose history search functionality allows you to run commands from your command history
quickly and easily.

Usage

gui/quickcmd

5.6.367 gui/quickfort

Tags: fort | design | productivity | buildings | map | stockpiles

Command: gui/quickfort

Apply layout blueprints to your fort.

Keybinding: CtrlShiftQ in dwarfmode

This is the graphical interface for the quickfort script. Once you load a blueprint, you will see a highlight over the tiles
that will be modified. You can use the mouse cursor to reposition the blueprint and the hotkeys to rotate and repeat the
blueprint up or down z-levels. Once you are satisfied, click the mouse or hit Enter to apply the blueprint to the map.

You can apply the blueprint as many times as you wish to different spots on the map. If a blueprint that you designated
was only partially applied (due to job cancellations, incomplete dig area, or any other reason) you can apply the blueprint
a second time to fill in any gaps. Any part of the blueprint that has already been completed will be harmlessly skipped.
Right click or hit Esc to close the gui/quickfort UI.

Note that quickfort blueprints will use the DFHack building planner (buildingplan) material filter settings. If you want
specific materials to be used, use the building planner UI to set the appropriate filters before applying a blueprint.

5.6. All DFHack tools alphabetically 311

DFHack Documentation, Release 50.11-r4

Usage

gui/quickfort [<search terms>]

If the (optional) search terms match a single blueprint (e.g. if the search terms are copied from the quickfort list
output like gui/quickfort library/aquifer_tap.csv -n /dig), then that blueprint is pre-loaded into the UI
and a preview for that blueprint appears. Otherwise, a dialog is shown where you can select a blueprint to load.

You can also type search terms in the dialog and the list of matching blueprints will be filtered as you type. You can
search for directory names, file names, blueprint labels, modes, or comments. Note that, depending on the active filters,
the id numbers in the list may not be contiguous.

To rotate or flip the blueprint around, enable transformations with t and use the following keys to add a transformation
step:

(: Rotate counterclockwise (ccw)): Rotate clockwise (cw) _: Flip vertically (vflip) =: Flip horizontally (hflip)

If you have applied several transformations, but there is a shorter sequence that can be used to get the blueprint into the
configuration you want, it will automatically be used. For example, if you rotate clockwise three times, gui/quickfort
will shorten the sequence to a single counterclockwise rotation for you.

Any settings you set in the UI, such as search terms for the blueprint list or transformation options, are saved for the
next time you open the UI. This is for convenience when you are applying multiple related blueprints that need to have
the same transformation and repetition settings when they are applied.

Examples

gui/quickfort Open the quickfort interface with saved settings.

gui/quickfort dreamfort Open with a custom filter that shows only blueprints that match the string dreamfort.

gui/quickfort myblueprint.csv Open with the myblueprint.csv blueprint pre-loaded.

5.6.368 gui/rename

Tags: unavailable

Command: gui/rename

Give buildings and units new names, optionally with special chars.

Once you select a target on the game map, this tool allows you to rename it. It is more powerful than the in-game
rename functionality since it allows you to use special characters (like diamond symbols), and it also allows you to
rename enemies and overwrite animal species strings.

This tool supports renaming units, zones, stockpiles, workshops, furnaces, traps, and siege engines.

312 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/rename Renames the selected building, zone, or unit.

gui/rename unit-profession Set the unit profession or the animal species string.

Screenshots

5.6.369 gui/room-list

Tags: unavailable

Command: gui/room-list

Manage rooms owned by a dwarf.

When invoked in q mode with the cursor over an owned room, this tool lists other rooms owned by the same owner, or
by the unit selected in the assign list, and allows unassigning them from other rooms.

5.6. All DFHack tools alphabetically 313

DFHack Documentation, Release 50.11-r4

Usage

gui/room-list

Screenshot

5.6.370 gui/sandbox

Tags: fort | armok | animals | items | map | plants | units

Command: gui/sandbox

Create units, trees, or items.

This tool provides a spawning interface for units, trees, and/or items. Units can be created with arbitrary skillsets, and
trees can be created either as saplings or as fully grown (depending on the age you set). The item creation interface is
the same as gui/create-item.

You can choose whether spawned units are:

• hostile (default)

• hostile undead

• independent/wild

• friendly

• citizens/pets

Note that if you create new citizens and you’re not using autolabor, you’ll have to got into the labors screen and make
at least one change (any change) to get DF to assign them labors. Otherwise they’ll stand around with “No job”.

314 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

gui/sandbox

5.6.371 gui/seedwatch

Tags: fort | auto | plants

Command: gui/seedwatch

Manages seed and plant cooking based on seed stock levels.

This is the configuration interface for the seedwatch plugin. You can configure a target stock amount for each seed
type. If the number of seeds of that type falls below the target, then the plants and seeds of that type will be protected
from cookery. If the number rises above the target + 20, then cooking will be allowed again.

Usage

gui/seedwatch

5.6.372 gui/settings-manager

Tags: unavailable

Command: gui/settings-manager

Dynamically adjust global DF settings.

This tool is an in-game editor for settings defined in data/init/init.txt and data/init/d_init.txt. Changes
are written back to the init files so they will be loaded the next time you start DF. For settings that can be dynamically
adjusted, such as the population cap, the active value used by the game is updated immediately.

Editing the population caps will override any modifications made by scripts such as max-wave.

Usage

gui/settings-manager

5.6. All DFHack tools alphabetically 315

DFHack Documentation, Release 50.11-r4

5.6.373 gui/siege-engine

Tags: unavailable

Command: gui/siege-engine

Extend the functionality and usability of siege engines.

This tool is an in-game interface for siege-engine, which allows you to link siege engines to stockpiles, restrict operation
to certain dwarves, fire a greater variety of ammo, and aim in 3 dimensions.

Run the UI after selecting a siege engine in q mode.

The main UI mode displays the current target, selected ammo item type, linked stockpiles and the allowed operator
skill range. The map tile color is changed to signify if it can be hit by the selected engine: green for fully reachable,
blue for out of range, red for blocked, yellow for partially blocked.

Pressing r changes into the target selection mode, which works by highlighting two points with Enter like all desig-
nations. When a target area is set, the engine projectiles are aimed at that area, or units within it (this doesn’t actually
change the original aiming code, instead the projectile trajectory parameters are rewritten as soon as it appears).

After setting the target in this way for one engine, you can ‘paste’ the same area into others just by pressing p in the
main page of the UI. The area to paste is kept until you quit DF, or until you select another area manually.

Pressing t switches to a mode for selecting a stockpile to take ammo from.

Exiting from the siege engine UI via Esc reverts the view to the state prior to starting the script. ShiftEsc retains the
current viewport, and also exits from the q mode to the main map.

Usage

gui/siege-engine

Screenshot

316 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.374 gui/stamper

Tags: unavailable

Command: gui/stamper

Copy, paste, and transform dig designations.

This tool allows you to copy and paste blocks of dig designations. You can also transform what you have copied
by shifting it, reflecting it, rotating it, and/or inverting it. Designations can also be used as brushes to erase other
designations and cancel constructions.

Usage

gui/stamper

5.6.375 gui/stockpiles

Tags: unavailable

Command: gui/stockpiles

Import and export stockpile settings.

With a stockpile selected in q mode, you can use this tool to load stockpile settings from a file or save them to a file for
later loading, in this fort or any other.

Saved stockpile configs are stored in the stocksettings subfolder in the DF folder.

See stockpiles for a commandline interface.

Usage

gui/stockpiles

5.6.376 gui/suspendmanager

Tags: fort | jobs

Command: gui/suspendmanager

Intelligently suspend and unsuspend jobs.

5.6. All DFHack tools alphabetically 317

DFHack Documentation, Release 50.11-r4

This is the graphical configuration interface for the suspendmanager automation tool.

Usage

gui/suspendmanager

5.6.377 gui/teleport

Tags: unavailable

Command: gui/teleport

Teleport a unit anywhere.

This tool is a front-end for the teleport tool. It allows you to interactively choose a unit to teleport and a destination tile
using the in-game cursor.

Usage

gui/teleport

5.6.378 gui/unit-info-viewer

Tags: unavailable

Command: gui/unit-info-viewer

Display detailed information about a unit.

Displays information about age, birth, maxage, shearing, milking, grazing, egg laying, body size, and death for the
selected unit.

Usage

gui/unit-info-viewer

318 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.379 gui/unit-syndromes

Tags: fort | inspection | units

Command: gui/unit-syndromes

Inspect syndrome details.

This tool can list the syndromes affecting game units and the remaining and maximum duration of those syndromes,
along with (optionally) substantial detail about the effects.

Usage

gui/unit-syndromes

5.6.380 gui/workflow

Tags: unavailable

Command: gui/workflow

Manage automated item production rules.

This tool provides a simple interface to item production constraints managed by workflow. When a workshop job is
selected in q mode and this tool is invoked, it displays the constraints applicable to the current job and their current
status. It also allows you to modify existing constraints or add new ones.

A constraint is a target range to be compared against either the number of individual items or the number of item stacks.
It also includes an item type and, optionally, a material. When the current stock count is below the lower bound of the
range, the job is resumed; if it is above or equal to the top bound, it will be suspended. If there are multiple constraints,
being out of the range of any constraint will cause the job to be suspended.

5.6. All DFHack tools alphabetically 319

DFHack Documentation, Release 50.11-r4

Pressing I switches the current constraint between counting stacks and counting individual items. Pressing R lets you
input the range directly, or e, r, d, f incrementally adjusts the bounds.

Pressing A produces a list of possible outputs of this job as guessed by workflow, and lets you create a new constraint
by choosing one as template. If you don’t see the choice you want in the list, it likely means you have to adjust the job
material first using job item-material or gui/workshop-job, as described in the workflow documentation. In this manner,
this feature can be used for troubleshooting jobs that don’t match the right constraints.

If you select one of the outputs with Enter, the matching constraint is simply added to the list. If you use ShiftEnter,
the interface proceeds to the next dialog, which allows you to edit the suggested constraint parameters and set the item
count range.

Pressing S (or by using the hotkey in the z stocks screen) opens the overall status screen where you can manage con-
straints for all jobs:

320 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

This screen shows all currently existing workflow constraints, and allows monitoring and/or changing them from one
screen.

The color of the stock level number indicates how “healthy” the stock level is, based on current count and trend. Bright
green is very good, green is good, red is bad, bright red is very bad.

The limit number is also color-coded. Red means that there are currently no workshops producing that item (i.e. no
jobs). If it’s yellow, that means the production has been delayed, possibly due to lack of input materials.

The chart on the right is a plot of the last 14 days (28 half day plots) worth of stock history for the selected item, with
the rightmost point representing the current stock value. The bright green dashed line is the target limit (maximum)
and the dark green line is that minus the gap (minimum).

Usage

gui/workflow View and manage constraints for the currently selected workshop job.

gui/workflow status View and manage constraints across all workflow managed jobs.

5.6.381 gui/workorder-details

Tags: unavailable | fort | inspection | workorders

Command: gui/workorder-details

Adjust input materials and traits for workorders.

This tool allows you to adjust item types, materials, and/or traits for items used in manager workorders. The jobs created
from those workorders will inherit the details.

Invoke while on a work order’s detail screen (j-m, select work order, d).

5.6. All DFHack tools alphabetically 321

DFHack Documentation, Release 50.11-r4

Usage

gui/workorder-details

5.6.382 gui/workshop-job

Tags: unavailable | fort | inspection | jobs

Command: gui/workshop-job

Adjust the input materials used for a job at a workshop.

This tool allows you to inspect or change the input reagents for the selected workshop job (in q mode).

Pressing i shows a dialog where you can select an item type from a list.

Pressing m (unless the item type does not allow a material) lets you choose a material.

322 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Since there are a lot more materials than item types, this dialog is more complex and uses a hierarchy of sub-menus.
List choices that open a sub-menu are marked with an arrow on the left.

Warning: Due to the way input reagent matching works in DF, you must select an item type if you select a material
or the material may be matched incorrectly. If you press mwithout choosing an item type, the script will auto-choose
if there is only one valid choice.

Note that the choices presented in the dialogs are constrained by the job input flags. For example, if you choose a plant
input item type for your prepare meal job, it will only let you select cookable plants since the job reagent has the
cookable trait.

As another example, if you choose a barrel item for your prepare meal job (meaning things stored in barrels, like
drink or milk), it will let you select any material that barrels can be made out of, since in this case the material is
matched against the barrel itself. Then, if you select, say, iron, and then try to change the input item type, it won’t let
you select plant because plants cannot be made of iron – you have to unset the material first.

Usage

gui/workshop-job

5.6.383 modtools/add-syndrome

Tags: dev

Command: modtools/add-syndrome

Add and remove syndromes from units.

This allows adding and removing syndromes from units.

5.6. All DFHack tools alphabetically 323

DFHack Documentation, Release 50.11-r4

Usage

modtools/add-syndrome --target <id> --syndrome <name>|<id> [<options>]
modtools/add-syndrome --target <id> --eraseClass <class>

Examples

modtools/add-syndrome --target 2391 --syndrome "gila monster bite" --eraseAll Remove all in-
stances of the “gila monster bite” syndrome from the specified unit.

modtools/add-syndrome --target 1231 --syndrome 14 --resetPolicy DoNothing Adds syndrome 14
to the specified unit, but only if that unit doesn’t already have the syndrome.

Options

--target <id> The unit id of the target unit.

--syndrome <name>|<id> The syndrome to work with.

--resetPolicy <policy> Specify a policy of what to do if the unit already has an instance of the syndrome, one
of: NewInstance, DoNothing, ResetDuration, or AddDuration. By default, it will create a new instance of
the syndrome, even if one already exists for the unit.

--erase Instead of adding an instance of the syndrome, erase one.

--eraseAll Erase every instance of the syndrome.

--eraseClass <class id> Erase every instance of every syndrome with the given SYN_CLASS (an integer id).

--skipImmunities Add the syndrome to the target even if it is immune to the syndrome.

5.6.384 modtools/anonymous-script

Tags: unavailable

Command: modtools/anonymous-script

Run dynamically generated script code.

This allows running a short simple Lua script passed as an argument instead of running a script from a file. This is
useful when you want to do something too complicated to make with the existing modtools, but too simple to be worth
its own script file. Example:

anonymous-script "print(args[1])" arg1 arg2
prints "arg1"

324 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.385 modtools/change-build-menu

Tags: unavailable

Command: modtools/change-build-menu

Add or remove items from the build sidebar menus.

Change the build sidebar menus.

This script provides a flexible and comprehensive system for adding and removing items from the build sidebar menus.
You can add or remove workshops/furnaces by text ID, or you can add/remove ANY building via a numeric building
ID triplet.

Changes made with this script do not survive a save/load. You will need to redo your changes each time the world
loads.

Just to be clear: You CANNOT use this script AT ALL if there is no world loaded!

Usage

enable modtools/change-build-menu:

Start the ticker. This needs to be done before any changes will take effect. Note that you can make changes
before or after starting the ticker.

disable modtools/change-build-menu:

Stop the ticker. Does not clear stored changes. The ticker will automatically stop when the current world
is unloaded.

modtools/change-build-menu add <ID> <CATEGORY> [<KEY>]:

Add the workshop or furnace with the ID <ID> to <CATEGORY>. <KEY> is an optional DF hotkey ID.

<CATEGORY> may be one of:

• MAIN_PAGE

• SIEGE_ENGINES

• TRAPS

• WORKSHOPS

• FURNACES

• CONSTRUCTIONS

• MACHINES

• CONSTRUCTIONS_TRACK

Valid <ID> values for hardcoded buildings are as follows:

• CARPENTERS

• FARMERS

• MASONS

• CRAFTSDWARFS

5.6. All DFHack tools alphabetically 325

DFHack Documentation, Release 50.11-r4

• JEWELERS

• METALSMITHSFORGE

• MAGMAFORGE

• BOWYERS

• MECHANICS

• SIEGE

• BUTCHERS

• LEATHERWORKS

• TANNERS

• CLOTHIERS

• FISHERY

• STILL

• LOOM

• QUERN

• KENNELS

• ASHERY

• KITCHEN

• DYERS

• TOOL

• MILLSTONE

• WOOD_FURNACE

• SMELTER

• GLASS_FURNACE

• MAGMA_SMELTER

• MAGMA_GLASS_FURNACE

• MAGMA_KILN

• KILN

modtools/change-build-menu remove <ID> <CATEGORY>:

Remove the workshop or furnace with the ID <ID> from <CATEGORY>.

<CATEGORY> and <ID> may have the same values as for the “add” option.

modtools/change-build-menu revert <ID> <CATEGORY>:

Revert an earlier remove or add operation. It is NOT safe to “remove” an “add”ed building or vice versa,
use this option to reverse any changes you no longer want/need.

326 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Module Usage

To use this script as a module put the following somewhere in your own script:

local buildmenu = reqscript "change-build-menu"

Then you can call the functions documented here like so:

• Example: Remove the carpenters workshop:

buildmenu.ChangeBuilding("CARPENTERS", "WORKSHOPS", false)

• Example: Make it impossible to build walls (not recommended!):

local typ, styp = df.building_type.Construction, df.construction_type.Wall
buildmenu.ChangeBuildingAdv(typ, styp, -1, "CONSTRUCTIONS", false)

Note that to allow any of your changes to take effect you need to start the ticker. See the “Command Usage” section.

Global Functions:

GetWShopID(btype, bsubtype, bcustom): GetWShopID returns a workshop’s or furnace’s string ID based on
its numeric ID triplet. This string ID should match what is expected by eventful for hardcoded buildings.

GetWShopType(id): GetWShopIDs returns a workshop or furnace’s ID numbers as a table. The passed in ID should
be the building’s string identifier, it makes no difference if it is a custom building or a hardcoded one. The return
table is structured like so: {type, subtype, custom}

IsEntityPermitted(id): IsEntityPermitted returns true if DF would normally allow you to build a workshop or
furnace. Use this if you want to change a building, but only if it is permitted in the current entity. You do not
need to specify an entity, the current fortress race is used.

ChangeBuilding(id, category, [add, [key]]):

ChangeBuildingAdv(typ, subtyp, custom, category, [add, [key]]): These two functions apply
changes to the build sidebar menus. If “add” is true then the building is added to the specified category, else it
is removed. When adding you may specify “key”, a string DF hotkey ID.

The first version of this function takes a workshop or furnace ID as a string, the second takes a numeric ID triplet
(which can specify any building, not just workshops or furnaces).

RevertBuildingChanges(id, category):

RevertBuildingChangesAdv(typ, subtyp, custom, category): These two functions revert changes made by
“ChangeBuilding” and “ChangeBuildingAdv”. Like those two functions there are two versions, a simple one that
takes a string ID and one that takes a numeric ID triplet.

5.6.386 modtools/create-item

Tags: dev

Command: modtools/create-item

Create arbitrary items.

This tool provides a commandline interface for creating items of your choice.

5.6. All DFHack tools alphabetically 327

DFHack Documentation, Release 50.11-r4

Usage

modtools/create-item <options>

Examples

modtools/create-item -u 23145 -i WEAPON:ITEM_WEAPON_PICK -m INORGANIC:IRON -q4 Have unit
23145 create an exceptionally crafted iron pick.

modtools/create-item -u 323 -i MEAT:NONE -m CREATURE:DWARF:BRAIN Have unit 323 produce a lump of
(prepared) brain.

modtools/create-item -i BOULDER:NONE -m INORGANIC:RAW_ADAMANTINE -c 5 Spawn 5 raw adamantine
boulders.

modtools/create-item -i DRINK:NONE -m PLANT:MUSHROOM_HELMET_PLUMP:DRINK Spawn a barrel of
dwarven ale.

Options

-u, --unit <id> (default: first citizen) The ID of the unit to use as the item’s creator. You can also pass the string
“\LAST” to use the most recently created unit.

-i, --item <itemdef> (required) The def string of the item you want to create.

-m, --material <matdef> (required) That def string of the material you want the item to be made out of.

-q, --quality <num> (default: 0, equal to df.item_quality.Ordinary) The quality of the created item.

-d, --description <string> (required if you are creating a slab) The text that will be engraved on the created
slab.

-c, --count <num> (default: 1) The number of items to create. If the item is stackable, this will be the stack size.

-t, --caste <name or num> (default: 0) Used if producing a corpse or other creature-based item that could have
a caste associated with it.

-p, --pos <x>,<y>,<z> If specified, items will be spawned at the given coordinates instead of at the creator unit’s
feet.

5.6.387 modtools/create-tree

Tags: unavailable

Command: modtools/create-tree

Spawn trees.

Spawns a tree.

328 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

-tree treeName
specify the tree to be created
examples:

OAK
NETHER_CAP

-age howOld
set the age of the tree in years (integers only)
defaults to 1 if omitted

-location [x y z]
create the tree at the specified coordinates

example:
modtools/create-tree -tree OAK -age 100 -location [33 145 137]

5.6.388 modtools/create-unit

Tags: unavailable

Command: modtools/create-unit

Create arbitrary units.

Creates a unit.

Usage

-race raceName
(obligatory)
Specify the race of the unit to be created.
examples:

DWARF
HUMAN

-caste casteName
Specify the caste of the unit to be created.
If omitted, the caste is randomly selected.
examples:

MALE
FEMALE
DEFAULT

-domesticate
Tames the unit if it lacks the CAN_LEARN and CAN_SPEAK tokens.

(continues on next page)

5.6. All DFHack tools alphabetically 329

DFHack Documentation, Release 50.11-r4

(continued from previous page)

-civId id
Make the created unit a member of the specified civilisation
(or none if id = -1). If id is \\LOCAL, make it a member of the
civ associated with the fort; otherwise id must be an integer

-groupId id
Make the created unit a member of the specified group
(or none if id = -1). If id is \\LOCAL, make it a member of the
group associated with the fort; otherwise id must be an integer

-setUnitToFort
Sets the groupId and civId to those of the player in Fortress mode.
Equivalent to -civId \\LOCAL and -groupId \\LOCAL.

-name entityRawName
Set the unit's name to be a random name appropriate for the
given entity. \\LOCAL can be specified instead to automatically
use the fort group entity in fortress mode only. Can be passed
empty to generate a wild name (random language, any words), i.e.
the type of name that animal people historical figures have.
examples:

MOUNTAIN
EVIL

-nick nickname
This can be included to nickname the unit.
Replace "nickname" with the desired name.

-age howOld
This can be included to specify the unit's age.
Replace "howOld" with a (non-negative) number.
The unit's age is set randomly if this is omitted.

-equip [ITEM:MATERIAL:QUANTITY ...]
This can be included to create items and equip them onto

the created unit.
This is carried out via the same logic used in arena mode,

so equipment will always be sized correctly and placed
on what the game deems to be appropriate bodyparts.
Clothing is also layered in the appropriate order.

Note that this currently comes with some limitations,
such as an inability to specify item quality
and objects not being placed in containers
(for example, arrows are not placed in quivers).

Item quantity defaults to 1 if omitted.
When spaces are included in the item or material name,

the entire item description should be enclosed in
quotation marks. This can also be done to increase
legibility when specifying multiple items.

examples:
-equip [RING:CREATURE:DWARF:BONE:3]

3 dwarf bone rings

(continues on next page)

330 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

-equip [ITEM_WEAPON_PICK:INORGANIC:IRON]
1 iron pick

-equip ["ITEM_SHIELD_BUCKLER:PLANT:OAK:WOOD" "AMULET:AMBER"]
1 oaken buckler and 1 amber amulet

-skills [SKILL:LEVEL ...]
This can be included to add skills to the created unit.
Specify a skill token followed by a skill level value.
Look up "Skill Token" and "Skill" on the DF Wiki for a list

of valid tokens and levels respectively.
Note that the skill level provided must be a number greater than 0.
If the unit possesses a matching natural skill, this is added to it.
Quotation marks can be added for legibility as explained above.
example:

-skill [SNEAK:1 EXTRACT_STRAND:15]
novice ambusher, legendary strand extractor

-profession token
This can be included to set the unit's profession.
Replace "token" with a Unit Type Token (check the DF Wiki for a list).
For skill-based professions, it is recommended to give the unit

the appropriate skill set via -skills.
This can also be used to make animals trained for war/hunting.
Note that this will be overridden if the unit has been given the age

of a baby or child, as these have a special "profession" set.
Using this for setting baby/child status is not recommended;

this should be done via -age instead.
examples:

STRAND_EXTRACTOR
MASTER_SWORDSMAN
TRAINED_WAR

-customProfession name
This can be included to give the unit a custom profession name.
Enclose the name in quotation marks if it includes spaces.
example:

-customProfession "Destroyer of Worlds"

-duration ticks
If this is included, the unit will vanish in a puff of smoke

once the specified number of ticks has elapsed.
Replace "ticks" with an integer greater than 0.
Note that the unit's equipment will not vanish.

-quantity howMany
This can be included to create multiple creatures simultaneously.
Replace "howMany" with the desired number of creatures.
Quantity defaults to 1 if this is omitted.

-location [x y z]
(obligatory)
Specify the coordinates where you want the unit to appear.

(continues on next page)

5.6. All DFHack tools alphabetically 331

DFHack Documentation, Release 50.11-r4

(continued from previous page)

-locationRange [x_offset y_offset z_offset]
If included, the unit will be spawned at a random location

within the specified range relative to the target -location.
z_offset defaults to 0 if omitted.
When creating multiple units, the location is randomised each time.
example:

-locationRange [4 3 1]
attempts to place the unit anywhere within
-4 to +4 tiles on the x-axis
-3 to +3 tiles on the y-axis
-1 to +1 tiles on the z-axis
from the specified -location coordinates

-locationType type
May be used with -locationRange

to specify what counts as a valid tile for unit spawning.
Unit creation will not occur if no valid tiles are available.
Replace "type" with one of the following:

Walkable
units will only be placed on walkable ground tiles
this is the default used if -locationType is omitted

Open
open spaces are also valid spawn points
this is intended for flying units

Any
all tiles, including solid walls, are valid
this is only recommended for ghosts not carrying items

-flagSet [flag1 flag2 ...]
This can be used to set the specified unit flags to true.
Flags may be selected from:

df.unit_flags1
df.unit_flags2
df.unit_flags3
df.unit_flags4

example:
flagSet [announce_titan]

causes an announcement describing the unit to appear
when it is discovered ("[Unit] has come! ...")

-flagClear [flag1 flag2 ...]
As above, but sets the specified unit flags to false.

332 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.389 modtools/equip-item

Tags: unavailable

Command: modtools/equip-item

Force a unit to equip an item.

Force a unit to equip an item with a particular body part; useful in conjunction with the create scripts above. See also
forceequip.

5.6.390 modtools/extra-gamelog

Tags: unavailable

Command: modtools/extra-gamelog

Write info to the gamelog for Soundsense.

This script writes extra information to the gamelog. This is useful for tools like Soundsense.

Usage

modtools/extra-gamelog enable

5.6.391 modtools/fire-rate

Tags: unavailable

Command: modtools/fire-rate

Alter the fire rate of ranged weapons.

Allows altering the fire rates of ranged weapons. Each are defined on a per-item basis. As this is done in an on-world
basis, commands for this should be placed in an onLoad*.init. This also technically serves as a patch to any of the
weapons targeted in adventure mode, reducing the times down to their intended speeds (the game applies an additional
hardcoded recovery time to any ranged attack you make in adventure mode).

Once run, all ranged attacks will use this script’s systems for calculating recovery speeds, even for items that haven’t
directly been modified using this script’s commands. One minor side effect is that it can’t account for interactions with
the FREE_ACTION token; interactions with that tag which launch projectiles will be subject to recovery times (though
there aren’t any interaction in vanilla where this would happen, as far as I know).

Requires a Target and any number of Modifiers.

5.6. All DFHack tools alphabetically 333

http://www.bay12forums.com/smf/index.php?topic=60287

DFHack Documentation, Release 50.11-r4

Targets:

-item <item token> The full token of the item to modify. Example: WEAPON:ITEM_WEAPON_BOW

-throw Modify the fire rate for throwing. This is specifically for thrown attacks without a weapon - if you
have a weapon that uses THROW as its skill, you need to use the -item argument for it.

Modifiers:

-material <material token> Apply only to items made of the given material token. With the
-item argument, this will apply to the material that the weapon is made of, whereas
with the -throw argument this will apply to the material being thrown (or fired, in the
case of interactions). This is optional. Format examples: “CREATURE:COW:MILK”,
“PLANT:MUSHROOM_HELMET_PLUMP:DRINK”, “INORGANIC:GOLD”, “VOMIT”

-fortBase <integer> -advBase <integer> Set the base fire rate for the weapon in ticks to use in the re-
spective mode (fortress/adventure). Means one shot per x ticks. Defaults to the game default of
80.

-fortSkillFactor <float> -advSkillFactor <float> Multiplier that modifies how effective a user’s skill is
at improving the fire rate in the respective modes. In basic mode, recovery time is reduced by this
value * user’s skill ticks. Defaults to 2.7. With that value and default settings, it will make a Leg-
endary shooter fire at the speed cap.

-fortCap <integer> -advCap <integer> Sets a cap on the fastest fire rate that can be achieved in their
respective mode. Due to game limitations, the cap can’t be less than 10 in adventure mode. Defaults
to half of the base fire rate defined by the -fort or -adv arguments.

Other:

-mode <”basic” | “vanilla”> Sets what method is used to determine how skill affects fire rates. This is
applied globally, rather than on a per-item basis. Basic uses a simplified method for working out fire
rates - each point in a skill reduces the fire cooldown by a consistent, fixed amount. This method is
the default. Vanilla mode attempts to replicate behaviour for fire rates - skill rolls determine which
of 6 fixed increments of speeds is used, with a unit’s skill affecting the range and averages. NOT
YET IMPLEMENTED!

5.6.392 modtools/force

Tags: dev

Command: modtools/force

Trigger game events.

This tool triggers events like megabeasts, caravans, and migrants.

334 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

-eventType event
specify the type of the event to trigger
examples:

Megabeast
Migrants
Caravan
Diplomat
WildlifeCurious
WildlifeMischievous
WildlifeFlier
NightCreature

-civ entity
specify the civ of the event, if applicable
examples:

player
MOUNTAIN
EVIL
28

5.6.393 modtools/if-entity

Tags: unavailable

Command: modtools/if-entity

Run DFHack commands based on current civ id.

Run a command if the current entity matches a given ID.

To use this script effectively it needs to be called from “raw/onload.init”. Calling this from the main dfhack.init file
will do nothing, as no world has been loaded yet.

Usage

id Specify the entity ID to match

cmd [commandStrs] Specify the command to be run if the current entity matches the entity given via -id

All arguments are required.

5.6. All DFHack tools alphabetically 335

DFHack Documentation, Release 50.11-r4

Example

if-entity -id "FOREST" -cmd [lua "print('Dirty hippies.')"] Print a message if you load an elf
fort, but not a dwarf, human, etc. fort.

5.6.394 modtools/interaction-trigger

Tags: unavailable

Command: modtools/interaction-trigger

Run DFHack commands when a unit attacks or defends.

This triggers events when a unit uses an interaction on another. It works by scanning the announcements for the correct
attack verb, so the attack verb must be specified in the interaction. It includes an option to suppress this announcement
after it finds it.

Usage

-clear
unregisters all triggers

-onAttackStr str
trigger the command when the attack verb is "str". both onAttackStr and onDefendStr␣

→˓MUST be specified
-onDefendStr str

trigger the command when the defend verb is "str". both onAttackStr and onDefendStr␣
→˓MUST be specified
-suppressAttack

delete the attack announcement from the combat logs
-suppressDefend

delete the defend announcement from the combat logs
-command [commandStrs]

specify the command to be executed
commandStrs

\\ATTACK_VERB
\\DEFEND_VERB
\\ATTACKER_ID
\\DEFENDER_ID
\\ATTACK_REPORT
\\DEFEND_REPORT
\\anything -> \anything
anything -> anything

You must specify both an attack string and a defend string to guarantee correct performance. Either will trigger the
script when it happens, but it will not be triggered twice in a row if both happen.

336 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.395 modtools/invader-item-destroyer

Tags: unavailable

Command: modtools/invader-item-destroyer

Destroy invader items when they die.

This tool can destroy invader items to prevent clutter or to prevent the player from getting tools exclusive to certain
races.

Arguments:

-clear
reset all registered data

-allEntities [true/false]
set whether it should delete items from invaders from any civ

-allItems [true/false]
set whether it should delete all invader items regardless of
type when an appropriate invader dies

-item itemdef
set a particular itemdef to be destroyed when an invader
from an appropriate civ dies. examples:

ITEM_WEAPON_PICK
-entity entityName

set a particular entity up so that its invaders destroy their
items shortly after death. examples:

MOUNTAIN
EVIL

5.6.396 modtools/item-trigger

Tags: unavailable

Command: modtools/item-trigger

Run DFHack commands when a unit uses an item.

This powerful tool triggers DFHack commands when a unit equips, unequips, or attacks another unit with specified
item types, specified item materials, or specified item contaminants.

Arguments:

-clear
clear all registered triggers

-checkAttackEvery n
check the attack event at least every n ticks

-checkInventoryEvery n
(continues on next page)

5.6. All DFHack tools alphabetically 337

DFHack Documentation, Release 50.11-r4

(continued from previous page)

check inventory event at least every n ticks
-itemType type

trigger the command for items of this type
examples:

ITEM_WEAPON_PICK
RING

-onStrike
trigger the command on appropriate weapon strikes

-onEquip mode
trigger the command when someone equips an appropriate item
Optionally, the equipment mode can be specified
Possible values for mode:

Hauled
Weapon
Worn
Piercing
Flask
WrappedAround
StuckIn
InMouth
Pet
SewnInto
Strapped

multiple values can be specified simultaneously
example: -onEquip [Weapon Worn Hauled]

-onUnequip mode
trigger the command when someone unequips an appropriate item
see above note regarding 'mode' values

-material mat
trigger the command on items with the given material
examples

INORGANIC:IRON
CREATURE:DWARF:BRAIN
PLANT:OAK:WOOD

-contaminant mat
trigger the command for items with a given material contaminant
examples

INORGANIC:GOLD
CREATURE:HUMAN:BLOOD
PLANT:MUSHROOM_HELMET_PLUMP:DRINK
WATER

-command [commandStrs]
specify the command to be executed
commandStrs

\\ATTACKER_ID
\\DEFENDER_ID
\\ITEM_MATERIAL
\\ITEM_MATERIAL_TYPE
\\ITEM_ID
\\ITEM_TYPE
\\CONTAMINANT_MATERIAL
\\CONTAMINANT_MATERIAL_TYPE

(continues on next page)

338 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

\\CONTAMINANT_MATERIAL_INDEX
\\MODE
\\UNIT_ID
\\anything -> \anything
anything -> anything

5.6.397 modtools/moddable-gods

Tags: unavailable

Command: modtools/moddable-gods

Create deities.

This is a standardized version of Putnam’s moddableGods script. It allows you to create gods on the command-line.

Arguments:

-name godName
sets the name of the god to godName
if there's already a god of that name, the script halts

-spheres [sphereList]
define a space-separated list of spheres of influence of the god

-gender male|female|neuter
sets the gender of the god

-depictedAs str
often depicted as a str

-verbose
if specified, prints details about the created god

5.6.398 modtools/outside-only

Tags: unavailable

Command: modtools/outside-only

Set building inside/outside restrictions.

This allows you to specify certain custom buildings as outside only, or inside only. If the player attempts to build a
building in an inappropriate location, the building will be destroyed.

Arguments:

-clear
clears the list of registered buildings

-checkEvery n
(continues on next page)

5.6. All DFHack tools alphabetically 339

DFHack Documentation, Release 50.11-r4

(continued from previous page)

set how often existing buildings are checked for whether they
are in the appropriate location to n ticks

-type [EITHER, OUTSIDE_ONLY, INSIDE_ONLY]
specify what sort of restriction to put on the building

-building name
specify the id of the building

5.6.399 modtools/pref-edit

Tags: unavailable

Command: modtools/pref-edit

Modify unit preferences.

Add, remove, or edit the preferences of a unit. Requires a modifier, a unit argument, and filters.

• -unit <UNIT ID>: The given unit will be affected. If not found/provided, the script will try defaulting to the
currently selected unit.

Valid modifiers:

• -add: Add a new preference to the unit. Filters describe the preference’s variables.

• -remove: Remove a preference from the unit. Filters describe what preference to remove.

• -has: Checks if the unit has a preference matching the filters. Prints a message in the console.

• -removeall: Remove all preferences from the unit. Doesn’t require any filters.

Valid filters:

• -id <VALUE>: This is the ID used for all preferences that require an ID. Represents item_type, creature_id,
color_id, shape_id, plant_id, poetic_form_id, musical_form_id, and dance_form_id. Text IDs (e.g.
“TOAD”, “AMBER”) can be used for all but poetic, musical, and dance.

• -item, -creature, -color, -shape, -plant, -poetic, -musical, -dance: Include one of these to describe
what the id argument represents.

• -type <PREFERENCE TYPE>: This describes the type of the preference. Can be entered either using the nu-
merical ID or text id. Run lua @df.unit_preference.T_type for a full list of valid values.

• -subtype <ID>: The value for an item’s subtype

• -material <ID>: The id of the material. For example “MUSHROOM_HELMET_PLUMP:DRINK” or “IN-
ORGANIC:IRON”.

• -state <STATE ID>: The state of the material. Values can be the numerical or text ID. Run lua @df.
matter_state for a full list of valid values.

• -active <TRUE/FALSE>: Whether the preference is active or not (?)

Other arguments:

• -help: Shows this help page.

Example usage:

340 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

• Like drinking dwarf blood:

modtools/pref-edit -add -item -id DRINK -material DWARF:BLOOD -type LikeFood

5.6.400 modtools/projectile-trigger

Tags: unavailable

Command: modtools/projectile-trigger

Run DFHack commands when projectiles hit their targets.

This triggers dfhack commands when projectiles hit their targets.

Usage

-clear
unregister all triggers

-material
specify a material for projectiles that will trigger the command
examples:

INORGANIC:IRON
CREATURE_MAT:DWARF:BRAIN
PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK

-command [commandList]
\\LOCATION
\\PROJECTILE_ID
\\FIRER_ID
\\anything -> \anything
anything -> anything

5.6.401 modtools/random-trigger

Tags: unavailable

Command: modtools/random-trigger

Randomly select DFHack scripts to run.

Trigger random dfhack commands with specified probabilities. Register a few scripts, then tell it to “go” and it will
pick one based on the probability weights you specified.

Events are mutually-exclusive - register a list of scripts along with relative weights, then tell the script to select and
run one with the specified probabilities. The weights must be positive integers, but they do NOT have to sum to any
particular number.

5.6. All DFHack tools alphabetically 341

DFHack Documentation, Release 50.11-r4

The outcomes are mutually exclusive: only one will be triggered. If you want multiple independent random events, call
the script multiple times.

99% of the time, you won’t need to worry about this, but just in case, you can specify a name of a list of outcomes
to prevent interference from other scripts that call this one. That also permits situations where you don’t know until
runtime what outcomes you want. For example, you could make a modtools/reaction-trigger that registers the worker
as a mayor candidate, then run this script to choose a random mayor from the list of units that did the mayor reaction.

Arguments:

-outcomeListName name
specify the name of this list of outcomes to prevent interference
if two scripts are registering outcomes at the same time. If none
is specified, the default outcome list is selected automatically.

-command [commandStrs]
specify the command to be run if this outcome is selected
must be specified unless the -trigger argument is given

-weight n
the relative probability weight of this outcome
n must be a non-negative integer
if not specified, n=1 is used by default

-trigger
selects a random script based on the specified outcomeList
(or the default one if none is specified)

-preserveList
when combined with trigger, preserves the list of outcomes so you
don't have to register them again.

-withProbability p
p is a real number between 0 and 1 inclusive
triggers the command immediately with this probability

-seed s
sets the random seed for debugging purposes
(guarantees the same sequence of random numbers will be produced)
use

-listOutcomes
lists the currently registered list of outcomes of the outcomeList
along with their probability weights, for debugging purposes

-clear
unregister everything

Note: -preserveList is something of a beta feature, which should be avoided by users without a specific reason to
use it.

It is highly recommended that you always specify -outcomeListName when you give this command to prevent almost
certain interference. If you want to trigger one of 5 outcomes three times, you might want this option even without
-outcomeListName.

The list is NOT retained across game save/load, as nobody has yet had a use for this feature. Contact expwnent if you
would use it; it’s not that hard but if nobody wants it he won’t bother.

342 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.402 modtools/raw-lint

Tags: unavailable

Command: modtools/raw-lint

Check for errors in raw files.

Checks for simple issues with raw files. Can be run automatically.

5.6.403 modtools/reaction-product-trigger

Tags: unavailable

Command: modtools/reaction-product-trigger

Call DFHack commands when reaction products are produced.

This triggers dfhack commands when reaction products are produced, once per product.

Usage

-clear
unregister all reaction hooks

-reactionName name
specify the name of the reaction

-command [commandStrs]
specify the command to be run on the target(s)
special args

\\WORKER_ID
\\REACTION
\\BUILDING_ID
\\LOCATION
\\INPUT_ITEMS
\\OUTPUT_ITEMS
\\anything -> \anything
anything -> anything

5.6. All DFHack tools alphabetically 343

DFHack Documentation, Release 50.11-r4

5.6.404 modtools/reaction-trigger

Tags: unavailable

Command: modtools/reaction-trigger

Run DFHack commands when custom reactions complete.

Triggers dfhack commands when custom reactions complete, regardless of whether it produced anything, once per
completion. Arguments:

-clear
unregister all reaction hooks

-reactionName name
specify the name of the reaction

-syndrome name
specify the name of the syndrome to be applied to valid targets

-allowNonworkerTargets
allow other units to be targeted if the worker is invalid or ignored

-allowMultipleTargets
allow all valid targets within range to be affected
if absent:

if running a script, only one target will be used
if applying a syndrome, then only one target will be infected

-ignoreWorker
ignores the worker when selecting the targets

-dontSkipInactive
when selecting targets in range, include creatures that are inactive
dead creatures count as inactive

-range [x y z]
controls how far eligible targets can be from the workshop
defaults to [0 0 0] (on a workshop tile)
negative numbers can be used to ignore outer squares of the workshop
line of sight is not respected, and the worker is always within range

-resetPolicy policy
the policy in the case that the syndrome is already present
policy

NewInstance (default)
DoNothing
ResetDuration
AddDuration

-command [commandStrs]
specify the command to be run on the target(s)
special args

\\WORKER_ID
\\TARGET_ID
\\BUILDING_ID
\\LOCATION
\\REACTION_NAME
\\anything -> \anything
anything -> anything

(continues on next page)

344 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

(continued from previous page)

when used with -syndrome, the target must be valid for the syndrome
otherwise, the command will not be run for that target

5.6.405 modtools/reaction-trigger-transition

Tags: unavailable

Command: modtools/reaction-trigger-transition

Help create reaction triggers.

Prints useful things to the console and a file to help modders transition from autoSyndrome to modtools/reaction-
trigger.

This script is basically an apology for breaking backward compatibility in June 2014, and will be removed eventually.

5.6.406 modtools/set-belief

Tags: unavailable

Command: modtools/set-belief

Change the beliefs/values of a unit.

Changes the beliefs (values) of units. Requires a belief, modifier, and a target.

Valid beliefs:

all Apply the edit to all the target’s beliefs

belief <ID> ID of the belief to edit. For example, 0 or LAW.

Valid modifiers:

set <-50-50> Set belief to given strength.

tier <1-7> Set belief to within the bounds of a strength tier:

Value Strength
1 Lowest
2 Very Low
3 Low
4 Neutral
5 High
6 Very High
7 Highest

5.6. All DFHack tools alphabetically 345

DFHack Documentation, Release 50.11-r4

modify <amount> Modify current belief strength by given amount. Negative values need a \ before the
negative symbol e.g. \-1

step <amount> Modify current belief tier up/down by given amount. Negative values need a \ before the
negative symbol e.g. \-1

random Use the default probabilities to set the belief to a new random value.

default Belief will be set to cultural default.

Valid targets:

citizens All (sane) citizens of your fort will be affected. Will do nothing in adventure mode.

unit <UNIT ID> The given unit will be affected.

If no target is given, the provided unit can’t be found, or no unit id is given with the unit argument, the script will try
and default to targeting the currently selected unit.

Other arguments:

list Prints a list of all beliefs + their IDs.

noneed By default, unit’s needs will be recalculated to reflect new beliefs after every run. Use this argu-
ment to disable that functionality.

listunit Prints a list of all a unit’s beliefs. Cultural defaults are marked with *.

5.6.407 modtools/set-need

Tags: unavailable

Command: modtools/set-need

Change the needs of a unit.

Sets and edits unit needs.

Valid commands:

add Add a new need to the unit. Requires a -need argument, and target. -focus and -level can be used to
set starting values, otherwise they’ll fall back to defaults.

remove Remove an existing need from the unit. Requires a need target, and target.

edit Change an existing need in some way. Requires a need target, at least one effect, and a target.

revert Revert a unit’s needs list back to its original selection and need strengths. Focus levels are preserved
if the unit has a need before and after. Requires a target.

Valid need targets:

need <ID> ID of the need to target. For example 0 or DrinkAlcohol. If the need is PrayOrMedidate, a
-deity argument is also required.

deity <HISTFIG ID> Required when using PrayOrMedidate needs. This value should be the historical
figure ID of the deity in question.

all All of the target’s needs will be affected.

Valid effects:

346 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

focus <NUMBER> Set the focus level of the targeted need. 400 is the value used when a need has just
been satisfied.

level <NUMBER> Set the need level of the targeted need. Default game values are: 1 (Slight need), 2
(Moderate need), 5 (Strong need), 10 (Intense need)

Valid targets:

citizens All (sane) citizens of your fort will be affected. Will do nothing in adventure mode.

unit <UNIT ID> The given unit will be affected.

If no target is given, the provided unit can’t be found, or no unit id is given with the unit argument, the script will try
and default to targeting the currently selected unit.

Other arguments:

help Shows this help page.

list Prints a list of all needs + their IDs.

listunit Prints a list of all a unit’s needs, their strengths, and their current focus.

Usage example - Satisfy all citizen’s needs:

modtools/set-need -edit -all -focus 400 -citizens

5.6.408 modtools/set-personality

Tags: unavailable

Command: modtools/set-personality

Change a unit’s personality.

Changes the personality of units.

Usage

modtools/set-personality --list
modtools/set-personality [<target option>] <trait option> <modifier option> [<other␣
→˓options>]

If no target option is given, the unit selected in the UI is used by default.

5.6. All DFHack tools alphabetically 347

DFHack Documentation, Release 50.11-r4

Target options

--citizens All (sane) citizens of your fort will be affected. Will do nothing in adventure mode.

--unit <UNIT ID> The given unit will be affected.

Trait options

--all Apply the edit to all the target’s traits.

--trait <ID> ID of the trait to edit. For example, 0 or HATE_PROPENSITY.

Modifier options

--set <0-100> Set trait to given strength.

--tier <1-7> Set trait to within the bounds of a strength tier.

Value Strength
1 Lowest
2 Very Low
3 Low
4 Neutral
5 High
6 Very High
7 Highest

--modify <amount> Modify current base trait strength by given amount. Negative values need a \\ before the
negative symbol e.g. \\-1

--step <amount> Modify current trait tier up/down by given amount. Negative values need a \\ before the negative
symbol e.g. \\-1

--random Set the trait to a new random value.

--average Sets trait to the creature’s caste’s average value (as defined in the PERSONALITY creature tokens).

Other options

--list Prints a list of all facets + their IDs.

--noneed By default, unit’s needs will be recalculated to reflect new traits after every run. Use this argument to
disable that functionality.

--listunit Prints a list of all a unit’s personality traits, with their modified trait value in brackets.

348 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

5.6.409 modtools/skill-change

Tags: dev

Command: modtools/skill-change

Modify unit skills.

Sets or modifies a skill of a unit.

Usage

modtools/skill-change --unit <id> --skill <skill> --mode <mode> --granularity
→˓<granularity> --value <amount> [--loud]

Options

--unit <id> Id of the target unit.

--skill <skill> Specify which skill to set.

--mode <mode> Mode can be add or set, depending on whether you want to add to the existing experience/level or
set it.

--granularity <granularity> Granularity can be experience or level, depending on whether you want to
modify/set the experience value or the experience level.

--value <amount> How much to set/add.

--loud if present, prints changes to console

5.6.410 modtools/spawn-flow

Tags: unavailable

Command: modtools/spawn-flow

Creates flows at the specified location.

Creates flows at the specified location.

5.6. All DFHack tools alphabetically 349

DFHack Documentation, Release 50.11-r4

Usage

modtools/spawn-flow --material <TOKEN> --flowType <type> --location [<x> <y> <z>] [--
→˓flowSize <size>]

Options

--material <TOKEN> Specify the material of the flow, if applicable. E.g. INORGANIC:IRON,
CREATURE_MAT:DWARF:BRAIN, or PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK.

--flowType <type> The flow type, one of:

Miasma
Steam
Mist
MaterialDust
MagmaMist
Smoke
Dragonfire
Fire
Web
MaterialGas
MaterialVapor
OceanWave
SeaFoam

--location [<x> <y> <z>] The location to spawn the flow

--flowSize <size> Specify how big the flow is (default: 100).

5.6.411 modtools/spawn-liquid

Tags: dev

Command: modtools/spawn-liquid

Spawn a liquid at a given position.

This script spawns liquid at the given coordinates.

350 Chapter 5. DFHack tools

DFHack Documentation, Release 50.11-r4

Usage

modtools/spawn-liquid --type <type> --level <level> --position <x>,<y>,<z>

Options

--type <type>

Liquid tile type: Water Magma

--level <level> The amount of liquid units to spawn from 1-7.

--position <x>,<y>,<z> The position at which to spawn the liquid.

Examples

modtools/spawn-liquid --type Water --level 7 --position 60,60,143 Spawn 7/7 Water on tile coor-
dinates 60, 60, 143

5.6.412 modtools/syndrome-trigger

Tags: unavailable

Command: modtools/syndrome-trigger

Trigger DFHack commands when units acquire syndromes.

This script helps you set up commands that trigger when syndromes are applied to units.

Usage

modutils/syndrome-trigger --clear
modutils/syndrome-trigger --syndrome <name> --command [<command>]
modutils/syndrome-trigger --synclass <class> --command [<command>]

Options

--clear Clear any previously registered syndrome triggers.

--syndrome <name> Specify a syndrome by its name. Enclose the name in quotation marks if it includes spaces (e.g.
--syndrome "gila monster bite").

--synclass <class> Any syndrome with the specified SYN_CLASS will act as a trigger. Enclose in quotation
marks if it includes spaces.

--command [<command>] Specify the command to be executed after infection. Remember to include a space be-
fore and after the square brackets! The following tokens may be added to appropriate commands where relevant:
:\\UNIT_ID: Inserts the ID of the infected unit. :\\LOCATION: Inserts the x, y, z coordinates of the infected unit.
:\\SYNDROME_ID: Inserts the ID of the syndrome.

5.6. All DFHack tools alphabetically 351

DFHack Documentation, Release 50.11-r4

Examples

modutils/syndrome-trigger --synclass VAMPCURSE --command [modtools/spawn-flow -flowType␣
→˓Dragonfire -location [\\LOCATION]]

5.6.413 modtools/transform-unit

Tags: unavailable

Command: modtools/transform-unit

Transform a unit into another unit type.

This tool transforms a unit into another unit type, either temporarily or permanently.

Warning: this will crash arena mode if you view the unit on the same tick that it transforms. If you wait until later, it
will be fine.

Usage

modtools/transform-unit --unit <id> --race <race> --caste <caste> [--duration <ticks>] [-
→˓-keepInventory] [--setPrevRace]
modtools/transform-unit --unit <id> --untransform
modtools/transform-unit --clear

Options

--unit <id> Set the target unit.

--race <race> Set the target race.

--caste <caste> Set the target caste.

--duration <ticks> Set how long the transformation should last, or “forever”. If not specified, then the transfor-
mation is permanent.

--keepInventory Move items back into inventory after transformation

--setPrevRace Remember the previous race so that you can change the unit back with --untransform

--untransform Turn the unit back into what it was before (assuming you used the --setPrevRace option when
transforming the first time).

--clear Clear records of “previous” races used by the --untransform option.

352 Chapter 5. DFHack tools

CHAPTER

SIX

USER GUIDES

These pages are detailed guides covering DFHack tools.

6.1 DFHack modding guide

6.1.1 What is the difference between a script and a mod?

Well, sometimes there is no difference. A mod is anything you add to the game, which can be graphics overrides,
content in the raws, DFHack scripts, any, or all. There are already resources out there for raws modding, so this guide
will focus more on scripts, both standalone and as an extension to raws-based mods.

A DFHack script is a Lua file that can be run as a command in DFHack. Scripts can do pretty much anything, from
displaying information to enforcing new game mechanics. If you don’t already know Lua, there’s a great primer at
lua.org.

6.1.2 Why not just mod the raws?

It depends on what you want to do. Some mods are better to do in just the raws. You don’t need DFHack to add a new
race or modify attributes. However, DFHack scripts can do many things that you just can’t do in the raws, like make a
creature that trails smoke or launch a unit into the air when they are hit with a certain type of projectile. Some things
could be done in the raws, but a script is better (e.g. easier to maintain, easier to extend, and/or not prone to side-
effects). A great example is adding a syndrome when a reaction is performed. If done in the raws, you have to create
an exploding boulder as an intermediary to apply the syndrome. DFHack scripts can add the syndrome directly and
with much more flexibility. In the end, complex mods will likely require a mix of raw modding and DFHack scripting.

6.1.3 The structure of a mod

In the example below, we’ll use a mod name of example-mod. I’m sure your mods will have more creative names!
Mods have a basic structure that looks like this:

info.txt
graphics/...
objects/...
blueprints/...
scripts_modactive/example-mod.lua
scripts_modactive/internal/example-mod/...
scripts_modinstalled/...
README.md (optional)

353

https://dwarffortresswiki.org/index.php/Modding
https://www.lua.org/pil/contents.html

DFHack Documentation, Release 50.11-r4

Let’s go through that line by line.

• The info.txt file contains metadata about your mod that DF will display in-game. You can read more
about this file in the Official DF Modding Guide.

• Modifications to the game raws (potentially with custom raw tokens) go in the graphics/ and objects/
folders. You can read more about the files that go in these directories on the Modding wiki page.

• Any quickfort blueprints included with your mod go in the blueprints folder. Note that your mod can just
be blueprints and nothing else if you like.

• A control script in scripts_modactive/ directory that handles system-level event hooks (e.g. reloading
state when a world is loaded), registering overlays, and enabling/disabling your mod. You can put other
scripts in this directory as well if you want them to appear as runnable DFHack commands when your mod
is active for the current world. Lua modules that your main scripts use, but which don’t need to be directly
runnable by the player, should go in a subdirectory under scripts_modactive/internal/ so they don’t
show up in the DFHack launcher command autocomplete lists.

• Scripts that you want to be available before a world is loaded (i.e. on the DF title screen) or that you want
to be runnable in any world, regardless of whether your mod is active, should go in the
scripts_modinstalled/ folder. You can also have an internal/ subfolder in here for private mod-
ules if you like.

• Finally, a README.md file that has more information about your mod. If you develop your mod using ver-
sion control (recommended!), that README.md file can also serve as your git repository documentation.

These files end up in a subdirectory under mods/ when players copy them in or install them from the Steam Workshop,
and in data/installed_mods/ when the mod is selected as “active” for the first time.

6.1.4 What if I just want to distribute a simple script?

If your mod is just a script with no raws modifications, things get a bit simpler. All you need is:

info.txt
scripts_modinstalled/yourscript.lua
README.md (optional)

Adding your script to the scripts_modinstalled/ folder will allow DFHack to find it and add your mod to the Script
paths. Your script will be runnable from the title screen and in any loaded world, regardless of whether your mod is
explicitly “active”.

6.1.5 A mod-maker’s development environment

Create a folder for development somewhere outside your Dwarf Fortress installation directory (e.g. /path/to/
mymods/). If you work on multiple mods, you might want to make a subdirectory for each mod.

If you have changes to the raws, you’ll have to copy them into DF’s data/installed_mods/ folder to have them take
effect, but you can set things up so that scripts are run directly from your dev directory. This way, you can edit your
scripts and have the changes available in the game immediately: no copying, no restarting.

How does this magic work? Just add a line like this to your dfhack-config/script-paths.txt file:

+/path/to/mymods/example-mod/scripts_modinstalled

Then that directory will be searched when you run DFHack commands from inside the game. The + at the front of
the path means to search that directory first, before any other script directory (like hack/scripts or other versions of
your mod in the DF mod folders).

354 Chapter 6. User guides

https://bay12games.com/dwarves/modding_guide.html
https://dwarffortresswiki.org/Modding
https://steamcommunity.com/app/975370/workshop/

DFHack Documentation, Release 50.11-r4

6.1.6 The structure of the game

“The game” is in the global variable df . Most of the information relevant to a script is found in df.global.world,
which contains things like the list of all items, whether to reindex pathfinding, et cetera. Also relevant to us are the
various data types found in the game, e.g. df.pronoun_type which we will be using in this guide. We’ll explore more
of the game structures below.

6.1.7 Your first script

So! It’s time to write your first script. This section will walk you through how to make a script that will get the pronoun
type of the currently selected unit.

First line, we get the unit:

local unit = dfhack.gui.getSelectedUnit()

If no unit is selected, unit will be nil and an error message will be printed (which can be silenced by passing true
to getSelectedUnit).

If unit is nil, we don’t want the script to run anymore:

if not unit then
return

end

Now, the field sex in a unit is an integer, but each integer corresponds to a string value (“it”, “she”, or “he”). We get
this value by indexing the bidirectional map df.pronoun_type. Indexing the other way, with one of the strings, will
yield its corresponding number. So:

local pronounTypeString = df.pronoun_type[unit.sex]
print(pronounTypeString)

Simple. Save this as a Lua file in your own scripts directory and run it from gui/launcher when a unit is selected in the
Dwarf Fortress UI.

6.1.8 Exploring DF state

So how could you have known about the field and type we just used? Well, there are two main tools for discovering
the various fields in the game’s data structures. The first is the df-structures repository that contains XML files
describing the layouts of the game’s structures. These are complete, but difficult to read (for a human). The second
option is the gui/gm-editor interface, an interactive data explorer. You can run the script while objects like units are
selected to view the data within them. Press ? while the script is active to view help.

Familiarising yourself with the many structs of the game will help with ideas immensely, and you can always ask for
help in the right places.

6.1. DFHack modding guide 355

https://github.com/DFHack/df-structures

DFHack Documentation, Release 50.11-r4

6.1.9 Reacting to events

The common method for injecting new behaviour into the game is to define a callback function and get it called when
something interesting happens. DFHack provides two libraries for this, repeat-util and eventful. repeat-util is
used to run a function once per a configurable number of frames (paused or unpaused), ticks (unpaused), in-game days,
months, or years. If you need to be aware the instant something happens, you’ll need to run a check once a tick. Be
careful not to do this gratuitously, though, since running callbacks too often can slow down the game!

eventful, on the other hand, is much more performance-friendly since it will only call your callback when a relevant
event happens, like a reaction or job being completed or a projectile moving.

To get something to run once per tick, we can call repeat-util.scheduleEvery(). First, we load the module:

local repeatUtil = require('repeat-util')

Both repeat-util and eventful require keys for registered callbacks. You should use something unique, like your
mod name:

local modId = "callback-example-mod"

Then, we pass the key, amount of time units between function calls, what the time units are, and finally the callback
function itself:

repeatUtil.scheduleEvery(modId, 1, "ticks", function()
-- Do something like iterating over all active units and
-- check for something interesting
for _, unit in ipairs(df.global.world.units.active) do

...
end

end)

eventful is slightly more involved. First get the module:

local eventful = require('plugins.eventful')

eventful contains a table for each event which you populate with functions. Each function in the table is then called
with the appropriate arguments when the event occurs. So, for example, to print the position of a moving (item)
projectile:

eventful.onProjItemCheckMovement[modId] = function(projectile)
print(projectile.cur_pos.x, projectile.cur_pos.y,

projectile.cur_pos.z)
end

Check out the full list of supported events to see what else you can react to with eventful.

Now, you may have noticed that you won’t be able to register multiple callbacks with a single key named after your
mod. You can, of course, call all the functions you want from a single registered callback. Alternately, you can create
multiple callbacks using different keys, using your mod ID as a key name prefix. If you do register multiple callbacks,
though, there are no guarantees about the call order.

356 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

6.1.10 Custom raw tokens

In this section, we are going to use custom raw tokens applied to a reaction to transfer the material of a reagent to a
product as a handle improvement (like on artifact buckets), and then we are going to see how you could make boots
that make units go faster when worn.

First, let’s define a custom crossbow with its own custom reaction. The crossbow:

[ITEM_WEAPON:ITEM_WEAPON_CROSSBOW_SIEGE]
[NAME:crossbow:crossbows]
[SIZE:600]
[SKILL:HAMMER]
[RANGED:CROSSBOW:BOLT]
[SHOOT_FORCE:4000]
[SHOOT_MAXVEL:800]
[TWO_HANDED:0]
[MINIMUM_SIZE:17500]
[MATERIAL_SIZE:4]
[ATTACK:BLUNT:10000:4000:bash:bashes:NO_SUB:1250]

[ATTACK_PREPARE_AND_RECOVER:3:3]
[SIEGE_CROSSBOW_MOD_FIRE_RATE_MULTIPLIER:2] custom token (you'll see)

The reaction to make it (you would add the reaction and not the weapon to an entity raw):

[REACTION:MAKE_SIEGE_CROSSBOW]
[NAME:make siege crossbow]
[BUILDING:BOWYER:NONE]
[SKILL:BOWYER]
[REAGENT:mechanism 1:2:TRAPPARTS:NONE:NONE:NONE]
[REAGENT:bar:150:BAR:NONE:NONE:NONE]

[METAL_ITEM_MATERIAL]
[REAGENT:handle 1:1:BLOCKS:NONE:NONE:NONE] wooden handles

[ANY_PLANT_MATERIAL]
[REAGENT:handle 2:1:BLOCKS:NONE:NONE:NONE]

[ANY_PLANT_MATERIAL]
[SIEGE_CROSSBOW_MOD_TRANSFER_HANDLE_MATERIAL_TO_PRODUCT_IMPROVEMENT:1]

another custom token
[PRODUCT:100:1:WEAPON:ITEM_WEAPON_CROSSBOW_SIEGE:GET_MATERIAL_FROM_REAGENT:bar:NONE]

So, we are going to use the eventful module to make it so that (after the script is run) when this crossbow is crafted,
it will have two handles, each with the material given by the block reagents.

First, require the modules we are going to use:

local eventful = require("plugins.eventful")
local customRawTokens = require("custom-raw-tokens")

Now, let’s make a callback (we’ll be defining the body of this function soon):

local modId = "siege-crossbow-mod"
eventful.onReactionComplete[modId] = function(reaction,

reactionProduct, unit, inputItems, inputReagents,
outputItems)

First, we check to see if it the reaction that just happened is relevant to this callback:

6.1. DFHack modding guide 357

DFHack Documentation, Release 50.11-r4

if not customRawTokens.getToken(reaction,
"SIEGE_CROSSBOW_MOD_TRANSFER_HANDLE_MATERIAL_TO_PRODUCT_IMPROVEMENT")

then
return

end

Then, we get the product number listed. Next, for every reagent, if the reagent name starts with “handle” then we get
the corresponding item, and. . .

for i, reagent in ipairs(inputReagents) do
if reagent.code:startswith('handle') then

-- Found handle reagent
local item = inputItems[i]

. . .We then add a handle improvement to the listed product within our loop:

local new = df.itemimprovement_itemspecificst:new()
new.mat_type, new.mat_index = item.mat_type, item.mat_index
new.type = df.itemimprovement_specific_type.HANDLE
outputItems[productNumber - 1].improvements:insert('#', new)

This works well as long as you don’t have multiple stacks filling up one reagent.

Let’s also make some code to modify the fire rate of our siege crossbow:

eventful.onProjItemCheckMovement[modId] = function(projectile)
if projectile.distance_flown > 0 then

-- don't make this adjustment more than once
return

end

local firer = projectile.firer
if not firer then

return
end

local weapon = df.item.find(projectile.bow_id)
if not weapon then

return
end

local multiplier = tonumber(customRawTokens.getToken(
weapon.subtype,
"SIEGE_CROSSBOW_MOD_FIRE_RATE_MULTIPLIER")) or 1

firer.counters.think_counter = math.floor(
firer.counters.think_counter * multiplier)

end

Now, let’s see how we could make some “pegasus boots”. First, let’s define the item in the raws:

[ITEM_SHOES:ITEM_SHOES_BOOTS_PEGASUS]
[NAME:pegasus boot:pegasus boots]
[ARMORLEVEL:1]
[UPSTEP:1]

(continues on next page)

358 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

(continued from previous page)

[METAL_ARMOR_LEVELS]
[LAYER:OVER]
[COVERAGE:100]
[LAYER_SIZE:25]
[LAYER_PERMIT:15]
[MATERIAL_SIZE:2]
[METAL]
[LEATHER]
[HARD]
[PEGASUS_BOOTS_MOD_FOOT_MOVEMENT_TIMER_REDUCTION_PER_TICK:2] custom raw token

(you don't have to comment the custom token every time,
but it does clarify what it is)

Then, let’s make a repeat-util callback for once a tick:

repeatUtil.scheduleEvery(modId, 1, "ticks", function()

Let’s iterate over every active unit, and for every unit, iterate over their worn items to calculate how much we are going
to take from their on-foot movement timers:

for _, unit in ipairs(df.global.world.units.active) do
local amount = 0
for _, entry in ipairs(unit.inventory) do

if entry.mode == df.unit_inventory_item.T_mode.Worn then
local reduction = customRawTokens.getToken(

entry.item,
'PEGASUS_BOOTS_MOD_FOOT_MOVEMENT_TIMER_REDUCTION_PER_TICK')

amount = amount + (tonumber(reduction) or 0)
end

end
-- Subtract amount from on-foot movement timers if not on ground
if not unit.flags1.on_ground then

dfhack.units.subtractActionTimers(unit, amount,
df.unit_action_type_group.MovementFeet)

end
end

6.1.11 Putting it all together

Ok, you’re all set up! Now, let’s take a look at an example scripts_modinstalled/example-mod.lua file:

-- main file for example-mod

-- these lines indicate that the script supports the "enable"
-- API so you can start it by running "enable example-mod" and
-- stop it by running "disable example-mod"
--@module = true
--@enable = true

-- this is the help text that will appear in `help` and
-- `gui/launcher`. see possible tags here:

(continues on next page)

6.1. DFHack modding guide 359

DFHack Documentation, Release 50.11-r4

(continued from previous page)

-- https://docs.dfhack.org/en/latest/docs/Tags.html
--[====[
example-mod
===========

Tags: fort | gameplay

Short one-sentence description ...

Longer description ...

Usage

enable example-mod
disable example-mod

]====]

local repeatUtil = require('repeat-util')
local eventful = require('plugins.eventful')

-- you can reference global values or functions declared in any of
-- your internal scripts
local moduleA = reqscript('internal/example-mod/module-a')
local moduleB = reqscript('internal/example-mod/module-b')
local moduleC = reqscript('internal/example-mod/module-c')
local moduleD = reqscript('internal/example-mod/module-d')

local GLOBAL_KEY = 'example-mod'

enabled = enabled or false

function isEnabled()
-- this function is for the enabled API, the script won't show up on the
-- control panel without it
return enabled

end

dfhack.onStateChange[GLOBAL_KEY] = function(sc)
if sc == SC_MAP_UNLOADED then

dfhack.run_command('disable', 'example-mod')

-- ensure our mod doesn't try to enable itself when a different
-- world is loaded where we are *not* active
dfhack.onStateChange[GLOBAL_KEY] = nil

return
end

if sc ~= SC_MAP_LOADED or df.global.gamemode ~= df.game_mode.DWARF then
return

end
(continues on next page)

360 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

(continued from previous page)

dfhack.run_command('enable', 'example-mod')
end

if dfhack_flags.module then
return

end

if not dfhack_flags.enable then
print(dfhack.script_help())
print()
print(('Example mod is currently '):format(

enabled and 'enabled' or 'disabled'))
return

end

if dfhack_flags.enable_state then
-- do any initialization your internal scripts might require
moduleA.onLoad()
moduleB.onLoad()

-- multiple functions in the same repeat callback
repeatUtil.scheduleEvery(modId .. ' every tick', 1, 'ticks', function()

moduleA.every1Tick()
moduleB.every1Tick()

end)

-- one function per repeat callback (you can put them in the
-- above format if you prefer)
repeatUtil.scheduleEvery(modId .. ' 100 frames', 1, 'frames',

moduleD.every100Frames)

-- multiple functions in the same eventful callback
eventful.onReactionComplete[modId] = function(reaction,

reaction_product, unit, input_items, input_reagents,
output_items)

-- pass the event's parameters to the listeners
moduleB.onReactionComplete(reaction, reaction_product,

unit, input_items, input_reagents, output_items)
moduleC.onReactionComplete(reaction, reaction_product,

unit, input_items, input_reagents, output_items)
end

-- one function per eventful callback (you can put them in the
-- above format if you prefer)
eventful.onProjItemCheckMovement[modId] = moduleD.onProjItemCheckMovement
eventful.onProjUnitCheckMovement[modId] = moduleD.onProjUnitCheckMovement

print('Example mod enabled')
enabled = true

else
-- call any shutdown functions your internal scripts might require

(continues on next page)

6.1. DFHack modding guide 361

DFHack Documentation, Release 50.11-r4

(continued from previous page)

moduleA.onUnload()

repeatUtil.cancel(modId .. ' every ticks')
repeatUtil.cancel(modId .. ' 100 frames')

eventful.onReactionComplete[modId] = nil
eventful.onProjItemCheckMovement[modId] = nil
eventful.onProjUnitCheckMovement[modId] = nil

print('Example mod disabled')
enabled = false

end

Inside scripts_modinstalled/internal/example-mod/module-a.lua you could have code like this:

--@ module = true

function onLoad() -- global variables are exported
-- do initialization here

end

-- this is a local function: local functions/variables
-- are not accessible to other scripts.
local function usedByOnTick(unit)

-- ...
end

function onTick() -- exported
for _,unit in ipairs(df.global.world.units.all) do

usedByOnTick(unit)
end

end

The reqscript function reloads scripts that have changed, so you can modify your scripts while DF is running and just
disable/enable your mod to load the changes into your ongoing game!

6.2 Quickfort blueprint library

This guide contains a high-level overview of the blueprints available in the quickfort blueprint library.

Each file is hyperlinked to its online version so you can see exactly what the blueprints do before you run them. Also,
if you use gui/quickfort, you will get a live preview of which tiles will be modified by the blueprint before you apply it
to your map.

362 Chapter 6. User guides

https://github.com/DFHack/dfhack/tree/develop/data/blueprints

DFHack Documentation, Release 50.11-r4

6.2.1 Whole fort blueprint sets

These files contain the plans for entire fortresses. Each file has one or more help sections that walk you through how
to build the fort, step by step.

• library/dreamfort.csv

• library/quickfortress.csv

Dreamfort

Dreamfort is a fully functional, self-sustaining fortress with defenses, farming, a complete set of workshops, self-
managing quantum stockpiles, a grand dining hall, hospital (werecreature-ready), library, temple, jail, fresh water well
system, guildhalls, noble suites, and bedrooms for hundreds of dwarves. It also comes with manager work orders
to automate basic fort needs, such as food, booze, and item production. It can function by itself or as the core of a
larger, more ambitious fortress. Read the walkthrough by running gui/quickfort, searching for dreamfort help, and
selecting the blueprints.

Dreamfort blueprints are available for easy viewing and copying online.

The online spreadsheets also include embark profile suggestions, a complete example embark profile, and a convenient
checklist that you can use to track your progress.

If you like, you can download a fully built Dreamfort-based fort from dffd, load it, and explore it interactively.

Here are annotated screenshots of the major Dreamfort levels (or click here for a slideshow).

6.2. Quickfort blueprint library 363

https://github.com/DFHack/dfhack/tree/develop/data/blueprints/dreamfort.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/quickfortress.csv
https://drive.google.com/drive/folders/1dsmvnzbOKsyFS3DCj0F8ibSnMhVHEjdV
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio/edit#gid=149144025
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio/edit#gid=1727884387
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio/edit#gid=1459509569
https://dffd.bay12games.com/file.php?id=15434
https://drive.google.com/drive/folders/1_gtMQAqa13zZjGkf3fiY3CNEuRpt_WF2

DFHack Documentation, Release 50.11-r4

Surface level

364 Chapter 6. User guides

https://drive.google.com/file/d/1dlu3nmwQszav-ZaTx-ac28wrcaYBQc_t

DFHack Documentation, Release 50.11-r4

Farming level

6.2. Quickfort blueprint library 365

https://drive.google.com/file/d/1vDaedLcgoexUdKREUz75ZXQi0ZSdwWwj

DFHack Documentation, Release 50.11-r4

Industry level

366 Chapter 6. User guides

https://drive.google.com/file/d/1c8YTHxTgJY5tUII-BOWdLhmDFAHwIOEs

DFHack Documentation, Release 50.11-r4

Services levels (4 deep)

Services waterway:

6.2. Quickfort blueprint library 367

https://drive.google.com/file/d/1RQMy_zYQWM5GN7-zjn6LoLWmnrJjkxPM

DFHack Documentation, Release 50.11-r4

Example plumbing to fill cisterns

If you are routing water to fill the cisterns, you can do it like this (1 z-level below the preceding screenshot)

368 Chapter 6. User guides

https://drive.google.com/file/d/1SXknicNS13Dkq1A_8QLoK8OMxdolw-BY

DFHack Documentation, Release 50.11-r4

Cistern drain (keep open while you’re digging out the aquifer tap):

6.2. Quickfort blueprint library 369

https://drive.google.com/file/d/1paXqPJ-7h9_jG_eNXU1z5GGvR0J8C0uJ

DFHack Documentation, Release 50.11-r4

370 Chapter 6. User guides

https://drive.google.com/file/d/1SwSluJcN_kOrCYPdcFOfJ13wEDvZGcJe

DFHack Documentation, Release 50.11-r4

Guildhall level

6.2. Quickfort blueprint library 371

https://drive.google.com/file/d/1mt66QOkfBqFLtw6AJKU6GNYmhB72XSJG

DFHack Documentation, Release 50.11-r4

Noble suites

372 Chapter 6. User guides

https://drive.google.com/file/d/16XRb1w5zFoyVq2LBMx_aCwOyjFq7GULc

DFHack Documentation, Release 50.11-r4

Apartments

6.2. Quickfort blueprint library 373

https://drive.google.com/file/d/16-NXlodLIQjeZUMSmsWRafeytwU2dXQo

DFHack Documentation, Release 50.11-r4

Crypt

374 Chapter 6. User guides

https://drive.google.com/file/d/16iT_ho7BIRPD_eofuxdlVQ4FunR1Li23

DFHack Documentation, Release 50.11-r4

The Quick Fortress

The Quick Fortress is an updated version of the example fortress that came with Python Quickfort 2.0 (the utility
that inspired DFHack quickfort). While it is not a complete fortress by itself, it is much simpler than Dreamfort
and is good for a first introduction to quickfort blueprints. Read its walkthrough with quickfort run library/
quickfortress.csv or view the blueprints online.

6.2.2 Layout helpers

These files simply draw diagonal marker-mode lines starting from the cursor. They are especially useful for finding the
center of the map when you are planning your fortress. Once you are done using them for alignment, use quickfort
undo at the same cursor position to make them disappear. Since these #dig blueprints can only mark undug wall tiles
for mining, they are best used underground. They won’t do much on the surface, where there aren’t many walls.

• library/layout-helpers/mark_up_left.csv

• library/layout-helpers/mark_up_right.csv

• library/layout-helpers/mark_down_right.csv

• library/layout-helpers/mark_down_left.csv

6.2.3 Bedrooms

These are popular bedroom layouts from the Bedroom design page on the wiki. Each file has blueprints to dig the
rooms, zone them as bedrooms, and build the furniture.

• library/bedrooms/48-4-Raynard_Whirlpool_Housing.csv

• library/bedrooms/95-9-Hactar1_3_Branch_Tree.csv

• library/bedrooms/28-3-Modified_Windmill_Villas.csv

6.2.4 Tombs

These blueprints have burial plot layouts for fortress that expect a lot of casualties.

• library/tombs/Mini_Saracen.csv

• library/tombs/The_Saracen_Crypts.csv

6.2.5 Exploratory mining

Several mining patterns to choose from when searching for gems or ores. The patterns can be repeated up or down
z-levels (via gui/quickfort's repeat functionality) for exploring through the depths.

• library/exploratory-mining/tunnels.csv

• library/exploratory-mining/vertical-mineshafts.csv

• library/exploratory-mining/connected-mineshafts.csv

6.2. Quickfort blueprint library 375

https://github.com/joelpt/quickfort
https://docs.google.com/spreadsheets/d/1WuLYZBM6S2nt-XsPS30kpDnngpOQCuIdlw4zjrcITdY
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/layout-helpers/mark_up_left.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/layout-helpers/mark_up_right.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/layout-helpers/mark_down_right.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/layout-helpers/mark_down_left.csv
https://dwarffortresswiki.org/Bedroom design
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/bedrooms/48-4-Raynard_Whirlpool_Housing.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/bedrooms/95-9-Hactar1_3_Branch_Tree.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/bedrooms/28-3-Modified_Windmill_Villas.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/tombs/Mini_Saracen.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/tombs/The_Saracen_Crypts.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/exploratory-mining/tunnels.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/exploratory-mining/vertical-mineshafts.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/exploratory-mining/connected-mineshafts.csv

DFHack Documentation, Release 50.11-r4

6.2.6 Miscellaneous

Extra blueprints that are useful in specific situations.

• library/aquifer_tap.csv

• library/embark.csv

• library/pump_stack.csv

Light aquifer tap

The aquifer tap helps you create a safe, everlasting source of fresh water from a light aquifer. See the step-by-step
guide, including information on how to create a drainage system so your dwarves don’t drown when digging the tap,
by running the library/aquifer_tap.csv /help blueprint.

You can see how to nullify the water pressure (so you don’t flood your fort) in the Dreamfort cistern screenshot above:
Services levels (4 deep).

The blueprint spreadsheet is also available online.

376 Chapter 6. User guides

https://github.com/DFHack/dfhack/tree/develop/data/blueprints/aquifer_tap.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/embark.csv
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/pump_stack.csv
https://docs.google.com/spreadsheets/d/1kwuCipF9FYAHNP9C_XlMpqVseaPu4SmL9YLUSQkbW4s/edit#gid=611877584

DFHack Documentation, Release 50.11-r4

Post-embark

The embark blueprints are useful directly after embark. It contains a #build blueprint that builds important starting
workshops (mason, carpenter, mechanic, and craftsdwarf) and a #place blueprint that lays down a pattern of useful
starting stockpiles.

6.2. Quickfort blueprint library 377

https://drive.google.com/file/d/11bzEF615QTyTNbN8A8M4UYi1YWtqPuCf

DFHack Documentation, Release 50.11-r4

Pump stack

The pump stack blueprints help you move water and magma up to more convenient locations in your fort. See the
step-by-step guide for using it by running the library/pump_stack.csv /help blueprint.

The blueprint spreadsheet is also available online.

6.3 Quickfort blueprint creation guide

Quickfort is a DFHack tool that helps you build fortresses from “blueprint” .csv and .xlsx files. Many applications exist
to edit these files, such as MS Excel and Google Sheets. Most layout and building-oriented DF actions are supported
through the use of multiple files or spreadsheets, each describing a different phase of DF construction: designating
digging, defining zones, placing stockpiles, and building.

The original idea came from Valdemar’s auto-designation macro. Joel Thornton reimplemented the core logic in Python
and extended its functionality with Quickfort 2.0. This DFHack-native implementation, called “DFHack Quickfort”
or just “quickfort”, builds upon Quickfort 2.0’s formats and features, preserving compatibility with existing blueprints
(where possible – DF itself has changed since then). In contrast with the earlier quickfort implementations, which
interacted with DF by simulating keyboard input, DFHack Quickfort calls lower-level API functions to designate tiles
and configure buildings. This allows for nearly instantaneous blueprint application, error checking and recovery, and
many other advanced features.

This guide focuses on DFHack Quickfort’s capabilities and blueprint syntax, and teaches players how to understand
and create blueprint files. Some of the text was originally written by Joel Thornton, reused here with his permission.

If you are just looking to apply existing blueprints to your fort, check out gui/quickfort (or quickfort for the commandline
version). There are many ready-to-use blueprints available in the Quickfort blueprint library distributed with DFHack.

Before you become an expert at writing blueprints, though, you should know that the easiest way to make a quickfort
blueprint is to build your plan “for real” in Dwarf Fortress and then export that section of your map using gui/blueprint.
You can apply those blueprints as-is in your next fort, or you can fine-tune them with additional features from this
guide.

See the Links section for more information and online resources.

Table of Contents

• Feature summary

• Introduction to blueprints

– Area expansion syntax

– Property syntax

– Label syntax

– Automatic area expansion

– Multilevel blueprints

• #dig mode

– Dig priorities

– Marker mode

– Carved minecart tracks

378 Chapter 6. User guides

https://docs.google.com/spreadsheets/d/1TP2n-W-O9f30Dtl6yoTcn6yczWQRu11iM7U6TEE9634/edit#gid=0
https://sheets.new
https://dwarffortresswiki.org/User:Valdemar
https://github.com/joelpt/quickfort

DFHack Documentation, Release 50.11-r4

• #zone mode

– Zone designation syntax

– Locations, locations, locations

• #place mode

– Stockpile designation syntax

– Stockpile types

– Bins, barrels, and wheelbarrows

– Stockpile configuration

• #build mode

– Building designation syntax

– Hauling route definitions

• #burrow mode

– Burrow designation syntax

• Modeline markers

– Blueprint labels

– Start positions

– Hiding blueprints

– Messages

• Other blueprint modes

– #notes mode

– #ignore mode

– #meta mode

• Packaging a set of blueprints

• Buildingplan integration

• Generating manager orders

– Extra Manager Orders

• Tips and tricks

• Caveats and limitations

• Dreamfort case study: a practical guide to advanced blueprint design

– Dreamfort organization and packaging

– The surface level: how to manage complexity

– The farming level: fun with stockpiles

– The industry level: advanced linking

– The services level: handling multi-level dig blueprints

– The guildhall level: avoiding smoothing issues

6.3. Quickfort blueprint creation guide 379

DFHack Documentation, Release 50.11-r4

– The suites level: balance of flexibility

– The beds and crypt levels: copy and paste and repeat

• Links

• Appendix: Symbols and properties

– #dig mode reference

– #zone mode reference

– #place mode reference

– #build mode reference

– #burrow mode reference

6.3.1 Feature summary

• General

– Blueprint modes for all phases of fort design

– Read blueprints from .csv or multi-worksheet .xlsx files

– Near-instant application, even for very large and complex blueprints

– Blueprints can span multiple z-levels

– Easy sharing of blueprints with multi-blueprint files

– Scripted application of sequences of blueprints

– Undo applied blueprints

– Rotate blueprints or flip them around

– Automatic cropping of blueprints that extend off the map

– Generate manager orders for items required by a blueprint

– Includes a library of ready-to-use blueprints

– Blueprint debugging

• Dig mode

– Supports all types of designations, including dumping/forbidding items and setting traffic settings

– Supports setting dig priorities

– Supports applying dig blueprints in marker mode

– Handles carving arbitrarily complex minecart tracks, including tracks that cross other tracks

• Zone and place modes

– Define zones and stockpiles of any shape, not just rectangles

– Configurable numbers of bins, barrels and wheelbarrows assigned to created stockpiles

– Automatic splitting of stockpiles that exceed maximum dimension limits

– Create and attach locations to zones

– Full control over stockpile configuration based on the stockpiles settings library

380 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

– Configurable zone/location settings, such as the pit/pond toggle or hospital supply quantities

• Build mode

– Integrated with DFHack buildingplan: you can place buildings before manufacturing building materials
and you can use the buildingplan UI for setting materials and quality preferences

– Designate entire constructions in mid-air without having to wait for each tile to become supported

– Automatic expansion of building footprints to their minimum dimensions, so only the center tile of a multi-
tile building needs to be recorded in the blueprint

– Tile occupancy and validity checking so, for example, buildings that cannot be placed on a target tile will be
skipped instead of causing errors and interrupting the blueprint. Blueprints that are only partially applied
for any reason (e.g. you need to dig out some more tiles) can be safely reapplied to build the remaining
buildings.

– Relaxed rules for farm plot and road placement: you can still place the building even if an invalid tile (e.g.
stone tiles for farm plots) splits the designated area into two disconnected parts

– Intelligent boundary detection for adjacent buildings of the same type (e.g. a 6x6 block of wj cells will be
correctly split into 4 jeweler’s workshops)

– Set building properties (such as a name)

– Can attach and configure track stops as part of hauling routes

• Burrow mode

– Supports creating, adding to, and subtracting from burrows.

6.3.2 Introduction to blueprints

We recommend using a spreadsheet editor such as Excel, Google Sheets, or LibreOffice to edit blueprint files, but any
text editor will do.

The format of Quickfort-compatible blueprint files is straightforward. The first line (or upper-left cell) of the spreadsheet
should look like this:

#dig

The keyword dig tells Quickfort we are going to be specifying designations. The following “mode” keywords are
understood:

Blueprint mode Description
dig Designations (digging, traffic, dumping, etc.)
build Constructions, buildings, and furniture
place Stockpiles
zone Activity zones

If no modeline appears in the first cell, Quickfort assumes that it’s looking at a #dig blueprint.

There are also other modes that don’t directly correspond to Dwarf Fortress design operations, but we’ll talk about
those later.

If you like, you may enter a comment after the mode keyword. This comment will appear in the output of quickfort
list or in the dialog window when running gui/quickfort. You can use this space for explanations, attribution, etc.:

#dig grand dining room

6.3. Quickfort blueprint creation guide 381

https://sheets.new
https://www.libreoffice.org

DFHack Documentation, Release 50.11-r4

Below this line, begin entering keys in each spreadsheet cell that represent what you want designated in the correspond-
ing game map tile. For example, we could dig out a 4x4 room like so (spaces are used as column separators here for
readability, but a real .csv file would have commas):

#dig
d d d d #
d d d d #
d d d d #
d d d d #
#

The letter d here stands for “dig”. The character sequences in these blueprints are based on the old (pre-v50) keyboard
shortcuts for the various DF menus. Please see the Appendix: Symbols and properties below for a full reference.

Note the # symbols at the right end of each row and below the last row. These are completely optional, but can be
helpful to make the row and column positions clear.

Once the dwarves have that dug out, let’s zone it as a bedroom:

#zone
b b b b #
b b b b #
b b b b #
b b b b #
#

This looks very similar to the #dig blueprint above, but with bs instead of ds. The bs mark the area for a bedroom
zone just like the #dig blueprint marked the area for digging. It’s important to wait until after the area is completely
dug out before applying further blueprints since zones can’t be applied to hidden tiles and furniture can’t be built in
undug walls.

Now, let’s add some walls and furniture:

#build
Cw Cw Cw Cw #
Cw b h Cw #
Cw Cw #
Cw Cw Cw #
#

The Cw cells represent the constructed walls, leaving space for a door that we might want to add later. Quickfort uses
buildingplan for managing buildings, so the walls will be built out of whatever matches the current buildingplan filter
set for walls. Also note my generosity – in addition to the bed (b) I’ve built a container (h) for this lucky dwarf.

Finally, let’s place a booze stockpile in the 2 unoccupied tiles in the room:

#place personal booze stockpile
` ` ` ` #
` ~ ~ ` #
` f f{name="bedroom booze"}:=booze
` ` ` #
#

This illustration may be a little hard to understand. The two f characters are in row 3, columns 2 and 3. All the other
cells are empty. QF considers both ` (backtick – the character under the tilde) and ~ (tilde) characters within cells to
be empty cells; this can help with multilayer or fortress-wide blueprint layouts as “chalk lines”.

382 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

QF is smart enough to recognize this as a 2x1 food stockpile, and creates it as such rather than as two 1x1 food
stockpiles. Quickfort treats any connected region of identical designations as a single entity. The tiles can be connected
orthogonally or diagonally, just as long as they are touching. You can also treat disconnected segments as belonging to
the same stockpile, but we’ll get into Label syntax later.

Now what’s all that business attached to the second f? The part between the curly brackets specifies properties, in
this case the name that we want to give the stockpile. The remaining part, from the colon (:) onward, applies the
booze preset from the stockpiles library. That will configure the stockpile to accept only booze. You can use presets
(along with other options that we’ll go over later) to configure stockpiles however you want, directly from the #place
blueprint.

And that’s it! You now have a series of blueprints that you can “stamp” across your fort to quickly build new bedrooms.

Area expansion syntax

In Quickfort, the following blueprints are equivalent:

#dig a 3x3 area
d d d #
d d d #
d d d #
#

#dig the same area with d(3x3) specified in row 1, col 1
d(3x3)#
` ` ` #
` ` ` #
#

The second example uses Quickfort’s “area expansion syntax”, which takes the form:

text(WxH)

Note that area expansion syntax can only specify rectangular areas. If you want to create extent-based structures (e.g.
farm plots or stockpiles) in different shapes, use the first format above. For example:

#place A single L shaped food stockpile
f f ` ` #
f f ` ` #
f f f f #
f f f f #
#

Area expansion syntax also sets boundaries, which can be useful if you want adjacent, but separate, stockpiles of the
same type:

#place Two touching but separate food stockpiles
f(2x2) #
~ ~ ` ` #
f(4x2) #
~ ~ ~ ~ #
#

As mentioned previously, ~ characters are ignored as comment characters and can be used for visualizing the blueprint
layout. This blueprint can be equivalently written as:

6.3. Quickfort blueprint creation guide 383

DFHack Documentation, Release 50.11-r4

#place Two touching but separate food stockpiles
f(2x2) #
~ ~ ` ` #
f f f f #
f f f f #
#

since the area expansion syntax of the upper stockpile prevents it from combining with the lower, freeform syntax
stockpile.

Area expansion syntax can also be used for buildings which have an adjustable size, like bridges. The following
blueprints are equivalent:

#build a 4x2 bridge from row 1, col 1
ga(4x2) ` #
` ` ` ` #
#

#build a 4x2 bridge from row 1, col 1
ga ga ga ga #
ga ga ga ga #
#

If it is convenient to do so, you can place the cell with the expansion syntax in any corner of the resulting rectangle.
Just use negative numbers to indicate which direction the designation should expand in. For example, the previous
blueprint could also be written as:

#build a 4x2 bridge from row 2, col 4
` ` ` ` #
ga(4x-2) ` #
#

Property syntax

Many things you can designate with quickfort are configurable. All buildings, stockpiles, and zones, for example, can
be named. These configuration elements are expressed as properties.

Properties are written between curly brackets ({}). There can be multiple properties defined between those brackets,
separated by spaces. Each property has a name and a value, with an equal sign to connect them. If a property value
has a space within it, it should be surrounded by double quotes (").

If you have defined the area of something over multiple spreadsheet cells, you can specify properties in just one of
those cells and they will apply to the whole object. You can even split properties up among multiple cells if that is more
convenient. If you are using expansion syntax, the expansion part always goes last.

Here’s an example of a seed stockpile that is configured to take from a seed feeder stockpile:

#place
f{name=Seeds links_only=true}:=seeds(3x2)

f
f{name="Seeds feeder" give_to=Seeds}:=seeds
f{containers=0}

384 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Different modes and different types may have different properties that you can configure. See the Appendix: Symbols
and properties for a full list.

Label syntax

Labels are different from the name property. They are only used internally by Quickfort to associate tiles with a
particular zones or stockpiles. This is useful for when you want to define two touching zones or stockpiles of the
same type(s), but you can’t use expansion syntax because they are non-rectangular. It is also useful for marking two
disconnected regions as belonging to the same zone or stockpile. Note that every tile in the zone or stockpile must be
marked with the same label:

#place two touching stockpiles of the same type
f/feed f/feed f/feed{name="Seeds feeder" containers=0}:=seeds
f/feed f f/feed
f f f{name=Seeds links_only=true take_from="Seeds feeder"}:=seeds

#zone one pasture in two disconnected regions
n/slots n/slots n/slots

n/slots{name="Pasture slots"}(3x1)

Automatic area expansion

Buildings larger than 1x1, like workshops, can be represented in any of three ways. You can designate just their center
tile with empty cells around it to leave room for the footprint, like this:

#build a stonecutter workshop in row 2, col 2 that will occupy the 3x3 area
` ` ` #
` wm ` #
` ` ` #
#

Or you can fill out the entire footprint like this:

#build a stonecutter workshop
wm wm wm #
wm wm wm #
wm wm wm #
#

This format may be verbose for regular workshops, but it can be very helpful for laying out structures like screw pump
towers and waterwheels, whose “center point” can be non-obvious.

Or you can use area expansion syntax:

#build a stonecutter workshop
wm(3x3) #
` ` ` #
` ` ` #
#

This style can be convenient for laying out multiple buildings of the same type. If you are building a large-scale block
factory, for example, this will create 20 stonecutter workshops all in a row:

6.3. Quickfort blueprint creation guide 385

DFHack Documentation, Release 50.11-r4

#build line of 20 stonecutter workshops
wm(60x3)

Quickfort will intelligently break large areas of the same designation into appropriately-sized chunks.

Multilevel blueprints

Multilevel blueprints are accommodated by separating Z-levels of the blueprint with #> (go down one z-level) or #<
(go up one z-level) at the end of each floor.

#dig Stairs leading down to a small room below
j ` ` #
` ` ` #
` ` ` #
#> # # #
u d d #
d d d #
d d d #
#

The marker must appear in the first column of the row to be recognized, just like a modeline.

You can go up or down multiple levels by adding a number after the < or >. For example:

#dig Two double-level quarries
r(10x10)
#>2
r(10x10)

6.3.3 #dig mode

#dig blueprints are normally the first step in any design. They define the boundaries and layouts for the blueprints
for later stages of construction. Despite their name, #dig blueprints are for more than just digging. They also handle
smoothing, carving, traffic designations, and marking items on the ground for dumping, forbidding, or other similar
tags. See the full list of supported designations in the #dig mode reference.

Dig priorities

DF designation priorities are supported in #dig blueprints. The full syntax is [symbol][number][expansion],
where if the symbol is not specified, d is assumed, and if number is not specified, 4 is assumed (the default priority).
So all of these blueprints are equivalent:

#dig dig the interior of the room at high priority
d d d d d #
d d1 d1 d1 d #
d d1 d1 d1 d #
d d1 d1 d1 d #
d d d d d #
#

#dig dig the interior of the room at high priority
(continues on next page)

386 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

(continued from previous page)

d d d d d #
d d1(3x3) d #
d ` ` ` d #
d ` ` ` d #
d d d d d #
#

#dig dig the interior of the room at high priority
4 4 4 4 4 #
4 1 1 1 4 #
4 1 1 1 4 #
4 1 1 1 4 #
4 4 4 4 4 #
#

Marker mode

Marker mode is useful for when you want to plan out your digging, but you don’t want to dig everything just yet. In
#dig mode, you can add a m before any other designation letter to indicate that the tile should be designated in marker
mode. For example, to dig out the perimeter of a room, but leave the center of the room marked for digging later:

#dig
d d d d d #
d md md md d #
d md md md d #
d md md md d #
d d d d d #
#

Then you can use DF’s “Toggle Standard/Marking” icons (DF calls them “blueprints”, but hopefully that won’t get too
confusing in this context) to convert the center tiles to regular designations at your leisure.

To apply an entire dig blueprint in marker mode, regardless of what the blueprint itself says, you can set the
global quickfort setting force_marker_mode to true before you apply the blueprint by running quickfort set
force_marker_mode true.

Note that the state of the in-game vanilla button that you use to draw designations in either Standard or “Blueprint”
mode does not have any effect on quickfort.

Carved minecart tracks

In the game, you carve a minecart track by specifying a beginning and ending tile, and the game “adds” the designation
to the tiles in between. You cannot designate single tiles because DF needs a multi-tile track to figure out which
direction the track should go on each tile. For example to carve two track segments that cross each other, you might
use the cursor to designate a line of three vertical tiles like this:

` start here ` #
` ` ` #
` end here ` #
#

Then to carve the cross, you’d do a horizontal segment:

6.3. Quickfort blueprint creation guide 387

DFHack Documentation, Release 50.11-r4

` ` ` #
start here ` end here #
` ` ` #
#

This will result in a carved track that would be equivalent to a constructed track of the form:

#build
` trackS ` #
trackE trackNSEW trackW #
` trackN ` #
#

Quickfort supports both styles of specification for carving tracks with #dig blueprints. You can use the “additive”
style to carve tracks in segments or you can use the track aliases to specify the track tile by tile. To designate track
segments, use area expansion syntax with a height or width of 1:

#dig
` T(1x3) ` #
T(3x1) ` ` #
` ` ` #
#

“But wait!”, I can hear you say, “How do you designate a track corner that opens to the South and East? You can’t put
both T(1xH) and T(Wx1) in the same cell!” This is true, but you can specify both width and height greater than 1, and
for tracks, QF interprets it as an upper-left corner extending to the right W tiles and down H tiles. For example, to carve
a track in a closed ring, you’d write:

#dig
T(3x3) ` T(1x3) #
` ` ` #
T(3x1) ` ` #
#

You can also use negative numbers in the expansion syntax to indicate corners that are not upper-left corners. This
blueprint will also carve a closed ring:

#dig
T(3x3) ` ` #
` ` ` #
` ` T(-3x-3) #
#

Or you could use the aliases to specify tile by tile:

#dig
trackSE trackEW trackSW #
trackNS ` trackNS #
trackNE trackEW trackNW #
#

The aliases can also be used to designate a solid block of track. This is especially useful for obliterating low-quality
engravings so you can re-smooth and re-engrave with higher quality. For example, you could use the following sequence
of blueprints to ensure a 10x10 floor area contains only masterwork engravings:

388 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

#dig smooth floor
s(10x10)
#dig engrave floor
e(10x10)
#dig erase low-quality engravings
trackNSEW(10x10)

The tracks only remove low-quality engravings since quickfort won’t designate masterwork engravings for destruction
(unless forced to by a commandline parameter). You would run (and let your dwarves complete the jobs for) the
sequence of blueprints until no tiles are designated by the “erase” blueprint.

6.3.4 #zone mode

Zones define how regions of your fort should be treated. They are also the anchor point for “locations” like taverns and
hospitals. Unlike stockpiles or buildings, zones can overlap, which can lead to some interesting layouts. See the full
list of zone symbols in the #zone mode reference.

Zone designation syntax

A zone is declared with a symbol followed by optional properties:

#zone a single tile garbage dump zone
d

#zone a single tile garbage dump zone named "The Dump"
d{name="The Dump"}

#zone interrogation room
o{name=Interrogation assigned_unit=sheriff}

#zone a small inactive pond zone
p{name="Fill me" pond=true active=false}(3x3)

If you want multiple zones that have the same footprint, they can be declared from the same cell:

#zone pasture and training area
n{name="Main pasture"}t{name="Pet training area"}(14x10)

or from different corners of the same rectangle:

#zone pasture and training area
n{name="Main pasture"}(10x2)
t{name="Pet training area"}(10x-2)

and you can use this technique to achieve partial overlap, of course. The only configuration that can’t be specified in a
single blueprint is multiple non-rectangular zones that are partially overlapping. You will have to use multiple #zone
blueprints to achieve that.

You can also use labels (see Label syntax above) to separate adjacent non-rectangular zones that happen to be of the
same type or to combine disconnected regions into a single zone.

6.3. Quickfort blueprint creation guide 389

DFHack Documentation, Release 50.11-r4

Locations, locations, locations

Hospitals, guildhalls, taverns, libraries, and temples are locations. You can declare a location in the properties for a
zone:

#zone metalcrafter hall
m{location=guildhall profession=metalcrafter}(7x7)

You can attach multiple zones to a single location by giving the location a label (not a name – you can name zones, but
you can’t directly name locations) and then using that label for each of the zones you want to attach:

#zone tavern and rented room
b{location=tavern/bigpub name="Rent me"}(3x1)
h{location=tavern/bigpub name="Central pub" allow=residents}(25x40)

Note that the label (“bigpub” in this case) will never appear in-game. It is only used in the context of the blueprint to
identify a common location.

6.3.5 #place mode

#place mode is dedicated to stockpiles, which are a major design element in any fortress.

Stockpile designation syntax

Just like zones, stockpiles can have properties like names or lists of other stockpiles to take from. Unlike zones,
stockpiles can have configuration specifiers for exactly what types of items to accept. The full syntax looks like this:

types/label{properties}:configuration(expansion)

with every component other than the type being optional. You’re already familiar with Property syntax, Label syntax,
and Area expansion syntax, so let’s focus in on the remaining elements.

Stockpile types

The type of stockpile corresponds to the category of items it accepts. Some types will cause the stockpile to accept
bins or barrels. See the full list in the #place mode reference.

It is very common to have stockpiles that accept multiple categories of items. Although it is perfectly valid to declare a
single-purpose stockpile, quickfort also supports directly declaring all the categories at once. For example, to declare
a 20x10 stockpile that accepts both corpses and refuse, you could write:

#place refuse heap
yr(20x10)

The order of the individual letters doesn’t matter. If you want to configure the stockpile from scratch, you can place
unconfigured “custom” stockpiles with (c).

390 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Bins, barrels, and wheelbarrows

Quickfort has global settings for default values for the number of bins, barrels, and wheelbarrows assigned to stockpiles,
but these numbers can be set for individual stockpiles as well in the properties.

Individual properties for bins, barrels, and wheelbarrows are supported. You can also set them all at once with
the containers alias (it usually just makes sense to set this to 0 when you don’t want any containers of any type). For
example:

#place a stone stockpile with 5 wheelbarrows
s{wheelbarrows=5}(3x3)

#place a bar, ammo, weapon, and armor stockpile with 20 bins
bzpd{bins=20}(5x5)

#place a weapon stockpile with no bins
p{containers=0}(9x2)

That last one could have equivalently used bins=0, but sometimes you just don’t want to have to think about which
stockpile types take which type of container.

If the specified number exceeds the number of available stockpile tiles, the number of available tiles is used. For
wheelbarrows, that limit is reduced by 1 to ensure there is at least one non-wheelbarrow tile available in the stockpile.
Otherwise no stone would ever be brought to the stockpile since all tiles would be occupied by wheelbarrows!

Generating manager orders for a #place blueprint with explicitly set container/wheelbarrow counts will enqueue man-
ager orders for the specified number of containers or wheelbarrows, even if that number exceeds the in-game size of
the stockpile. For example, the following blueprint will enqueue orders for 10 rock pots, even though the stockpile only
has 9 tiles:

#place
f{barrels=10}(3x3)

Stockpile configuration

Quickfort uses the stockpiles plugin and The stockpiles settings library to configure stockpile settings, and provides a
syntax that is easy to write in a blueprint yet still allows you to access the full power of the stockpiles command.

The syntax is:

: <op> <preset_name> [/<filter>] [<op> <preset_name> [/<filter>]...]

<op> is one of =, -, or +, representing the three stockpiles import modes: set, disable, or enable, respectively. Note
that if you are using an = op, then it should go first in the list. Any = configuration segment will override anything that
comes before it.

For example, a blueprint like:

#place
f:=booze(5x4)

would be equivalent to creating a 5x4 food stockpile in the UI, then selecting it and running this command:

stockpiles import --mode=set booze

you can also add a slash (/) and a comma-separated list of filter strings to customize the settings further:

6.3. Quickfort blueprint creation guide 391

DFHack Documentation, Release 50.11-r4

#place
p{name="Metal weapons"}:-cat_weapons/other/(7x3)

Note that the “op” in this case lets us disable the matched preset, which in this case is the “Other materials” types in
the Weapons category. This configuration is equivalent to the stockpiles command:

stockpiles import --mode=disable cat_weapons --filter=other/

And we can chain multiple stockpiles commands together by adding another “op” character and another preset:

#place
p{name="Steel weapons"}:-cat_weapons/mats/,other/+steelweapons(7x3)

which corresponds to running these two commands:

stockpiles import --mode=disable cat_weapons --filter=mats/,other/
stockpiles import --mode=enable steelweapons

With the combination of the library presets and custom filter strings, you can configure any stockpile any way you like!

6.3.6 #build mode

#build mode handles buildings, furniture (which are also “buildings” according to DF), constructions (including
constructed tracks), and hauling routes.

Building designation syntax

Other than names, most buildings do not have any extra properties. See the #build mode reference for those that do.

The syntax otherwise looks just like stockpiles, except that it only makes sense to have a single symbol to indicate what
to build on that tile:

symbol{properties}:configuration(expansion)

Here’s an example of a simple 5x5 square of flooring:

#build
Cf(5x5)

or a named Jeweler’s workshop that takes from specific stockpiles:

#build
wj{name="Encrusting center" take_from="Furniture,Gem storage"}

The :configuration part is only relevant for hauling routes, which we’ll go over in the next section.

392 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Hauling route definitions

Hauling routes are defined by properties and configuration attached to track stops. You can define a single-stop
hauling route for a quantum stockpile as easily as a multi-stop stone quarry transportation line. The stockpile-like
:configuration part of the syntax controls which item types are considered “desired” for the hauling route stop. If
it’s not specified, then all item types are accepted. This is the most common case since most hauling route contents are
filtered by the stockpiles that the stops take from, but the flexibility is there for when multiple stops take different items
from the same stockpile, or when a stop only wants a subset of items from a stockpile.

Here is a common setup for a quantum stone stockpile:

#place
s{name="Stone quantum" quantum=true} ~ s5{name="Stone feeder"}(3x3)
#build
~ trackstopW{take_from="Stone feeder" route="Stone dumper"}

This sets up the quantum stockpile and the feeder stockpile in the #place blueprint, followed by the trackstop and the
hauling route configuration in the #build blueprint. The route property is the name of the hauling route to create
(or attach to if it already exists). If you are applying a quantum stockpile blueprint more than once in a fort, be sure
to avoid defining the route property so that each application of the blueprint creates a unique hauling route. Two
quantum stockpiles on the same route will not function properly (since one of the stops will be missing a minecart).

Let’s look at a slightly more complicated setup where we sort the stone into different output quantum stockpiles:

#place
s{name="Other stone quantum" quantum=true} ~ s5e{name="Rock feeder"}(3x3)
s{name="Ore/clay stone quantum" quantum=true} ~
s{name="Gem quantum" quantum=true} ~
#build
~ trackstopW{take_from="Rock feeder" route="Other stone"}:=otherstone
~ trackstopW{take_from="Rock feeder" route="Ore/clay"}:=cat_stone-otherstone
~ trackstopW{take_from="Rock feeder" route="Gems"}:=cat_gems

You can see how we make use of the stockpile-style configuration syntax to fine-tune the items desired by the hauling
route stop.

Finally, let’s make a series of stops on a common hauling route. There is nothing particularly special about this example.
If the route property names an existing route, the stop will be added to that route:

#dig
trackE trackEW trackEW trackW
#build
trackstop{route="Tick tock"} ~ ~ trackstop{route="Tick tock"}

These two track stops (which do not dump their contents) simply exist on a common route at the ends of a connected
carved track.

6.3. Quickfort blueprint creation guide 393

DFHack Documentation, Release 50.11-r4

6.3.7 #burrow mode

#burrow mode can create, extend, and remove tiles from burrows.

Burrow designation syntax

The syntax should look familiar by now:

symbol{properties}(expansion)

See the #burrow mode reference for symbol and property definitions.

Here’s how to create (or add to, if a burrow by that name already exists) a 5x5 burrow named Inside+. It will also
register this burrow with gui/civ-alert if no burrow has yet been registered:

#burrow
a{create=true name=Inside+ civalert=true}(5x5)

Why the trailing +? That’s to indicate to the burrow plugin that the burrow should grow as adjacent tiles are dug out.

Similarly, here is how to erase a tile from all burrows that currently include it:

#burrow
e

6.3.8 Modeline markers

The modeline has some additional optional components that we haven’t talked about yet. You can:

• give a blueprint a label by adding a label() marker

• set a cursor offset and/or cursor placement hint by adding a start() marker

• hide a blueprint from being listed with a hidden() marker

• register a message to be displayed after the blueprint is successfully applied with a message() marker

The full modeline syntax, when all optional elements are specified, is:

#mode label(mylabel) start(X;Y;startcomment) hidden() message(mymessage) comment

Note that all elements are optional except for the initial #mode (though, as mentioned in the first section, if a modeline
doesn’t appear at all in the first cell of a spreadsheet, the blueprint is interpreted as a #dig blueprint with no optional
markers). Here are a few examples of modelines with optional elements before we discuss them in more detail:

#dig start(3; 3; Center tile of a 5-tile square) Regular blueprint comment
#build label(noblebedroom) No explicit 'start()' so cursor is in upper left
#meta label(digwholefort) start(center of stairs on surface)
#dig label(dig_dining) hidden() called by the digwholefort meta blueprint
#zone label(pastures) message(remember to assign animals to the pastures)

394 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Blueprint labels

Labels are displayed in the blueprint selection dialog and the output of quickfort list and are used for addressing
specific blueprints when there are multiple blueprints in a single file or spreadsheet sheet (see Packaging a set of
blueprints below). If a blueprint has no label, the label becomes the ordinal of the blueprint’s position in the file
or sheet. For example, the label of the first blueprint will be “1” if it is not otherwise set, the label of the second
blueprint will be “2” if it is not otherwise set, etc. Labels that are explicitly defined must start with a letter to ensure
the auto-generated labels don’t conflict with user-defined labels.

Start positions

Start positions specify a cursor offset for a particular blueprint, simplifying the task of blueprint alignment. This is very
helpful for blueprints that are based on a central staircase, but it comes in handy whenever a blueprint has an obvious
“center”. For example:

#build start(2;2;center of workshop) label(stonew) a stonecutter workshop
wm wm wm #
wm wm wm #
wm wm wm #
#

will build the workshop centered on the cursor, not down and to the right of the cursor.

The two numbers specify the column and row (or 1-based X and Y offset) where the cursor is expected to be when you
apply the blueprint. Position 1;1 is the top left cell. The optional comment will show up in the blueprint listings and
should contain information about where to position the cursor. If the start position is 1;1, you can omit the numbers
and just add a comment describing where to put the cursor. This is also useful for meta blueprints that don’t actually
care where the cursor is, but that refer to other blueprints that have fully-specified start() markers. For example, a
meta blueprint that refers to the stonew blueprint above could look like this:

#meta start(center of workshop) a stonecutter workshop
/stonew

You can use semicolons, commas, or spaces to separate the elements of the start() marker, whichever you prefer.

Hiding blueprints

A blueprint with a hidden() marker won’t appear in the blueprint listings unless hidden blueprints are specifically
requested. The primary reason for hiding a blueprint (rather than, say, deleting it or moving it out of the blueprints/
folder) is if a blueprint is intended to be run as part of a larger sequence managed by a meta blueprint.

Messages

A blueprint with a message() marker will display a message after the blueprint is applied. This is useful for reminding
players to take manual steps that cannot be automated, like assigning minecarts to a route, or listing the next step in a
series of blueprints. For long or multi-part messages, you can embed newlines:

"#meta label(surface1) message(This would be a good time to start digging the industry␣
→˓level.
Once the area is clear, continue with /surface2.) clear the embark site and set up␣
→˓pastures"

6.3. Quickfort blueprint creation guide 395

DFHack Documentation, Release 50.11-r4

The quotes surrounding the cell text are only necessary if you are writing a .csv file by hand. Spreadsheet applications
will surround multi-line text with quotes automatically when they save/export the file.

6.3.9 Other blueprint modes

There are a few additional blueprint modes that become useful when you are sharing your blueprints with others or
managing complex blueprint sets. Instead of mapping tile positions to map modifications like the basic modes do, these
“blueprints” have specialized, higher-level uses:

Blueprint
mode

Description

notes Display long messages, such as help text or blueprint walkthroughs
ignore Hide a section of your spreadsheet from quickfort, useful for scratch space or personal notes
meta Script sequences of blueprints together, transform them, and/or repeat them across multiple z-

levels

#notes mode

Sometimes you just want to record some information about your blueprints, such as when to apply them, what prepara-
tions you need to make, or what the blueprints contain. The message() modeline marker is useful for small, single-line
messages, but a #notes blueprint is more convenient for long messages or messages that span many lines. The lines in
a #notes blueprint are output as if they were contained within one large multi-line message() marker. For example,
the following (empty) #meta blueprint:

"#meta label(help) message(This is the help text for the blueprint set
contained in this file.

First, make sure that you embark in...) blueprint set walkthrough"

could more naturally be written as a #notes blueprint:

#notes label(help) blueprint set walkthrough
This is the help text for the blueprint set
contained in this file

First, make sure that you embark in...

The #meta blueprint is all squashed into a single spreadsheet cell, using embedded newlines. Each line of the #notes
“blueprint”, however, is in a separate cell, allowing for much easier viewing and editing.

#ignore mode

If you don’t want some data to be visible to quickfort at all, use an #ignore blueprint. All lines until the next modeline
in the file or sheet will be completely ignored. This can be useful for personal notes, scratch space, or temporarily
“commented out” blueprints.

396 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

#meta mode

#meta blueprints are blueprints that control how other blueprints are applied. For example, meta blueprints can bundle
a group of other blueprints so that they can be run with a single command. They can also encode logic, like rotating
the blueprint or duplicating it across a specified number of z-levels.

Scripting blueprints together

A common scenario where meta blueprints are useful is when you have several phases to link together. For example
you might:

1. Apply a dig blueprint to designate dig areas

2. Wait for miners to dig

3. Apply another dig blueprint to designate traffic costs

4. Apply a zone blueprint to designate zones

5. Apply a place buildprint to designate and configure stockpiles

6. Apply a build buildprint to designate buildings

Those last four “apply”s might as well get done in one command instead of four. A #meta blueprint can help with
that. A meta blueprint refers to other blueprints in the same file by their label (see the Modeline markers section) in the
same format used by the quickfort command: <sheet name>/<label>, or just /<label> for blueprints in .csv files
or blueprints in the same spreadsheet sheet as the #meta blueprint that references them.

A few examples might make this clearer. Say you have a .csv file with blueprints that prepare bedrooms for your
dwarves:

#dig label(bed1) dig out the rooms
...
#zone label(bed2) declare bedroom zones
...
#place label(bed3) add food stockpiles
...
#build label(bed4) build the furniture
...

Note how I’ve given them all labels so we can address them safely. If I hadn’t given them labels, they would receive
default labels of “1”, “2”, “3”, etc, but those labels would change if I ever add more blueprints at the top. This is not
a problem if we’re just running the blueprints individually from gui/quickfort or the quickfort list command, but
meta blueprints need a label name that isn’t going to change over time.

So let’s add a meta blueprint to this file that will combine the last three blueprints into one:

"#meta label(bed234) combines zone, place, and build blueprints"
/bed2
/bed3
/bed4

Now your sequence is shortened to:

1. Run /bed1 to designate dig areas

2. Wait for miners to dig

3. Run /bed234 meta buildprint to declare zones, place stockpiles, and build furniture

6.3. Quickfort blueprint creation guide 397

DFHack Documentation, Release 50.11-r4

You can use meta blueprints to lay out your fortress at a larger scale as well. The #< and #> notation is valid in meta
blueprints, so you can, for example, store the dig blueprints for all the levels of your fortress in different sheets in a
spreadsheet, and then use a meta blueprint to designate your entire fortress for digging at once. For example, say you
have a .xlsx spreadsheet with the following layout:

Sheet name Contents
dig_farming one #dig blueprint, no label
dig_industry one #dig blueprint, no label
dig_dining four #dig blueprints, with labels “main”, “basement”, “waterway”, and “cistern”
dig_guildhall one #dig blueprint, no label
dig_suites one #dig blueprint, no label
dig_bedrooms one #dig blueprint, no label

We can add a sheet named “dig_all” with the following contents (we’re expecting a big fort, so we’re digging 5 levels
of bedrooms):

#meta label(dig_it) dig the whole fortress
dig_farming/1
#>
dig_industry/1
#>
dig_dining/main
#>
dig_dining/basement
#>
dig_dining/waterway
#>
dig_dining/cistern
#>
dig_guildhall/1
#>
dig_suites/1
#>
dig_bedrooms/1 repeat(down 5)

Note that for blueprints without an explicit label, we still need to address them by their auto-generated numeric label.

It’s worth repeating that #meta blueprints can only refer to blueprints that are defined in the same file. This means that
all blueprints that a meta blueprint needs to run must be in sheets within the same .xlsx spreadsheet or concatenated
into the same .csv file.

You can then hide the blueprints that you now manage with the meta blueprint from the blueprint selection lists by
adding a hidden() marker to their modelines. That way, the blueprint lists won’t be cluttered by blueprints that you
don’t need to run directly. If you ever do need to access the meta-managed blueprints individually, you can still see
them by toggling the “Hidden” setting in the gui/quickfort load dialog or with quickfort list --hidden.

398 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Meta markers

In meta blueprints, you can tag referenced blueprints with markers to modify how they are applied. These markers are
similar to Modeline markers, but are only usable in meta blueprints. Here’s a quick list of examples, with more details
below:

Example Description
repeat(down 10) Repeats a blueprint down z-levels 10 times
shift(0 10) Adds 10 to the y coordinate of each blueprint tile
transform(cw flipv) Rotates a blueprint clockwise and then flips it vertically

Repeating blueprints

Syntax: repeat(<direction>[,]<number>)

The direction can be up or down, and the repetition works even for blueprints that are themselves multi-level. For
example:

#meta label(2beds) dig 2 levels of bedrooms
dig_bedrooms/1 repeat(down 2)

#meta label(6beds) dig 6 levels of bedrooms
/2beds repeat(down 3)

You can use < and > for short, instead of up and down. The comma or space between the direction and the number is
optional as well. The following lines are all equivalent:

/2beds repeat(down 3)
/2beds repeat(down, 3)
/2beds repeat(>3)

Shifting blueprints

Syntax: shift(<x shift>[[,] <y shift>])

The values can be positive or negative. Negative values for x shift to the left, positive to the right. Negative values for
y shift up, positive down. Note the semantics for the y axis are opposite compared to regular graphs on paper. This is
because the y coordinates in the DF game map start a 0 at the top and increase as they go down.

Transforming blueprints

Syntax: transform(<transformation>[[,] <transformation>. . .])

Applies a geometric transformation to the blueprint. The supported transformations are:

rotcw or cw Rotates the blueprint 90 degrees clockwise.

rotccw or ccw Rotates the blueprint 90 degrees counterclockwise.

fliph Flips the blueprint horizontally (left edge becomes right edge).

flipv Flips the blueprint vertically (top edge becomes bottom edge).

If you specify more than one transformation, they will be applied in the order they appear in.

If you use both shift() and transform() markers on the same blueprint, shifting is applied after all transformations
are complete. If you want shifting to be applied before the transformations, or in between transformations, you can use
nested meta blueprints. For example, the following blueprint will shift the /hallway blueprint to the right by 20 units
and then rotate it clockwise:

6.3. Quickfort blueprint creation guide 399

DFHack Documentation, Release 50.11-r4

#meta label(shift_right) hidden()
/hallway shift(20)
#meta label(rotate_after_shift)
/shift_right transform(cw)

Transforming build blueprints will also change the properties of buildings that care about direction. For example, a
bridge that opens to the North, rotated clockwise, will open to the East when applied to the map.

6.3.10 Packaging a set of blueprints

A complete specification for a section of your fortress may contain 4 or more separate blueprints, one for each “phase”
of construction (dig, zone, place, build).

To manage all the separate blueprints, it is often convenient to keep related blueprints in a single file. For .xlsx spread-
sheets, you can keep each blueprint in a separate sheet. Online spreadsheet applications like Google Sheets make it
easy to work with multiple related blueprints, and, as a bonus, they retain any formatting you’ve set, like column sizes
and coloring.

For both .csv files and .xlsx spreadsheets you can also add as many blueprints as you want in a single file or sheet.
Just add a modeline in the first column to indicate the start of a new blueprint. Instead of multiple .csv files, you can
concatenate them into one single file. This is especially useful when you are sharing your blueprints with others. A
single file is much easier to manage than a directory of files.

For example, you can write multiple blueprints in one file like this:

#dig label(bed1)
d d d d #
d d d d #
d d d d #
d d d d #
#
#zone label(bed2)
b(4x4) #

#
#
#

#
#place label(bed3)

#
f(2x2) #

#
#

#
#build label(bed4)
b f h #

#
#

t c #
#

Of course, you could still choose to keep your blueprints in separate files and just give related blueprints similar names:

bedroom.1.dig.csv
bedroom.2.zone.csv

(continues on next page)

400 Chapter 6. User guides

https://sheets.new

DFHack Documentation, Release 50.11-r4

(continued from previous page)

bedroom.3.place.csv
bedroom.4.build.csv

The naming and organization is completely up to you.

6.3.11 Buildingplan integration

buildingplan is a DFHack plugin that keeps building construction jobs in a suspended state until the materials required
for the job are available. This prevents a building designation from being canceled when a dwarf picks up the job but
can’t find the materials. quickfort uses buildingplan to manage construction.

This means that buildingplan’s filters will be used for each building type. For example, you can use the buildingplan
UI to set the type of stone you want your walls made out of. Or you can specify that all buildingplan-managed chairs
and tables must be of Masterful quality. The current filter settings are saved with planned buildings when the #build
blueprint is run. You can set the filters the way you want for one blueprint, run the blueprint, and then freely change
the filters again for the next blueprint, even if the first set of buildings haven’t been built yet.

Note that buildings are still constructed immediately if you already have the materials. However, with buildingplan you
now have the freedom to apply #build blueprints before you manufacture the resources. The construction jobs will be
fulfilled whenever the materials become available.

Since it can be difficult to figure out exactly what source materials you need for a #build blueprint, quickfort can
autogenerate manager orders for everything that a blueprint requires. See Generating manager orders for more details
on this. You can apply a blueprint, then the planned buildings will be built as your dwarves fulfill the orders.

6.3.12 Generating manager orders

Quickfort can generate manager orders to make sure you have the proper items in stock for a #build blueprint.

Many items can be manufactured from different source materials. Orders will always choose rock when it can, then
wood, then cloth, then iron. You can always remove orders that don’t make sense for your fort and manually enqueue
a similar order more to your liking. For example, if you want silk ropes instead of cloth ropes, make a new manager
order for an appropriate quantity of silk ropes, and then remove the generated cloth rope order.

Anything that requires generic building materials (workshops, constructions, etc.) will result in an order for a rock
block. One “Make rock blocks” job produces four blocks per boulder, so the number of jobs ordered will be the
number of blocks you need divided by four (rounded up). You might end up with a few extra blocks, but not too many.

If you want your constructions to be in a consistent color, be sure to choose a rock type for all of your ‘Make rock
blocks’ orders in the manager orders screen. You might also want to set the rock type for other non-block orders to
something different if you fear running out of the type of rock that you want to use for blocks. You should also set the
buildingplan material filter for construction building types to that type of rock as well so other blocks you might have
lying around aren’t used.

6.3. Quickfort blueprint creation guide 401

DFHack Documentation, Release 50.11-r4

Extra Manager Orders

In #build blueprints, there are a few building types that will generate extra manager orders for related materials:

• Track stops will generate an order for a minecart

• Traction benches will generate orders for a table, mechanism, and rope

• Levers will generate an order for an extra two mechanisms for connecting the lever to a target

• Cage traps will generate an order for a cage

Stockpiles in #place blueprints that specify wheelbarrow or container counts will generate orders for the appropriate
number of bins, pots, or wheelbarrows.

6.3.13 Tips and tricks

• After digging out an area, you may wish to smooth and/or engrave the area before starting the build phase, as
dwarves may be unable to access walls or floors that are behind/under built objects.

• If you are designating more than one level for digging at a time, you can make your miners more efficient by using
marker mode on all levels but one. This prevents your miners from digging out a few tiles on one level, then
running down/up the stairs to do a few tiles on an adjacent level. With only one level “live” and all other levels
in marker mode, your miners can concentrate on one level at a time. You just have to remember to “unmark” a
new level when your miners are done with their current one. Alternately, if you have a chokepoint between levels
(e.g. a central staircase), you can set the chokepoint to be dug at a lower priority than all the other tiles on the
level. This will ensure your miners complete digging out a level before continuing on to the next.

• As of DF 0.34.x, it is no longer possible to build doors at the same time that you build adjacent walls. Doors
must now be built after adjacent walls are constructed. This does not affect the more common case where walls
exist as a side-effect of having dug-out a room in a #dig blueprint, but if you are building your own walls, be
aware that walls must be built before you run the blueprint to designate attached doors.

• Quickfort is a very powerful tool. See the case study below for more ideas on how to build awesome blueprints!

6.3.14 Caveats and limitations

• Weapon traps and upright spear/spike traps can currently only be built with a single weapon.

• Pressure plates can be built, but they cannot be usefully configured yet.

• Building instruments is not yet supported.

• DFHack Quickfort is a large project, and there are bound to be bugs! If you run into any, please report them at
the DFHack issue tracker so they can be addressed.

6.3.15 Dreamfort case study: a practical guide to advanced blueprint design

While syntax definitions and toy examples will certainly get you started with your blueprints, it may not be clear how
all the quickfort features fit together or what the best practices are, especially for large and complex blueprint sets. This
section walks through the “Dreamfort” blueprints found in the DFHack blueprint library, highlighting design choices
and showcasing practical techniques that can help you create better blueprints. Note that this is not a guide for how
to design the best fort (there is plenty about that on the wiki). This is essentially an extended tips and tricks section
focused on how to make usable and useful quickfort blueprints that will save you time and energy.

402 Chapter 6. User guides

https://github.com/DFHack/dfhack/issues/
https://dwarffortresswiki.org/Design strategies

DFHack Documentation, Release 50.11-r4

Almost every quickfort feature is used somewhere in Dreamfort, so the blueprints are very useful as reference examples.
You can copy the Dreamfort blueprints and use them as starting points for your own, or just refer to them when you
create something similar.

In this case study, we’ll start by discussing the high level organization of the Dreamfort blueprint set. Then we’ll walk
through the spreadsheets for each of the fort levels in turn, calling out feature usage examples and explaining the parts
that might not be obvious just from looking at them.

If you haven’t built Dreamfort before, maybe try an embark in a relatively flat area and take it for a spin! It will help put
the following sections in context. There is also a pre-built Dreamfort available for download on dffd if you just want
an interactive reference.

Dreamfort organization and packaging

The Dreamfort blueprints are distributed with DFHack as one large .csv file, but editing in that format would be frus-
trating. Instead, the blueprints are edited online as Google drive spreadsheets. Either the .csv file or the .xlsx files can
be read and applied by quickfort, but it made more sense to distribute the blueprints as a .csv so players would only
have to remember one filename. Also, .csv files are text-based, which works more naturally with the DFHack source
control system. We use the xlsx2csv utility to do the conversion from .xlsx to .csv format.

Tip

Include a #notes section with information about how to use your blueprint.

Each spreadsheet has a “help” sheet with a #notes blueprint that displays a walkthrough and other useful details.
This is the first sheet in each spreadsheet so it will be selected by default if the user doesn’t specify a label name. For
example, just running quickfort run library/dreamfort.csv will display Dreamfort’s introduction text.

Do not neglect writing the help text! Not only will it give others a chance to use your blueprints appropriately, but the
help you write will remind you what you were thinking when you wrote the blueprint in the first place.

6.3. Quickfort blueprint creation guide 403

https://dffd.bay12games.com/file.php?id=15434
https://github.com/DFHack/dfhack/tree/develop/data/blueprints/dreamfort.csv
https://drive.google.com/drive/folders/1dsmvnzbOKsyFS3DCj0F8ibSnMhVHEjdV
https://github.com/dilshod/xlsx2csv
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio

DFHack Documentation, Release 50.11-r4

The surface level: how to manage complexity

For smaller blueprints, packaging and usability are not really that important - just write it, run it, and you’re done.
However, as your blueprints become larger and more detailed, there are some best practices that can help you deal with
the added complexity. Dreamfort’s surface level is many steps long since there are trees to be cleared, holes to be dug,
flooring to be laid, and bridges to be linked to control levers, and each step requires the previous step to be completely
finished before it can begin. Therefore, a lot of thought went into minimizing the toil associated with applying so many
blueprints.

Tip

Use meta blueprints to script blueprint sequences and reduce the number of quickfort commands you have to run.

The single most effective way to make your blueprint sets easier to use is to group them with meta blueprints. For
the Dreamfort set of blueprints, each logical “step” generally takes more than one blueprint. For example, with #meta
blueprints, setting up pastures with a #zone blueprint, placing starting stockpiles with a #place blueprint, and building

404 Chapter 6. User guides

https://drive.google.com/file/d/1dlu3nmwQszav-ZaTx-ac28wrcaYBQc_t

DFHack Documentation, Release 50.11-r4

starting workshops with a #build blueprint can all be done with a single command. Bundling blueprints with #meta
blueprints reduced the number of steps in Dreamfort from 100 to about 25, and it also made it much clearer to see
which blueprints can be applied at once without unpausing the game. Check out dreamfort_surface’s “meta” sheet to
see how much meta blueprints can simplify your life.

You can define as many blueprints as you want on one sheet, but this is especially useful when writing meta blueprints.
It’s like having a bird’s eye view of your entire plan in one sheet.

Tip

Keep the blueprint list uncluttered by using hidden() markers.

If a blueprint is bundled into a meta blueprint, it does not need to appear in the gui/quickfort blueprint load dialog or
quickfort list output since you won’t be running it directly. Add a hidden() marker to those blueprints to keep the
list output tidy. You can still access hidden blueprints by toggling the “Hidden” setting in gui/quickfort or by passing the
--hidden option to quickfort list if you need to, for example to reapply a partially completed #build blueprint,
but now they won’t clutter up the normal blueprint list.

Tip

Name your blueprints with a common prefix so you can find them easily.

This goes for both the file name and the modeline label(). Searching and filtering is implemented for both gui/quickfort
and the quickfort list command. If you give related blueprints a common prefix, it makes it easy to set the filters
to display just the blueprints that you’re interested in. If you have a lot of blueprints, this can save you a lot of time.
Dreamfort uses the level name as a prefix for the labels, like “surface1”, “surface2”, “farming1”, etc. So if I’m in
the middle of applying the surface blueprints, I’d set the filter to dreamfort surface to just display the relevant
blueprints.

Tip

Add descriptive comments that remind you what the blueprint contains.

If you’ve been away from Dwarf Fortress for a while, it’s easy to forget what your blueprints actually do. Make use of
modeline comments so your descriptions are visible in the blueprint list. If you use meta blueprints, all your comments
can be conveniently edited on one sheet, like in surface’s meta sheet.

Tip

Use message() markers to remind yourself what to do next.

Messages are displayed after a blueprint is applied. Good things to include in messages are:

• The name of the next blueprint to apply and when to run it

• Whether orders should be generated for the current or an upcoming step

• Any actions that you have to perform manually after running the blueprint, like assigning minecarts to hauling
routes or pasturing animals in newly-created zones

These things are just too easy to forget. Adding a message() can save you from time-wasting mistakes. Note that
message() markers can still appear on the hidden() blueprints, and they’ll still get shown when the blueprint is run

6.3. Quickfort blueprint creation guide 405

https://docs.google.com/spreadsheets/d/17HfnCJY4WDPlLdiLuUNc0gwyf6BiSdayndjvFYXzS7c/edit#gid=972927200

DFHack Documentation, Release 50.11-r4

via a #meta blueprint. For an example of this, check out the zones sheet where the pastures are defined.

The farming level: fun with stockpiles

It is usually convenient to store closely associated blueprints in the same spreadsheet. The farming level is very closely
tied to the surface because the miasma vents dug on the surface have to perfectly line up with where rottables can
accumulate on the farming level. However, surface is a separate z-level and, more importantly, already has many many
blueprints of its own. Farming is therefore split into a separate file.

Tip

Automate stockpile chains with the take_from and give_to properties.

The farming level starts doing interesting things with stockpiles in its #place blueprints. Note the careful customiza-

406 Chapter 6. User guides

https://docs.google.com/spreadsheets/d/17HfnCJY4WDPlLdiLuUNc0gwyf6BiSdayndjvFYXzS7c/edit#gid=1226136256
https://drive.google.com/file/d/1vDaedLcgoexUdKREUz75ZXQi0ZSdwWwj
https://docs.google.com/spreadsheets/d/1RZ67upSpQx7hX-AkqiFXVJl8o5GGdDX1WDOJNz-wOiA/edit#gid=1174337781
https://docs.google.com/spreadsheets/d/1RZ67upSpQx7hX-AkqiFXVJl8o5GGdDX1WDOJNz-wOiA/edit#gid=1174337781

DFHack Documentation, Release 50.11-r4

tion of the food stockpiles and the stockpile chains set up with the take_from and give_to properties. For ex-
ample, the “Seeds” stockpile is set to link_only=true and the “Seeds feeder” stockpile has containers=0 and
give_to=Seeds. This minimizes container churn for the common task of seed recovery. When finding the named
stockpiles to link, quickfort will search the other stockpiles created in the same blueprint first. If no stockpiles by that
name are found, then existing stockpiles/workshops are searched. This is how many of the stockpiles on this level are
configured to take from the starter stockpiles on the surface.

Tip

Quantum stockpiles are super easy to define, if you want to use them.

Hauling routes are notoriously fiddly to set up by hand, but they can be easily automated with blueprints. Check out
the Southern area of the #place and #build blueprints for how the quantum refuse dump is configured with simple
take_from and route properties attached to the track stop.

6.3. Quickfort blueprint creation guide 407

https://docs.google.com/spreadsheets/d/1RZ67upSpQx7hX-AkqiFXVJl8o5GGdDX1WDOJNz-wOiA/edit#gid=1174337781
https://docs.google.com/spreadsheets/d/1RZ67upSpQx7hX-AkqiFXVJl8o5GGdDX1WDOJNz-wOiA/edit#gid=1174337781

DFHack Documentation, Release 50.11-r4

The industry level: advanced linking

The industry level is densely packed and has more intracate stockpile and hauling route configuration.

Tip

Name things.

In order to be a target for a stockpile or workshop link, the stockpile or building must have a name. That’s not the only
reason you should give things names, though. The game is just much easier to play when stockpiles and key buildings
have descriptive names. Which lever controls the bridge named “Right outer gate”? You can click on that bridge, click
on “show linked buildings”, zoom to the lever, and click on the lever. Or you can scan your mouse over the levers and

408 Chapter 6. User guides

https://drive.google.com/file/d/1c8YTHxTgJY5tUII-BOWdLhmDFAHwIOEs

DFHack Documentation, Release 50.11-r4

click on the lever with the same name as the target bridge. You can always edit names in-game, but blueprints are a
great way to automate this task.

Tip

You can give to or take from multiple sources.

Some of the feeder stockpiles on this level are split up so that no one item type can fill the whole pile. The track stops
that drive the quantum stockpiles have to take from all of them at once. When specifying multiple link targets that have
spaces in their names, remember to surround the whole list with quotes. For example:

#build
trackstopW{name="Goods/wood dumper" take_from="Wood feeder,Goods feeder,Furniture feeder
→˓" route="Goods/wood quantum"}

6.3. Quickfort blueprint creation guide 409

DFHack Documentation, Release 50.11-r4

The services level: handling multi-level dig blueprints

Services is a multi-level blueprint that includes a well cistern beneath the main level. Unwanted ramps caused by
channeling are an annoyance, but we can avoid getting a ramp at the bottom of the cistern with careful use of dig
priorities.

Tip

Use dig priorities to control ramp creation.

We can ensure the bottom level is carved out before the layer above is channeled by assigning the channel designations

410 Chapter 6. User guides

https://drive.google.com/file/d/1RQMy_zYQWM5GN7-zjn6LoLWmnrJjkxPM
https://docs.google.com/spreadsheets/d/1xu8vNKGlGDN9L3MVB4qp2Ytef9oAWvuET6RkuZXmCaE/edit#gid=1706912296

DFHack Documentation, Release 50.11-r4

lower priorities (the h5s in the lower layers – scroll down on the blueprint spreadsheet). This works here because there
is only a single column of higher-priority stairs for a dwarf to dig down to get below the lower-priority channels. If the
dig area has multiple tiles exposed, it is harder to control dig order since a second dwarf may not have access to any
higher-priority tiles and may start digging the lower-priority designations prematurely.

An alternative is to have a follow-up blueprint that removes any undesired ramps. We did this on the surface and farming
levels with the miasma vents since it would be too complicated to synchronize simultaneous digging of the two layers.

The guildhall level: avoiding smoothing issues

The goal of this level is to provide rooms for locations like guildhalls, libraries, and temples. The value of these
rooms is very important, so we are likely to smooth and engrave everything. To smooth or engrave a wall tile, a dwarf
has to be adjacent to it, and since some furniture, like statues, block dwarves from entering a tile, where you put them

6.3. Quickfort blueprint creation guide 411

https://docs.google.com/spreadsheets/d/17HfnCJY4WDPlLdiLuUNc0gwyf6BiSdayndjvFYXzS7c/edit#gid=1790750180
https://docs.google.com/spreadsheets/d/1RZ67upSpQx7hX-AkqiFXVJl8o5GGdDX1WDOJNz-wOiA/edit#gid=436537058
https://drive.google.com/file/d/1mt66QOkfBqFLtw6AJKU6GNYmhB72XSJG

DFHack Documentation, Release 50.11-r4

affects what you can access.

Tip

Don’t put statues in corners unless you want to smooth everything first.

In the guildhall level, the statues are placed so as not to block any wall corners. This gives the player freedom for
choosing when to smooth. If a statue blocks a corner, or if a line of statues blocks a wall segment, it forces the player
to smooth before building the statues. Otherwise they have to bother with temporarily removing statues to smooth the
walls behind them.

The suites level: balance of flexibility

412 Chapter 6. User guides

https://drive.google.com/file/d/16XRb1w5zFoyVq2LBMx_aCwOyjFq7GULc

DFHack Documentation, Release 50.11-r4

In designing this level, we needed to choose between two approaches:

1. Create rooms with specific, pre-determined purposes, laying out furniture and zoning with appropriate types

2. Lay out each room the same so each can serve any purpose

Each has pros and cons. The first option reduces more toil by pre-creating the zones. If we go this route, we can also
auto-assign the rooms to the various roles (if they exist when the blueprint is run). Each room can be customized for
its intended purpose: offices can look like offices, bedrooms could look like bedrooms, and so on. However, if the
needs of the fort don’t correspond to the pre-determined layouts, or if the needs of the fort change significantly, then
the blueprint can become more of a hinderance than a help.

As you can see from the screenshot, we went with option 2. The ability to re-zone arbitrarily to meet changing noble
needs was too great of a benefit to ignore. The downside, of course, is that you have to zone and assign your own rooms.
However, as soon as you gain a barony or a duchy, you’d be doing that anyway with option 1.

With option 2, if you need a “better” bedroom, you’d just expand the zone to cover the neighboring “unit”. Satisfying
the monarch is also simple: plop down a new suites level and assign each block of 4 rooms to one zone. four units for
the bedroom, four for the office, four for the dining hall, and four for the tomb. Smooth and engrave and you’re done.
Of course, more asthetic-minded players are always free to design custom areas too. These blueprints are designed to
be functional more than beautiful.

6.3. Quickfort blueprint creation guide 413

DFHack Documentation, Release 50.11-r4

The beds and crypt levels: copy and paste and repeat

414 Chapter 6. User guides

https://drive.google.com/file/d/16-NXlodLIQjeZUMSmsWRafeytwU2dXQo

DFHack Documentation, Release 50.11-r4

The apartments and crypt blueprints are straightforward, other than the sheer number of zones. Copy-paste in Google
Sheets was used heavily here. The only fancy bit is the meta blueprint that digs the stack of apartment levels, which
brings us to our final tip:

Tip

Use meta blueprints to lay out repeated adjacent levels.

We couldn’t use this technique for the entire fortress since there is often an aquifer between the farming and industry
levels, and we can’t know beforehand how many z-levels we need to skip. We can, however, automate the digging of
everything from the industry level down, including designating all apartment levels at once. See the #meta blueprint
in the Dreamfort help spreadsheet for how it uses a repeat() marker for the /apartments1 blueprint to apply it to
three z-levels at once.

6.3. Quickfort blueprint creation guide 415

https://drive.google.com/file/d/16iT_ho7BIRPD_eofuxdlVQ4FunR1Li23
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio/edit#gid=284974597
https://docs.google.com/spreadsheets/d/15TDBebP8rBNvsFbezb9xuKPmGWNzv7j4XZWq1AsfCio

DFHack Documentation, Release 50.11-r4

That’s it! I hope this guide was useful to you. Please leave feedback on the forums or on the DFHack Discord server if
you have ideas on how this guide (or the dreamfort blueprints themselves) can be improved!

6.3.16 Links

Quickfort links:

• Quickfort command reference

• Quickfort blueprint library

• Quickfort forum thread

• DFHack issue tracker

• Blueprint library source

• Quickfort source code

Related tools:

• DFHack’s blueprint plugin can generate blueprints from actual DF maps.

• DFHack’s buildingplan plugin sets material and quality constraints for quickfort-placed buildings.

• Python Quickfort is the previous, Python-based implementation that DFHack’s quickfort script was inspired by.

6.3.17 Appendix: Symbols and properties

#dig mode reference

Symbol Meaning
d dig (mine out walls but leave the floors)
h channel (empty tile with a ramp in the z-level below)
u up stair
j down stair
i up/down stair
r ramp (produces empty tile in the z-level above)
z remove up stairs/ramps
t chop trees
p gather plants
s smooth walls or floors
e engrave smoothed walls or floors
F carve fortification
T carve track
v toggle whether engraving details are visible
M toggle marker (called “blueprints” by the DF interface)
n remove construction
x remove designation
bc claim items on this tile
bf forbid items on this tile
bm melt items on this tile
bM remove melt flag from items on this tile
bd dump items on this tile

continues on next page

416 Chapter 6. User guides

http://www.bay12forums.com/smf/index.php?topic=176889
https://github.com/DFHack/dfhack/issues/
https://github.com/DFHack/dfhack/tree/develop/data/blueprints
https://github.com/DFHack/scripts/tree/master/internal/quickfort
http://joelpt.net/quickfort

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Symbol Meaning
bD remove dump flag from items on this tile
bh hide items on this tile
bH unhide items on this tile
oh set high traffic
on set normal traffic
ol set low traffic
or set restricted traffic
trackN carve track that extends to the north
trackS carve track that extends to the south
trackE carve track that extends to the east
trackW carve track that extends to the west
trackNS carve track that extends to the north and south
trackEW carve track that extends to the east and west
trackNE carve track that extends to the north and east (corner)
trackNW carve track that extends to the north and west (corner)
trackSE carve track that extends to the south and east (corner)
trackSW carve track that extends to the south and west (corner)
trackNSE carve track that extends to the north, south, and east (tee)
trackNSW carve track that extends to the north, south, and west (tee)
trackNEW carve track that extends to the north, east, and west (tee)
trackSEW carve track that extends to the south, east, and west (tee)
trackNSEW carve track that extends in all directions (cross)

You can carve a track over an existing natural ramp to allow a minecart to safely traverse z-levels. You can write
trackramp<dir> instead of track<dir> (e.g. trackrampSW) for clarity in blueprints where this is the intention.
The actual designation produced by track<dir> and trackramp<dir> is identical.

6.3. Quickfort blueprint creation guide 417

DFHack Documentation, Release 50.11-r4

#zone mode reference

Sym-
bol

Type Properties

m meeting area
b bedroom
h dining hall
n pen/pasture
p pit/pond pond: if set to true, then the zone is a pond
w water source
j dungeon
f fishing
s sand
o office
D dormitory
B barracks
a archery

range
shoot_from: can be any of: west, left, east, right, north, top, south, or bottom.
defaults to west.

d garbage
dump

t animal train-
ing

T tomb pets: if set to true then pets are allowed. citizens: if set to false then citizens are
not allowed.

g gather/pick
fruit

pick_trees, pick_shrubs, gather_fallen: all are set to true by default. set to
false to disable.

c clay

In addition to the type-specific properties listed above, all zones support the following properties:

Prop-
erty

Description

name the name of the zone
activeif set to false then the zone is deactivated
assigned_unitif set to the name of a noble position (like manager or bookkeeper or sheriff) then the zone will be

assigned to the unit appointed to the indicated noble position (if any). if the fort has progressed to the point
that the sheriff role has been replaced by the captain of the guard, then assigned_unit=sheriff will be
interpreted as assigned_unit=captain_of_the_guard.

locationthe type of location to create and attach the zone to: one of: hospital, guildhall, tavern, library, or
temple. To attach multiple zones to the same location, specify a label after the location type and use the
same label for all attached zones. For example: location=tavern/mainpub.

allow (only if location is also set) sets the access restriction for the attached location: one of: visitors,
residents, citizens, or members. defaults to visitors.

profession(only if location=guildhall) sets the profession of the guildhall. See possilbe values with :lua @df.
profession. For example: profession=metalsmith.

desired_*(only if the location is set to the relevant type) sets the desired number of stocked items for the attached
location. See the table below for details.

Here are the desired items that can be specified for each location type:

418 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Loca-
tion
type

Properties

tavern desired_goblets (defaults to 10), desired_instruments (defaults to 5)
hospi-
tal

desired_splints (defaults to 5), desired_thread (defaults to 5), desired_cloth (defaults to 5),
desired_crutches (defaults to 5), desired_powder (defaults to 5), desired_buckets (defaults to
2), desired_soap (defaults to 5)

li-
brary

desired_paper (defaults to 10)

tem-
ple

desired_instruments (defaults to 5)

#place mode reference

The symbol or symbols used to declare a stockpile determine which item categories are enabled by default as well as
which stockpile containers (e.g. bins/barrels/wheelbarrows) are assigned to the stockpile by default.

Symbol Type Containers
a animal
f food barrels
u furniture
n coins bins
y corpses
r refuse
s stone wheelbarrows
w wood
e gem bins
b bars and blocks bins
h cloth bins
l leather bins
z ammo bins
S sheets bins
g finished goods bins
p weapons bins
d armor bins
c custom

All stockpiles support the following properties:

6.3. Quickfort blueprint creation guide 419

DFHack Documentation, Release 50.11-r4

Property Description
name the name of the stockpile
take_from comma-separated list of names or building ids of stockpiles or workshops that the stockpile takes

from
give_to comma-separated list of names or building ids of stockpiles or workshops that the stockpile gives

to
links_only if set to true then the stockpile will only take from links
barrels the number of desired barrels
bins the number of desired bins
wheelbarrows the number of desired wheelbarrows
containers sets the desired numbers for barrels, bins, and wheelbarrows. this is most useful to set all desired

container counts to 0.
quantum if set to true, then sets containers=0 links_only=true
automelt if set to true, enables the corresponding logistics feature
autotrade if set to true, enables the corresponding logistics feature
autodump if set to true, enables the corresponding logistics feature
autotrain if set to true, enables the corresponding logistics feature

Note that specifying building IDs in take_from or give_to lists is primarily useful when dynamically generating
quickfort blueprints and applying them via the API. You will not generally know the ID of a stockpile or building when
writing a blueprint by hand or when preparing a blueprint to apply in a different fort.

#build mode reference

In addition to the type-specific properties listed below, all building types accept the name property.

Moreover, all workshops and furnaces accept the max_general_orders property, which sets the maximum number
of general workorders that the building can accept, and the take_from and give_to properties, which are comma-
separated lists of names or building ids (the same as the correponding stockpile properties above).

Symbol Type Properties
a armor stand
b bed
c seat
n burial receptacle
d door
x floodgate
H floor hatch
W wall grate
G floor grate
B vertical bars
~b floor bars
f cabinet
h container
r weapon rack
s statue
~s slab
t table
g bridge (retracting)
gw bridge (raises to north)

continues on next page

420 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Table 2 – continued from previous page
Symbol Type Properties
gd bridge (raises to east)
gx bridge (raises to south)
ga bridge (raises to west)
l well
y glass window
Y gem window
D trade depot
Msu screw pump (pumps from north)
Msk screw pump (pumps from east)
Msm screw pump (pumps from south)
Msh screw pump (pumps from west)
Mw water wheel (vertical)
Mws water wheel (horizontal)
Mg gear assembly
Mh horizontal axle (east-west)
Mhs horizontal axle (north-south)
Mv vertical axle
rollerNS roller (pushes to south) speed: one of 50000, 40000, 30000, 20000, or 10000. defaults to 50000.
rollerEW roller (pushes to west) speed
rollerSN roller (pushes to north) speed
rollerWE roller (pushes to east) speed
S support
m animal trap
v restraint
j cage
A archery target
R traction bench
N nest box
~h hive if do_install is set to true then a bee colony will be installed. if do_gather is set to true then hive products will be gathered.
~a offering place
~c bookcase
F display furniture
p farm plot if seasonal_fertilize is set to true then the plots will be configured for seasonal fertilization
o paved road
O dirt road
k vermin catcher
we leather works
wq quern
wM millstone
wo loom
wk clothier
wb bowyer
wc carpenter
wf metalsmith
wv magma forge
wj jeweler
wm stoneworker
wu butcher
wn tanner

continues on next page

6.3. Quickfort blueprint creation guide 421

DFHack Documentation, Release 50.11-r4

Table 2 – continued from previous page
Symbol Type Properties
wr craftsdwarf
ws siege workshop
wt mechanic
wl still
ww farmer
wz kitchen
wh fishery
wy ashery
wd dyer
wS soap maker
wp screw press
ew wood furnace
es smelter
el magma smelter
eg glass furnace
ea magma glass furnace
ek kiln
en magma kiln
ib ballista
ic catapult
Cw wall
Cf floor
Cr ramp
Cu up stair
Cd down stair
Cx up/down stair
CF fortification
trackstop track stop (no dumping) friction: one of 50000, 10000, 500, 50, or 10. defaults to 50000. take_from: create a hauling route stop on this track stop and make it take from the given comma-separated list of stockpile names or stockpile building ids. route: add this route stop to the named route. if no route of this name exists, it will be created. If no route name is given, a new route is always created.
trackstopN track stop (dump to north) friction, take_from, route
trackstopS track stop (dump to south) friction, take_from, route
trackstopE track stop (dump to east) friction, take_from, route
trackstopW track stop (dump to west) friction, take_from, route
Ts stone-fall trap
Tw weapon trap
Tl lever
Tp pressure plate
Tc cage trap
TS upright spear/spike
trackN track to the N
trackS track to the S
trackE track to the E
trackW track to the W
trackNS track to the N, S
trackEW track to the E, W
trackNE track corner to the N, E
trackNW track corner to the N, W
trackSE track corner to the S, E
trackSW track corner to the S, W
trackNSE track tee to the N, S, E

continues on next page

422 Chapter 6. User guides

DFHack Documentation, Release 50.11-r4

Table 2 – continued from previous page
Symbol Type Properties
trackNSW track tee to the N, S, W
trackNEW track tee to the N, E, W
trackSEW track tee to the S, E, W
trackNSEW track cross
trackrampN track ramp to the N
trackrampS track ramp to the S
trackrampE track ramp to the E
trackrampW track ramp to the W
trackrampNS track ramp to the N, S
trackrampEW track ramp to the E, W
trackrampNE track ramp corner to the N, E
trackrampNW track ramp corner to the N, W
trackrampSE track ramp corner to the S, E
trackrampSW track ramp corner to the S, W
trackrampNSE track ramp tee to the N, S, E
trackrampNSW track ramp tee to the N, S, W
trackrampNEW track ramp tee to the N, E, W
trackrampSEW track ramp tee to the S, E, W
trackrampNSEW track ramp cross

#burrow mode reference

Sym-
bol

Mean-
ing

Properties

a add name: if set, will add to an existing burrow of this name. create: if set to true, will create a burrow
with the specified name if it doesn’t already exist. civalert: if set to true, will register this burrow
with gui/civ-alert if no burrow has already been registered. autochop_clear: if set to true, register
the burrow with autochop so that all trees in the burrow are immediately chopped down, regardless of
how many logs are in stock. autochop_chop: if set to true, register the burrow with autochop so
that woodcutting activity is constrained to this burrow (and others marked for chop).

e erase name: if set, will only affect the first burrow of the given name. if not set, will affect all burrows that
cover the given tiles.

6.3. Quickfort blueprint creation guide 423

DFHack Documentation, Release 50.11-r4

424 Chapter 6. User guides

CHAPTER

SEVEN

DFHACK DEVELOPMENT GUIDE

These are pages relevant to people developing for DFHack.

7.1 DFHack development overview

DFHack has various components; this page provides an overview of some. If you are looking to develop a tool for
DFHack, developing a script or plugin is likely the most straightforward choice.

Other pages that may be relevant include:

• Building DFHack

• How to contribute to DFHack

• DFHack documentation system

• Licenses

Contents

• Architecture diagrams

• Plugins

• Scripts

• Core

• Modules

• Remote access interface

7.1.1 Architecture diagrams

These two diagrams give a very high level overview of where DFHack injects itself in the DF call structure and how
the pieces of DFHack itself fit together:

425

DFHack Documentation, Release 50.11-r4

As seen in the diagram Dwarf Fortress utilizes the SDL library, this provides us with an easy to isolate injection point
for DFHack.

426 Chapter 7. DFHack development guide

https://drive.google.com/file/d/1-2yeNMC7WHgMfZ9iQsDQ0dEbLukd_xyU

DFHack Documentation, Release 50.11-r4

7.1.2 Plugins

DFHack plugins are written in C++ and located in the plugins folder. Currently, documentation on how to write
plugins is somewhat sparse. There are templates that you can use to get started in the plugins/examples folder, and
the source code of existing plugins can also be helpful.

If you want to compile a plugin that you have just added, you will need to add a call to DFHACK_PLUGIN in plugins/
CMakeLists.txt.

Plugins have the ability to make one or more commands available to users of the DFHack console. Examples include
3dveins (which implements the 3dveins command) and reveal (which implements reveal, unreveal, and several
other commands).

Plugins can also register handlers to run on every tick, and can interface with the built-in enable and disable commands.
For the full plugin API, see the example skeleton plugin or PluginManager.cpp.

Installed plugins live in the hack/plugins folder of a DFHack installation, and the load family of commands can be
used to load a recompiled plugin without restarting DF.

Run plug at the DFHack prompt for a list of all plugins included in DFHack.

7.1. DFHack development overview 427

https://drive.google.com/file/d/1--JoEQbzKpVUOkRKDD9HxvuCqtom780F

DFHack Documentation, Release 50.11-r4

7.1.3 Scripts

DFHack scripts are written in Lua, with a well-documented library. Referring to existing scripts as well as the API
documentation can be helpful when developing new scripts.

Scripts included in DFHack live in a separate scripts repository. This can be found in the scripts submodule if you
have cloned DFHack, or the hack/scripts folder of an installed copy of DFHack.

7.1.4 Core

The DFHack core has a variety of low-level functions. It is responsible for hooking into DF (via SDL), providing a
console, and providing an interface for plugins and scripts to interact with DF.

7.1.5 Modules

A lot of shared code to interact with DF in more complicated ways is contained in modules. For example, the Units
module contains functions for checking various traits of units, changing nicknames properly, and more. Generally, code
that is useful to multiple plugins and scripts should go in the appropriate module, if there is one.

Several modules are also exposed to Lua, although some functions (and some entire modules) are currently only avail-
able in C++.

7.1.6 Remote access interface

DFHack provides a remote access interface that external tools can connect to and use to interact with DF. See DFHack
remote interface for more information.

7.2 Building DFHack

Those seeking to compile the source code for DFHack, and or plugins, can refer to the following help pages.

7.2.1 Dependencies

The most immediate consideration is of course that DFHack is meant to be installed into an existing DF folder. So it
is prudent that one is ready.

Contents

• Build Dependencies

• Installing

– Linux

– Windows

– macOS

428 Chapter 7. DFHack development guide

https://github.com/DFHack/scripts/tree/master/

DFHack Documentation, Release 50.11-r4

Build Dependencies

Many of DFHack’s build dependencies are included in the repository as git submodules, however there are some system
dependencies as well. They are as follows:

System packages:

• SDL (libsdl 1.2, not sdl2).

• cmake

• Perl

• Python

– Sphinx

• git (required for contributions)

• ccache (optional, but recommended to improve build times)

• OpenGL headers (optional: to build stonesense)

• zlib (compression library used for xlsxreader -> quickfort)

• build system (e.g. gcc & ninja, or Visual Studio)

SDL is used as an injection point which you can see more about in DFHack’s architectural documentation & diagrams.

Perl packages:

• XML::LibXML

• XML::LibXSLT

These perl packages are used in code generation. DFHack has many structures that are reverse engineered, we use xml
files to define and update these structures. Then during the configuration process [running cmake] these xml files are
used to generate C++ source code to define these structures for use in plugins and scripts.

Installing

• Linux

– Building 32-bit Binaries

– Incompatible libstdc++

• Windows

– With Choco

– Manually

• macOS

7.2. Building DFHack 429

https://github.com/DFHack/dfhack/pulls

DFHack Documentation, Release 50.11-r4

Linux

Here are some package install commands for various distributions:

• On Arch linux:

pacman -Sy gcc cmake ccmake ninja git dwarffortress zlib perl-xml-libxml perl-xml-
→˓libxslt

– The dwarffortress package provides the necessary SDL packages.

– For the required Perl modules: perl-xml-libxml and perl-xml-libxslt (or through cpan)

• On Ubuntu:

apt-get install gcc cmake ninja-build git zlib1g-dev libsdl1.2-dev libxml-libxml-
→˓perl libxml-libxslt-perl

– Other Debian-based distributions should have similar requirements.

• On Fedora:

yum install gcc-c++ cmake ninja-build git zlib-devel SDL-devel perl-core perl-XML-
→˓LibXML perl-XML-LibXSLT ruby

To build DFHack, you need GCC 4.8 or newer. GCC 4.8 has the benefit of avoiding libstdc++ compatibility issues, but
can be hard to obtain on modern distributions, and working around these issues is done automatically by the dfhack
launcher script. As long as your system-provided GCC is new enough, it should work. Note that extremely new GCC
versions may not have been used to build DFHack yet, so if you run into issues with these, please let us know (e.g. by
opening a GitHub issue).

Before you can build anything, you’ll also need cmake. It is advisable to also get ccmake on distributions that split the
cmake package into multiple parts. As mentioned above, ninja is recommended (many distributions call this package
ninja-build).

You will need pthread; most systems should have this already. Note that older CMake versions may have trouble
detecting pthread, so if you run into pthread-related errors and pthread is installed, you may need to upgrade CMake,
either by downloading it from cmake.org or through your package manager, if possible.

Building 32-bit Binaries

If you want to compile 32-bit DFHack on 64-bit distributions, you’ll need the multilib development tools and libraries:

• gcc-multilib and g++-multilib

• If you have installed a non-default version of GCC - for example, GCC 4.8 on a distribution that defaults to 5.x
- you may need to add the version number to the multilib packages.

– For example, gcc-4.8-multilib and g++-4.8-multilib if installing for GCC 4.8 on a system that uses
a later GCC version.

– This is definitely required on Ubuntu/Debian, check if using a different distribution.

• zlib1g-dev:i386 (or a similar i386 zlib-dev package)

Note that installing a 32-bit GCC on 64-bit systems (e.g. gcc:i386 on Debian) will typically not work, as it depends
on several other 32-bit libraries that conflict with system libraries. Alternatively, you might be able to use lxc to create
a virtual 32-bit environment.

430 Chapter 7. DFHack development guide

https://cmake.org/download/
http://www.bay12forums.com/smf/index.php?topic=139553.msg5435310#msg5435310
http://www.bay12forums.com/smf/index.php?topic=139553.msg5435310#msg5435310

DFHack Documentation, Release 50.11-r4

Incompatible libstdc++

When compiling DFHack yourself, it builds against your system libstdc++. When Dwarf Fortress runs, it uses a lib-
stdc++ shipped in the libs folder, which comes from GCC 4.8 and is incompatible with code compiled with newer
GCC versions. As of DFHack 0.42.05-alpha1, the dfhack launcher script attempts to fix this by automatically remov-
ing the DF-provided libstdc++ on startup. In rare cases, this may fail and cause errors such as:

./libs/Dwarf_Fortress: /pathToDF/libs/libstdc++.so.6: version
`GLIBCXX_3.4.18' not found (required by ./hack/libdfhack.so)

The easiest way to fix this is generally removing the libstdc++ shipped with DF, which causes DF to use your system
libstdc++ instead:

cd /path/to/DF/
rm libs/libstdc++.so.6

Note that distributing binaries compiled with newer GCC versions may result in the opposite compatibility issue: users
with older GCC versions may encounter similar errors. This is why DFHack distributes both GCC 4.8 and GCC 7
builds. If you are planning on distributing binaries to other users, we recommend using an older GCC (but still at least
4.8) version if possible.

Windows

DFHack must be built with the Microsoft Visual C++ 2022 toolchain (aka MSVC v143) for ABI compatibility with
Dwarf Fortress v50.

With Choco

Many of the dependencies are simple enough to download and install via the chocolatey package manager on the
command line.

Here are some package install commands:

choco install cmake
choco install ccache
choco install strawberryperl
choco install python
choco install sphinx

Visual Studio
choco install visualstudio2022community --params "--add Microsoft.VisualStudio.Workload.
→˓NativeDesktop --includeRecommended"
OR
Build Tools for Visual Studio
choco install visualstudio2022buildtools --params "--add Microsoft.VisualStudio.Workload.
→˓NativeDesktop --includeRecommended"

If you already have Visual Studio 2022 or the Build Tools installed, you may need to modify the installed version to
include the workload components listed in the manual installation section, as chocolatey will not amend the existing
install.

7.2. Building DFHack 431

https://chocolatey.org/install

DFHack Documentation, Release 50.11-r4

Manually

If you prefer to install manually rather than using Chocolatey, details and requirements are as below. If you do install
manually, please ensure you have all executables searchable in your PATH variable.

• CMake

• Perl / Strawberry Perl

• Python

• Sphinx

• Visual Studio

• Build Tools [Without Visual Studio]

CMake

You can get the win32 installer version from the official site. It has the usual installer wizard. Make sure you let it add
its binary folder to your binary search PATH so the tool can be later run from anywhere.

Perl / Strawberry Perl

For the code generation stage of the build process, you’ll need Perl 5 with XML::LibXML and XML::LibXSLT.
Strawberry Perl is recommended as it includes all of the required packages in a single easy install.

After install, ensure Perl is in your user’s PATH. This can be edited from Control Panel -> System -> Advanced
System Settings -> Environment Variables.

The following directories must be in your PATH, in this order:

• <path to perl>\c\bin

• <path to perl>\perl\site\bin

• <path to perl>\perl\bin

• <path to perl>\perl\vendor\lib\auto\XML\LibXML (path may only be required on some systems)

Be sure to close and re-open any existing cmd.exe windows after updating your PATH.

If you already have a different version of Perl installed (for example, from Cygwin), you can run into some trouble.
Either remove the other Perl install from PATH, or install XML::LibXML and XML::LibXSLT for it using CPAN.

Python

See the Python website.

432 Chapter 7. DFHack development guide

https://cmake.org/download/
http://strawberryperl.com
https://www.python.org/downloads/

DFHack Documentation, Release 50.11-r4

Sphinx

See the Sphinx website.

Visual Studio

The required toolchain can be installed as a part of either the Visual Studio 2022 IDE or the Build Tools for Visual
Studio 2022. If you already have a preferred code editor, the Build Tools will be a smaller install. You may need to log
into (or create) a Microsoft account in order to download Visual Studio.

Build Tools [Without Visual Studio]

Click Build Tools for Visual Studio 2022 and you will be prompted to login to your Microsoft account. Then you should
be redirected to a page with various download options with 2022 in their name. If this redirect doesn’t occur, just copy,
paste, and enter the download link again and you should see the options.

You want to select the most up-to-date version – as of writing this is “Build Tools for Visual Studio 2022 (version
17.4)”. “LTSC” is an extended support variant and is not required for our purposes.

When installing, select the “Desktop Development with C++” workload and ensure that the following are checked:

• MSVC v143 - VS 2022 C++ x64/x86 build tools

• C++ CMake tools for Windows

• At least one Windows SDK (for example, Windows 11 SDK 10.0.22621).

macOS

DFHack can officially be built on macOS only with GCC 4.8 or 7. Anything newer than 7 will require you to perform
extra steps to get DFHack to run (see Notes for GCC 8+ or OS X 10.10+ users), and your build will likely not be
redistributable.

1. Download and unpack a copy of the latest DF

2. Install Xcode from the Mac App Store

3. Install the XCode Command Line Tools by running the following command:

xcode-select --install

4. Install dependencies

It is recommended to use Homebrew instead of MacPorts, as it is generally cleaner, quicker, and
smarter. For example, installing MacPort’s GCC will install more than twice as many dependencies
as Homebrew’s will, and all in both 32-bit and 64-bit variants. Homebrew also doesn’t require constant
use of sudo.

Using Homebrew (recommended):

brew tap homebrew/versions
brew install git
brew install cmake
brew install ninja
brew install gcc@7

7.2. Building DFHack 433

https://www.sphinx-doc.org/en/master/usage/installation.html
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community&channel=Release&version=VS2022&source=VSLandingPage&cid=2030&passive=false
https://my.visualstudio.com/Downloads?q=Build%20Tools%20for%20Visual%20Studio%202022
https://my.visualstudio.com/Downloads?q=Build%20Tools%20for%20Visual%20Studio%202022
https://my.visualstudio.com/Downloads?q=Build%20Tools%20for%20Visual%20Studio%202022
https://brew.sh/

DFHack Documentation, Release 50.11-r4

Using MacPorts:

sudo port install gcc7 +universal cmake +universal git-core +universal␣
→˓ninja +universal

Macports will take some time - maybe hours. At some point it may ask you to install a Java environ-
ment; let it do so.

5. Install Perl dependencies

• Using system Perl

– sudo cpan

If this is the first time you’ve run cpan, you will need to go through the setup process. Just stick with the
defaults for everything and you’ll be fine.

If you are running OS X 10.6 (Snow Leopard) or earlier, good luck! You’ll need to open a separate Terminal
window and run:

sudo ln -s /usr/include/libxml2/libxml /usr/include/libxml

– install XML::LibXML

– install XML::LibXSLT

• In a separate, local Perl install

Rather than using system Perl, you might also want to consider the Perl manager, Perlbrew.

This manages Perl 5 locally under ~/perl5/, providing an easy way to install Perl and run CPAN against it with-
out sudo. It can maintain multiple Perl installs and being local has the benefit of easy migration and insulation
from OS issues and upgrades.

See https://perlbrew.pl/ for more details.

7.2.2 Compilation

DFHack builds are available for all supported platforms; see Installing DFHack for installation instructions. If you are
a DFHack end-user, modder, or plan on writing scripts [lua] (not plugins), it is generally recommended (and easier) to
use these builds instead of compiling DFHack from source.

However, if you are looking to develop plugins, work on the DFHack core, make complex changes to DF-structures,
or anything else that requires compiling DFHack from source, this document will walk you through the build process.
Note that some steps may be unconventional compared to other projects, so be sure to pay close attention if this is your
first time compiling DFHack.

Contents

• How to get the code

• All Platforms

• Linux

– Build

• Windows

– Visual Studio IDE

434 Chapter 7. DFHack development guide

https://www.macports.org
https://perlbrew.pl
https://perlbrew.pl/
https://github.com/DFHack/dfhack/releases

DFHack Documentation, Release 50.11-r4

– Command Line

• macOS

– Building

– Notes for GCC 8+ or OS X 10.10+ users

– Notes for M1 users

• Windows cross compiling from Linux (running DF inside docker)

– Step 1: prepare a build container

– Step 2: build DFHack

– Step 3: copy Dwarf Fortress to the container

– Step 4: install DFHack and run DF

– Other notes

• Cross-compiling windows files for running DF in Steam for Linux

– Step 1: Get dfhack, and run the build script

– Step 2: install dfhack to your Steam DF install

• Building DFHack Offline

How to get the code

DFHack uses Git for source control; instructions for installing Git can be found in the platform-specific sections below.
The code is hosted on GitHub, and can be downloaded with:

git clone --recursive https://github.com/DFHack/dfhack
cd dfhack

If your version of Git does not support the --recursive flag, you will need to omit it and run git submodule
update --init after entering the dfhack directory.

This will check out the code on the default branch of the GitHub repo, currently develop, which may be unstable. If
you want code for the latest stable release, you can check out the master branch instead:

git checkout master
git submodule update

In general, a single DFHack clone is suitable for development - most Git operations such as switching branches can
be done on an existing clone. If you find yourself cloning DFHack frequently as part of your development process, or
getting stuck on anything else Git-related, feel free to reach out to us for assistance.

Offline builds

If you plan to build DFHack on a machine without an internet connection (or with an unreliable connection), see
Building DFHack Offline for additional instructions.

Working with submodules

7.2. Building DFHack 435

https://github.com/DFHack/dfhack

DFHack Documentation, Release 50.11-r4

DFHack uses submodules extensively to manage its subprojects (including the scripts folder and DF-structures in
library/xml). Failing to keep submodules in sync when switching between branches can result in build errors or
scripts that don’t work. In general, you should always update submodules whenever you switch between branches
in the main DFHack repo with git submodule update. (If you are working on bleeding-edge DFHack and have
checked out the master branch of some submodules, running git pull in those submodules is also an option.)

Rarely, we add or remove submodules. If there are any changes to the existence of submodules when you switch between
branches, you should run git submodule update --init instead (adding --init to the above command).

Some common errors that can arise when failing to update submodules include:

• fatal: <some path> does not exist when performing Git operations

• Build errors, particularly referring to structures in the df:: namespace or the library/include/df folder

• Not a known DF version when starting DF

• Run 'git submodule update --init' when running CMake

Submodules are a particularly confusing feature of Git. The Git Book has a thorough explanation of them (as well as
of many other aspects of Git) and is a recommended resource if you run into any issues. Other DFHack developers are
also able to help with any submodule-related (or Git-related) issues you may encounter.

All Platforms

Before you can compile the code you’ll need to configure your build with cmake. Some IDEs can do this for you, but
it’s more common to do it from the command line. Windows developers can refer to the Windows section below for
batch files that can be used to avoid opening a terminal/command-prompt.

You should seek cmake’s documentation online or via cmake --help to see how the command works. See the Build
Options page for help finding the DFHack build options relevant to you.

Before compiling code, you’ll of course need code to compile. This will include the submodules, so be sure you’ve
read the section about getting the code.

Linux

On Linux, DFHack acts as a library that shadows parts of the SDL API using LD_PRELOAD.

Build

Building is fairly straightforward. Enter the build folder (or create an empty folder in the DFHack directory to use
instead) and start the build like this:

cd build
cmake .. -G Ninja -DCMAKE_BUILD_TYPE:string=Release -DCMAKE_INSTALL_PREFIX=<path to DF>
ninja install # or ninja -jX install to specify the number of cores (X) to use

<path to DF> should be a path to a copy of Dwarf Fortress, of the appropriate version for the DFHack you are building.
This will build the library along with the normal set of plugins and install them into your DF folder.

Alternatively, you can use ccmake instead of cmake:

cd build
ccmake .. -G Ninja
ninja install

436 Chapter 7. DFHack development guide

https://git-scm.com/book/en/v2/Git-Tools-Submodules

DFHack Documentation, Release 50.11-r4

This will show a curses-based interface that lets you set all of the extra options. You can also use a cmake-friendly IDE
like KDevelop 4 or the cmake-gui program.

Windows

There are several different batch files in the win32 and win64 subfolders in the build folder, along with a script that’s
used for picking the DF path. Use the subfolder corresponding to the architecture that you want to build for.

First, run set_df_path.vbs and point the dialog that pops up at a suitable DF installation which is of the appropriate
version for the DFHack you are compiling. The result is the creation of the file DF_PATH.txt in the build directory.
It contains the full path to the destination directory. You could therefore also create this file manually - or copy in a
pre-prepared version - if you prefer.

Next, run one of the scripts with generate prefix. These create the MSVC solution file(s):

• all will create a solution with everything enabled (and the kitchen sink).

• gui will pop up the CMake GUI and let you choose what to build. This is probably what you want most of the
time. Set the options you are interested in, then hit configure, then generate. More options can appear after the
configure step.

• minimal will create a minimal solution with just the bare necessities - the main library and standard plugins.

• release will create a solution with everything that should be included in release builds of DFHack. Note that
this includes documentation, which requires Python.

Then you can either open the solution with MSVC or use one of the msbuild scripts.

Visual Studio IDE

After running the CMake generate script you will have a new folder called VC2022 or VC2022_32, depending on the
architecture you specified. Open the file dfhack.sln inside that folder. If you have multiple versions of Visual Studio
installed, make sure you open with Visual Studio 2022.

The first thing you must then do is change the build type. It defaults to Debug, but this cannot be used on Windows.
Debug is not binary-compatible with DF. If you try to use a debug build with DF, you’ll only get crashes and for this
reason the Windows “debug” scripts actually do RelWithDebInfo builds. After loading the Solution, change the Build
Type to either Release or RelWithDebInfo.

Then build the INSTALL target listed under CMakePredefinedTargets.

Command Line

In the build directory you will find several .bat files:

• Scripts with build prefix will only build DFHack.

• Scripts with install prefix will build DFHack and install it to the previously selected DF path.

• Scripts with package prefix will build and create a .zip package of DFHack.

Compiling from the command line is generally the quickest and easiest option. Modern Windows terminal emulators
such as Cmder or Windows Terminal provide a better experience by providing more scrollback and larger window sizes.

7.2. Building DFHack 437

https://cmder.app/
https://github.com/microsoft/terminal

DFHack Documentation, Release 50.11-r4

macOS

DFHack functions similarly on macOS and Linux, and the majority of the information above regarding the build process
(CMake and Ninja) applies here as well.

DFHack can officially be built on macOS only with GCC 4.8 or 7. Anything newer than 7 will require you to perform
extra steps to get DFHack to run (see Notes for GCC 8+ or OS X 10.10+ users), and your build will likely not be
redistributable.

Building

• Get the DFHack source as per section How to get the code, above.

• Set environment variables

Homebrew (if installed elsewhere, replace /usr/local with $(brew --prefix)):

export CC=/usr/local/bin/gcc-7
export CXX=/usr/local/bin/g++-7

Macports:

export CC=/opt/local/bin/gcc-mp-7
export CXX=/opt/local/bin/g++-mp-7

Change the version numbers appropriately if you installed a different version of GCC.

If you are confident that you have GCC in your path, you can omit the absolute paths:

export CC=gcc-7
export CXX=g++-7

(adjust as needed for different GCC installations)

• Build DFHack:

mkdir build-osx
cd build-osx
cmake .. -G Ninja -DCMAKE_BUILD_TYPE:string=Release -DCMAKE_INSTALL_PREFIX=<path to␣
→˓DF>
ninja install # or ninja -jX install to specify the number of cores (X) to use

<path to DF> should be a path to a copy of Dwarf Fortress, of the appropriate version for the DFHack you are
building.

Notes for GCC 8+ or OS X 10.10+ users

If you have issues building on OS X 10.10 (Yosemite) or above, try defining the following environment variable:

export MACOSX_DEPLOYMENT_TARGET=10.9

If you build with a GCC version newer than 7, DFHack will probably crash immediately on startup, or soon after. To
fix this, you will need to replace hack/libstdc++.6.dylib with a symlink to the libstdc++.6.dylib included in
your version of GCC:

438 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

cd <path to df>/hack && mv libstdc++.6.dylib libstdc++.6.dylib.orig &&
ln -s [PATH_TO_LIBSTDC++] .

For example, with GCC 6.3.0, PATH_TO_LIBSTDC++ would be:

/usr/local/Cellar/gcc@6/6.3.0/lib/gcc/6/libstdc++.6.dylib # for 64-bit DFHack
/usr/local/Cellar/gcc@6/6.3.0/lib/gcc/6/i386/libstdc++.6.dylib # for 32-bit DFHack

Note: If you build with a version of GCC that requires this, your DFHack build will not be redistributable. (Even if
you copy the libstdc++.6.dylib from your GCC version and distribute that too, it will fail on older OS X versions.)
For this reason, if you plan on distributing DFHack, it is highly recommended to use GCC 4.8 or 7.

Notes for M1 users

Alongside the above, you will need to follow these additional steps to get it running on Apple silicon.

Install an x86 copy of homebrew alongside your existing one. This stackoverflow answer describes the process.

Follow the normal macOS steps to install cmake and gcc via your x86 copy of homebrew. Note that this will install a
GCC version newer than 7, so see Notes for GCC 8+ or OS X 10.10+ users.

In your terminal, ensure you have your path set to the correct homebrew in addition to the normal CC and CXX flags
above:

export PATH=/usr/local/bin:$PATH

Windows cross compiling from Linux (running DF inside docker)

You can use docker to build DFHack for Windows. These instructions were developed on a Linux host system.

• Step 1: prepare a build container

• Step 2: build DFHack

• Step 3: copy Dwarf Fortress to the container

• Step 4: install DFHack and run DF

• Other notes

Step 1: prepare a build container

On your Linux host, install and run the docker daemon and then run these commands:

xhost +local:root
docker run -it --env="DISPLAY" --env="QT_X11_NO_MITSHM=1" --volume=/tmp/.X11-unix:/tmp/.
→˓X11-unix --user buildmaster --name dfhack-win ghcr.io/dfhack/build-env:msvc

The xhost command and --env parameters are there so you can eventually run Dwarf Fortress from the container and
have it display on your host.

7.2. Building DFHack 439

https://stackoverflow.com/a/64951025

DFHack Documentation, Release 50.11-r4

Step 2: build DFHack

The docker run command above will give you a shell prompt (as the buildmaster user) in the container. Inside the
container, run the following commands:

git clone https://github.com/DFHack/dfhack.git
cd dfhack
git submodule update --init
cd build
dfhack-configure windows 64 Release
dfhack-make

Inside the dfhack-* scripts there are several commands that set up the wine server. Each invocation of a Windows
tool will cause wine to run in the container. Preloading the wineserver and telling it not to exit will speed configuration
and compilation up considerably (approx. 10x). You can configure and build DFHack with regular cmake and ninja
commands, but your build will go much slower.

Step 3: copy Dwarf Fortress to the container

First, create a directory in the container to house the Dwarf Fortress binary and assets:

mkdir ~/df

If you can just download Dwarf Fortress directly into the container, then that’s fine. Otherwise, you can do something
like this in your host Linux environment to copy an installed version to the container:

cd ~/.steam/steam/steamapps/common/Dwarf\ Fortress/
docker cp . dfhack-win:df/

Step 4: install DFHack and run DF

Back in the container, run the following commands:

cd dfhack/build
cmake .. -DCMAKE_INSTALL_PREFIX=/home/buildmaster/df
ninja install
cd ~/df
wine64 "Dwarf Fortress.exe"

Other notes

Closing your shell will kick you out of the container. Run this command on your Linux host when you want to reattach:

docker start -ai dfhack-win

If you edit code and need to rebuild, run dfhack-make and then ninja install. That will handle all the wineserver
management for you.

440 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Cross-compiling windows files for running DF in Steam for Linux

If you wish, you can use Docker to build just the Windows files to copy to your existing Steam installation on Linux.

• Step 1: Get dfhack, and run the build script

• Step 2: install dfhack to your Steam DF install

Step 1: Get dfhack, and run the build script

Check out dfhack into another directory, and run the build script:

git clone https://github.com/DFHack/dfhack.git
cd dfhack
git submodule update --init --recursive
cd build
./build-win64-from-linux.sh

The script will mount your host’s dfhack directory to docker, use it to build the artifacts in build/win64-cross, and
put all the files needed to install in build/win64-cross/output.

If you need to run docker using sudo, run the script using sudo rather than directly:

sudo ./build-win64-from-linux.sh

Step 2: install dfhack to your Steam DF install

As the script will tell you, you can then copy the files into your DF folder:

Optional -- remove the old hack directory in case we leave files behind
rm ~/.local/share/Steam/steamapps/common/"Dwarf Fortress"/hack
cp -r win64-cross/output/* ~/.local/share/Steam/steamapps/common/"Dwarf Fortress"/

Afterward, just run DF as normal.

Building DFHack Offline

As of 0.43.05, DFHack downloads several files during the build process, depending on your target OS and architecture.
If your build machine’s internet connection is unreliable, or nonexistent, you can download these files in advance.

First, you must locate the files you will need. These can be found in the dfhack-bin repo. Look for the most recent
version number before or equal to the DF version which you are building for. For example, suppose “0.43.05” and
“0.43.07” are listed. You should choose “0.43.05” if you are building for 0.43.05 or 0.43.06, and “0.43.07” if you are
building for 0.43.07 or 0.43.08.

Then, download all of the files you need, and save them to <path to DFHack clone>/CMake/downloads/<any
filename>. The destination filename you choose does not matter, as long as the files end up in the CMake/downloads
folder. You need to download all of the files for the architecture(s) you are building for. For example, if you are building
for 32-bit Linux and 64-bit Windows, download all files starting with linux32 and win64. GitHub should sort files
alphabetically, so all the files you need should be next to each other.

Note:

7.2. Building DFHack 441

https://github.com/DFHack/dfhack-bin/releases

DFHack Documentation, Release 50.11-r4

• Any files containing “allegro” in their filename are only necessary for building stonesense. If you are not building
Stonesense, you don’t have to download these, as they are larger than any other listed files.

It is recommended that you create a build folder and run CMake to verify that you have downloaded everything at
this point, assuming your download machine has CMake installed. This involves running a “generate” batch script on
Windows, or a command starting with cmake .. -G Ninja on Linux and macOS, following the instructions in the
sections above. CMake should automatically locate files that you placed in CMake/downloads, and use them instead
of attempting to download them.

7.2.3 Build Options

Typical Options

• Generator

• Install Location

• Build type

• Target architecture (32/64-bit)

• Library

• Testing

• Plugins

• Documentation

There are a variety of other settings which you can find in CMakeCache.txt in your build folder or by running ccmake
(or another CMake GUI). Most DFHack-specific settings begin with BUILD_ and control which parts of DFHack are
built.

Typical usage may look like:

Plugin development with updated documentation
cmake ./ -G Ninja -B builds/debug-info/ -DCMAKE_INSTALL_PREFIX=<path to DF> -DCMAKE_
→˓BUILD_TYPE:string=RelWithDebInfo -DBUILD_DOCS:bool=ON -DBUILD_PLUGINS=1
Core DFHack only
cmake ../ -G Ninja -DCMAKE_INSTALL_PREFIX=<path to DF> -DCMAKE_BUILD_
→˓TYPE:string=RelWithDebInfo -DBUILD_TESTS -DBUILD_DOCS:0 -DBUILD_PLUGINS=0

Modifying Build Options

You can typically run new cmake commands from your build directory to turn on/off options. Of course the generator
selection is not something you can change, but the rest are.

Additionally, you can edit the build settings in CMakeCache.txt. You also have cmake’s configuration utility ccmake.

442 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Generator

For the uninitiated, the generator is what allows cmake to, of course, generate visual studio solution & project files, a
makefile, or anything else. Your selection of generator comes down to preference and availability.

Visual Studio

To generate visual studio project files, you’ll need to select a particular version of visual studio, and match that to your
system’s generator list viewed with cmake --help

example:

cmake .. -G "Visual Studio 17 2022"

Ninja

The generally preferred build system where available.

example:

cmake .. -G Ninja

Install Location

This is the location where DFHack will be installed.

Variable: CMAKE_INSTALL_PREFIX

Usage:

cmake .. -DCMAKE_INSTALL_PREFIX=<path to df>

The path to df will of course depend on your system. If the directory exists it is recommended to use ~/.
dwarffortress to avoid permission troubles.

Build type

This is the type of build you want. This controls what information about symbols and line numbers the debugger will
have available to it.

Variable: CMAKE_BUILD_TYPE

Usage:

cmake .. -DCMAKE_BUILD_TYPE:string=RelWithDebInfo

Options:

• Release

• RelWithDebInfo

7.2. Building DFHack 443

DFHack Documentation, Release 50.11-r4

Target architecture (32/64-bit)

You can set this if you need 32-bit binaries or are looking to be explicit about building 64-bit.

Variable: DFHACK_BUILD_ARCH

Usage:

cmake .. -DDFHACK_BUILD_ARCH=32

Options:

• ‘32’

• ‘64’ (default option)

Library

This will only be useful if you’re looking to avoid building the library core, as it builds by default.

Variable: BUILD_LIBRARY

Usage:

cmake .. -DBUILD_LIBRARY:bool=OFF
cmake .. -DBUILD_LIBRARY=0

Testing

Regression testing will be arriving in the future, but for now there are only tests written in lua.

Variables:

• BUILD_TESTING (will build unit tests, in the future)

• BUILD_TESTS (installs lua tests)

Usage:

cmake .. -DBUILD_TESTS:bool=ON
cmake .. -DBUILD_TESTS=1

Plugins

If you’re doing plugin development.

Variable: BUILD_PLUGINS

Usage:

cmake .. -DBUILD_PLUGINS:bool=ON
cmake .. -DBUILD_PLUGINS=1

444 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Documentation

If you need to build documentation. Documentation can be built as HTML, and PDF, but there are also plain text files
generated for in-game.

Variable: BUILD_DOCS

Usage:

cmake .. -DBUILD_DOCS:bool=ON
cmake .. -DBUILD_DOCS=1

The generated documentation is stored in docs/html and docs/text (respectively) in the root DFHack folder, and
they will both be installed to hack/docs when you install DFHack. The html and txt files will intermingle, but will
not interfere with one another.

7.3 How to contribute to DFHack

Contents

• Contributing Code

– General contribution guidelines

– Code format

– Pull request guidelines

• Other ways to help

7.3.1 Contributing Code

DFHack’s source code is hosted on GitHub. To obtain the code, you do not need an account - see the compilation
instructions for details. However, to contribute code to DFHack, you will need a GitHub account to submit pull requests.
DFHack consists of several repositories, so you will need to fork the repository (or repositories) containing the code
you wish to modify. GitHub has several documentation pages on these topics, including:

• An overview of forks

• Proposing changes with pull requests (note: see Pull request guidelines for some DFHack-specific information)

In general, if you are not sure where or how to make a change, or would like advice before attempting to make a change,
please see Getting help for ways to contact maintainers. If you are interested in addressing an issue reported on the
issue tracker, you can start a discussion there if you prefer.

The sections below cover some guidelines that contributions should follow:

• General contribution guidelines

• Code format

• Pull request guidelines

7.3. How to contribute to DFHack 445

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/working-with-forks
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests
https://github.com/DFHack/dfhack/issues/

DFHack Documentation, Release 50.11-r4

General contribution guidelines

• If convenient, compile on multiple platforms when changing anything that compiles. Our CI should catch any-
thing that fails to build, but checking in advance can sometimes let you know of any issues sooner.

• Update documentation when applicable - see Documentation standards for details.

• Update docs/changelog.txt and docs/about/Authors.rst when applicable. See Building the changelogs
for more information on the changelog format.

• Submit ideas and bug reports as issues on GitHub. Posts in the forum thread or on Disord can easily get missed
or forgotten.

• Work on reported problems will take priority over ideas or suggestions.

Code format

• Four space indents for C++. Never use tabs for indentation in any language.

• LF (Unix style) line terminators

• No trailing whitespace

• UTF-8 encoding

• For C++:

– Opening and closing braces on their own lines or opening brace at the end of the previous line

– Braces placed at original indent level if on their own lines

– #include directives should be sorted: C++ libraries first, then DFHack modules, then df/ headers, then
local includes. Within each category they should be sorted alphabetically.

Pull request guidelines

• Pull requests should be based on (and submitted to) the default branch of the relevant repo, which is the branch
you see when you access the repo on GitHub or clone the repo without specifying a branch. As of 0.47.04-r1,
this is develop for the main DFHack repo and master for other repos.

• We often leave feedback as comments on pull requests, so be sure that you have notifications turned on or that
you check back for feedback periodically.

• Use a new branch for each feature or bugfix so that your changes can be merged independently (i.e. not the
master or develop branch of your fork).

– An exception: for a collection of small miscellaneous changes (e.g. structures research), one branch instead
of many small branches is fine. It is still preferred that this branch be dedicated to this purpose, i.e. not
master or develop. Your pull request may be merged at any point unless you indicate that it isn’t ready
(see below), but you can continue to push to the same branch and open new pull requests as needed.

• Try to keep pull requests relatively small so that they are easier to review and merge.

– If you expect to make a large number of related additions or changes (e.g. adding a large new plugin),
multiple PRs are preferred, as they allow more frequent (and easier) feedback. If development of this
feature is expected to take a while, we may create a dedicated branch to merge your pull requests into
instead of the repo’s default branch.

• If you plan to make additional changes to your pull request in the near future, or if it isn’t quite ready to be
merged, mark it as a draft pull request or add “WIP” to the title. Otherwise, your pull request may be reviewed
and/or merged prematurely.

446 Chapter 7. DFHack development guide

https://github.com/DFHack/dfhack/issues/
https://github.com/DFHack/dfhack/issues/?q=is:open+-label:idea
https://github.com/settings/notifications
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests#draft-pull-requests

DFHack Documentation, Release 50.11-r4

7.3.2 Other ways to help

DFHack is a software project, but there’s a lot more to it than programming. If you’re not comfortable programming,
you can help by:

• reporting bugs and incomplete documentation

• improving the documentation (C++ api is rife)

• finding third-party scripts to add

• writing tutorials for newbies

All those things are crucial, and often under-represented. So if that’s your thing, go get started!

7.4 DFHack documentation system

DFHack documentation, like the file you are reading now, is created as a set of .rst files in reStructuredText (reST)
format. This is a documentation format common in the Python community. It is very similar in concept – and in syntax
– to Markdown, as found on GitHub and many other places. However it is more advanced than Markdown, with more
features available when compiled to HTML, such as automatic tables of contents, cross-linking, special external links
(forum, wiki, etc) and more. The documentation is compiled by a Python tool named Sphinx.

The DFHack build process will compile and install the documentation so it can be displayed in-game by the help and
ls commands (and any other command or GUI that displays help text), but documentation compilation is disabled by
default due to the additional Python and Sphinx requirements. If you already have a version of the docs installed (say
from a downloaded release binary), then you only need to build the docs if you’re changing them and want to see the
changes reflected in your game.

You can also build the docs if you just want a local HTML- or text-rendered copy, though you can always read the
online version too. The active development version of the documentation is tagged with latest and is available here

Note that even if you do want a local copy, it is certainly not necessary to compile the documentation in order to read it.
Like Markdown, reST documents are designed to be just as readable in a plain-text editor as they are in HTML format.
The main thing you lose in plain text format is hyperlinking.

Contents

• Concepts and general guidance

– Short descriptions

– Tags

– Links

• Documentation standards

– Where do I add the help text?

– Header format

– Usage help

– Examples

– Options

• External scripts and plugins

7.4. DFHack documentation system 447

https://www.sphinx-doc.org/rest.html
https://www.sphinx-doc.org
https://dfhack.readthedocs.org
https://docs.dfhack.org/en/latest/index.html

DFHack Documentation, Release 50.11-r4

• Required dependencies

– Linux

– macOS

– Windows

• Building the documentation

– Using CMake

– Running Sphinx manually

– Building a PDF version

• Building the changelogs

– Changelog syntax

• GitHub Actions

7.4.1 Concepts and general guidance

The source .rst files are compiled to HTML for viewing in a browser and to text format for viewing in-game. For
in-game help, the help text is read from its installed location in hack/docs under the DF directory.

When writing documentation, remember that everything should be documented! If it’s not clear where a particular
thing should be documented, ask on Discord or in the DFHack thread on Bay12 – you’ll not only be getting help, you’ll
also be providing valuable feedback that makes it easier for future contributors to find documentation on how to write
the documentation!

Try to keep lines within 80-100 characters so it’s readable in plain text in the terminal - Sphinx (our documentation
system) will make sure paragraphs flow.

Short descriptions

Each command that a user can run – as well as every plugin – needs to have a short (~54 character) descriptive string
associated with it. This description text is:

• used in-game by the ls command and DFHack UI screens that list commands

• used in the generated index entries in the HTML docs

Tags

To make it easier for players to find related commands, all plugins and commands are marked with relevant tags.
These are used to compile indices and generate cross-links between the commands, both in the HTML documents and
in-game. See the list of available tag-list and think about which categories your new tool belongs in.

448 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Links

If it would be helpful to mention another DFHack command, don’t just type the name - add a hyperlink! Specify the link
target in backticks, and it will be replaced with the corresponding title and linked: e.g. `autolabor` => autolabor.
Scripts and plugins have link targets that match their names created for you automatically.

If you want to link to a heading in your own page, you can specify it like this:

`Heading text exactly as written`_

Note that the DFHack documentation is configured so that single backticks (with no prefix or suffix) produce links to
internal link targets, such as the autolabor target shown above. This is different from the reStructuredText default
behavior of rendering such text in italics (as a reference to a title). For alternative link behaviors, see:

• The reStructuredText documentation on roles

• The reStructuredText documentation on external links

• The Sphinx documentation on roles

– :doc: is useful for linking to another document outside of DFHack.

7.4.2 Documentation standards

Whether you’re adding new code or just fixing old documentation (and there’s plenty), there are a few important stan-
dards for completeness and consistent style. Treat this section as a guide rather than iron law, match the surrounding
text, and you’ll be fine.

Where do I add the help text?

For scripts and plugins that are distributed as part of DFHack, documentation files should be added to the scripts/docs
and docs/plugins directories, respectively, in a file named after the script or plugin. For example, a script named
gui/foobar.lua (which provides the gui/foobar command) should be documented in a file named docs/gui/
foobar.rst in the scripts repo. Similarly, a plugin named foobaz should be documented in a file named docs/
plugins/foobaz.rst in the dfhack repo. For plugins, all commands provided by that plugin should be documented
in that same file.

Short descriptions (the ~54 character short help) for scripts and plugins are taken from the summary attribute of the
dfhack-tool directive that each tool help document must have (see the Header format section below). Please make
this brief but descriptive!

Short descriptions for commands provided by plugins are taken from the description parameter passed to the
PluginCommand constructor used when the command is registered in the plugin source file.

Header format

The docs must begin with a heading which exactly matches the script or plugin name, underlined with ===== to the
same length. This must be followed by a .. dfhack-tool: directive with at least the following parameters:

• :summary: - a short, single-sentence description of the tool

• :tags: - a space-separated list of tags that apply to the tool

By default, dfhack-tool generates both a description of a tool and a command with the same name. For tools (specifi-
cally plugins) that do not provide exactly 1 command with the same name as the tool, pass the :no-command: parameter
(with no content after it) to prevent the command block from being generated.

7.4. DFHack documentation system 449

https://docutils.sourceforge.io/docs/ref/rst/roles.html
https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#hyperlink-targets
https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html
https://github.com/DFHack/scripts/tree/master/docs
https://github.com/DFHack/dfhack/tree/develop/docs/plugins

DFHack Documentation, Release 50.11-r4

For tools that provide multiple commands, or a command by the same name but with significantly different functionality
(e.g. a plugin that can be both enabled and invoked as a command for different results), use the .. dfhack-command:
directive for each command. This takes only a :summary: argument, with the same meaning as above.

For example, documentation for the build-now script might look like:

build-now
=========

.. dfhack-tool::
:summary: Instantly completes unsuspended building construction jobs.
:tags: fort armok buildings

By default, all buildings on the map are completed, but the area of effect is␣
→˓configurable.

And documentation for the autodump plugin might look like:

autodump
========

.. dfhack-tool::
:summary: Automatically set items in a stockpile to be dumped.
:tags: fort armok fps productivity items stockpiles
:no-command:

.. dfhack-command:: autodump
:summary: Teleports items marked for dumping to the cursor position.

.. dfhack-command:: autodump-destroy-here
:summary: Destroy items marked for dumping under the cursor.

.. dfhack-command:: autodump-destroy-item
:summary: Destroys the selected item.

When `enabled <enable>`, this plugin adds an option to the :kbd:`q` menu for
stockpiles.

When invoked as a command, it can instantly move all unforbidden items marked
for dumping to the tile under the cursor.

Usage help

The first section after the header and introductory text should be the usage section. You can choose between two
formats, based on whatever is cleaner or clearer for your syntax. The first option is to show usage formats together,
with an explanation following the block:

Usage

::

build-now [<options>]
(continues on next page)

450 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

build-now here [<options>]
build-now [<pos> [<pos>]] [<options>]

Where the optional ``<pos>`` pair can be used to specify the
coordinate bounds within which ``build-now`` will operate. If
they are not specified, ``build-now`` will scan the entire map.
If only one ``<pos>`` is specified, only the building at that
coordinate is built.

The ``<pos>`` parameters can either be an ``<x>,<y>,<z>`` triple
(e.g. ``35,12,150``) or the string ``here``, which means the
position of the active game cursor.

The second option is to arrange the usage options in a list, with the full command and arguments in monospaced font.
Then indent the next line and describe the effect:

Usage

``build-now [<options>]``
Scan the entire map and build all unsuspended constructions
and buildings.

``build-now here [<options>]``
Build the unsuspended construction or building under the
cursor.

``build-now [<pos> [<pos>]] [<options>]``
Build all unsuspended constructions within the specified
coordinate box.

The ``<pos>`` parameters are specified as...

Note that in both options, the entire commandline syntax is written, including the command itself. Literal text is written
as-is (e.g. the word here in the above example), and text that describes the kind of parameter that is being passed (e.g.
pos or options) is enclosed in angle brackets (< and >). Optional elements are enclosed in square brackets ([and]).
If the command takes an arbitrary number of elements, use ..., for example:

prioritize [<options>] <job type> [<job type> ...]
quickfort <command>[,<command>...] <list_id>[,<list_id>...] [<options>]

Examples

If the only way to run the command is to type the command itself, then this section is not necessary. Otherwise,
please consider adding a section that shows some real, practical usage examples. For many users, this will be the only
section they will read. It is so important that it is a good idea to include the Examples section before you describe
any extended options your command might take. Write examples for what you expect the popular use cases will be.
Also be sure to write examples showing specific, practical values being used for any parameter that takes a value or has
tricky formatting.

Examples should go in their own subheading. The examples themselves should be organized as in option 2 for Usage
above. Here is an example Examples section:

7.4. DFHack documentation system 451

DFHack Documentation, Release 50.11-r4

Examples

``build-now``
Completes all unsuspended construction jobs on the map.

``build-now 37,20,154 here``
Builds the unsuspended, unconstructed buildings in the box
bounded by the coordinate x=37,y=20,z=154 and the cursor.

Options

The options header should follow the examples, with each option in the same format as the examples:

Options

``-h``, ``--help``
Show help text.

``-l``, ``--quality <level>``
Set the quality of the architecture for built architected
builtings.

``-q``, ``--quiet``
Suppress informational output (error messages are still
printed).

Note that for parameters that have both short and long forms, any values that those options take only need to be specified
once (e.g. <level>).

7.4.3 External scripts and plugins

Scripts and plugins distributed separately from DFHack’s release packages don’t have the opportunity to add their
documentation to the rendered HTML or text output. However, these scripts and plugins can use a different mechanism
to at least make their help text available in-game.

Note that since help text for external scripts and plugins is not rendered by Sphinx, it should be written in plain text.
Any reStructuredText markup will not be processed and, if present, will be shown verbatim to the player (which is
probably not what you want).

For external scripts, the short description comes from a comment on the first line (the comment marker and extra
whitespace is stripped):

-- A short description of my cool script.

The main help text for an external script needs to appear between two markers – [====[and]====]. The documen-
tation standards above still apply to external tools, but there is no need to include backticks for links or monospaced
fonts. Here is an example for an entire script header:

-- Inventory management for adventurers.
-- [====[
gui/adv-inventory
=================

(continues on next page)

452 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

Tags: adventure | items

Allows you to quickly move items between containers. This
includes yourself and any followers you have.

Usage

gui/adv-inventory [<options>]

Examples

gui/adv-inventory
Opens the GUI with nothing preselected

gui/adv-inventory take-all
Opens the GUI with all container items already selected and
ready to move into the adventurer's inventory.

Options

take-all
Starts the GUI with container items pre-selected

give-all
Starts the GUI with your own items pre-selected

]====]

For external plugins, help text for provided commands can be passed as the usage parameter when registering the
commands with the PluginCommand constructor. There is currently no way for associating help text with the plugin
itself, so any information about what the plugin does when enabled should be combined into the command help.

7.4.4 Required dependencies

In order to build the documentation, you must have Python with Sphinx version 3.4.3 or later and Python 3.

When installing Sphinx from OS package managers, be aware that there is another program called “Sphinx”, completely
unrelated to documentation management. Be sure you are installing the right Sphinx; it may be called python-sphinx,
for example. To avoid doubt, pip can be used instead as detailed below.

Once you have installed Sphinx, sphinx-build --version should report the version of Sphinx that you have in-
stalled. If this works, CMake should also be able to find Sphinx.

For more detailed platform-specific instructions, see the sections below:

• Linux

• macOS

• Windows

7.4. DFHack documentation system 453

DFHack Documentation, Release 50.11-r4

Linux

Most Linux distributions will include Python by default. If not, start by installing Python 3. On Debian-based distros:

sudo apt install python3

Check your package manager to see if Sphinx 3.4.3 or later is available. On Debian-based distros, this package is
named python3-sphinx. If this package is new enough, you can install it directly. If not, or if you want to use a newer
Sphinx version (which may result in faster builds), you can install Sphinx through the pip package manager instead.
On Debian-based distros, you can install pip with:

sudo apt install python3-pip

Once pip is available, you can then install Sphinx with:

pip3 install sphinx

If you run this as an unprivileged user, it may install a local copy of Sphinx for your user only. The sphinx-build
executable will typically end up in ~/.local/bin/ in this case. Alternatively, you can install Sphinx system-wide by
running pip with sudo. In any case, you will need the folder containing sphinx-build to be in your $PATH.

macOS

macOS has Python 2.7 installed by default, but it does not have the pip package manager.

You can install Homebrew’s Python 3, which includes pip, and then install the latest Sphinx using pip:

brew install python3
pip3 install sphinx

Windows

Python for Windows can be downloaded from python.org. The latest version of Python 3 includes pip already.

You can also install Python and pip through the Chocolatey package manager. After installing Chocolatey as outlined
in the Windows compilation instructions, run the following command from an elevated (admin) command prompt (e.g.
cmd.exe):

choco install python pip -y

Once you have pip available, you can install Sphinx with the following command:

pip install sphinx

Note that this may require opening a new (admin) command prompt if you just installed pip from the same command
prompt.

454 Chapter 7. DFHack development guide

https://www.python.org/downloads/

DFHack Documentation, Release 50.11-r4

7.4.5 Building the documentation

Once the required dependencies are installed, there are multiple ways to run Sphinx to build the docs:

Using CMake

See our page on build options

Running Sphinx manually

You can also build the documentation without running CMake - this is faster if you only want to rebuild the docu-
mentation regardless of any code changes. The docs/build.py script will build the documentation in any specified
formats (HTML only by default) using the same command that CMake runs when building the docs. Run the script
with --help to see additional options.

Examples:

• docs/build.py Build just the HTML docs

• docs/build.py html text Build both the HTML and text docs

• docs/build.py --clean Build HTML and force a clean build (all source files are re-read)

The resulting documentation will be stored in docs/html and/or docs/text.

Alternatively, you can run Sphinx manually with:

sphinx-build . docs/html

or, to build plain-text output:

sphinx-build -b text . docs/text

Sphinx has many options to enable clean builds, parallel builds, logging, and more - run sphinx-build --help for
details. If you specify a different output path, be warned that Sphinx may overwrite existing files in the output folder.
Also be aware that when running sphinx-build directly, the docs/html folder may be polluted with intermediate
build files that normally get written in the cmake build directory.

Building a PDF version

ReadTheDocs automatically builds a PDF version of the documentation (available under the “Downloads” section when
clicking on the release selector). If you want to build a PDF version locally, you will need pdflatex, which is part of
a TeX distribution. The following command will then build a PDF, located in docs/pdf/latex/DFHack.pdf, with
default options:

docs/build.py pdf

Alternatively, you can run Sphinx manually with:

sphinx-build -M latexpdf . docs/pdf

7.4. DFHack documentation system 455

DFHack Documentation, Release 50.11-r4

7.4.6 Building the changelogs

If you have Python installed, you can build just the changelogs without building the rest of the documentation by
running the docs/gen_changelog.py script. This script provides additional options, including one to build individual
changelogs for all DFHack versions - run python docs/gen_changelog.py --help for details.

Changelog entries are obtained from changelog.txt files in multiple repos. This allows changes to be listed in the
same repo where they were made. These changelogs are combined as part of the changelog build process:

• docs/changelog.txt for changes in the main dfhack repo

• scripts/changelog.txt for changes made to scripts in the scripts repo

• library/xml/changelog.txt for changes made in the df-structures repo

Building the changelogs generates two files: docs/changelogs/news.rst and docs/changelogs/news-dev.rst.
These correspond to Changelog and Development changelog and contain changes organized by stable and development
DFHack releases, respectively. For example, an entry listed under “0.44.05-alpha1” in changelog.txt will be listed under
that version in the development changelog as well, but under “0.44.05-r1” in the stable changelog (assuming that is the
closest stable release after 0.44.05-alpha1). An entry listed under a stable release like “0.44.05-r1” in changelog.txt
will be listed under that release in both the stable changelog and the development changelog.

Changelog syntax

changelog.txt uses a syntax similar to RST, with a few special sequences:

• === indicates the start of a comment

• # indicates the start of a release name (do not include “DFHack”)

• ## indicates the start of a section name (this must be listed in gen_changelog.py)

• - indicates the start of a changelog entry. Note: an entry currently must be only one line.

• : (colon followed by space) separates the name of a feature from a description of a change to that feature.
Changes made to the same feature are grouped if they end up in the same section.

• :\ (colon, backslash, space) avoids the above behavior

• - @ (the space is optional) indicates the start of an entry that should only be displayed in NEWS-dev.rst.
Use this sparingly, e.g. for immediate fixes to one development build in another development build that
are not of interest to users of stable builds only.

• Three [characters indicate the start of a block (possibly a comment) that spans multiple lines. Three] characters
indicate the end of such a block.

• ! immediately before a phrase set up to be replaced (see gen_changelog.py) stops that occurrence from being
replaced.

Template for new versions:

New Tools

New Features

Fixes

Misc Improvements

Documentation

API

Lua

456 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Removed

7.4.7 GitHub Actions

Documentation is built automatically with GitHub Actions (a GitHub-provided continuous integration service) for all
pull requests and commits in the “dfhack” and “scripts” repositories. These builds run with strict settings, i.e. warnings
are treated as errors. If a build fails, you will see a red “x” next to the relevant commit or pull request. You can view
detailed output from Sphinx in a few ways:

• Click on the red “x” (or green checkmark), then click “Details” next to the “Build / docs” entry

• For pull requests only: navigate to the “Checks” tab, then click on “Build” in the sidebar to expand it, then “docs”
under it

Sphinx output will be visible under the step named “Build docs”. If a different step failed, or you aren’t sure how to
interpret the output, leave a comment on the pull request (or commit).

You can also download the “docs” artifact from the summary page (typically accessible by clicking “Build”) if the build
succeeded. This is a way to visually inspect what the documentation looks like when built without installing Sphinx
locally, although we recommend installing Sphinx if you are planning to do any significant work on the documentation.

7.5 DFHack API concepts

7.5.1 Maps API

DFHack offers several ways to access and manipulate map data.

• C++: the Maps and MapCache modules

• Lua: the dfhack.maps module

• All languages: the map field of the world global contains raw map data when the world is loaded.

Note: This page will eventually go into more detail about the available APIs. For now, it is just an overview of how
DF map data is structured.

Contents

• Tiles

Tiles

The DF map has several types of tiles:

• Local tiles are at the smallest scale. In regular fortress/adventure mode play, the cursor takes up 1 local tile.

Objects that use local tile coordinates include:

– Units

– Items

– Projectiles

7.5. DFHack API concepts 457

DFHack Documentation, Release 50.11-r4

• Blocks are 16 × 16 × 1 groups of local tiles. Internally, many tile details are stored at the block level for space-
efficiency reasons. Blocks are visible during zoomed-in fast travel in adventure mode.

Objects that use block coordinates include:

– Armies

• Region tiles are 3 × 3 groups of columns of blocks (they span the entire z-axis), or 48 × 48 columns of local
tiles. DF sometimes refers to these as “mid-level tiles” (MLTs). Region tiles are visible when resizing a fortress
before embarking, or in zoomed-out fast travel in adventure mode.

• World tiles are

– 16 × 16 groups of region tiles, or

– 48 × 48 groups of columns of blocks, or

– 768 × 768 groups of columns of local tiles

World tiles are visible on the world map before embarking, as well as in the civilization map in fortress mode
and the quest log in adventure mode.

• Some map features are stored in 16 × 16 groups of world tiles, sometimes referred to as “feature shells”.

7.6 DFHack Lua API Reference

DFHack has extensive support for the Lua scripting language, providing access to:

1. Raw data structures used by the game.

2. Many C++ functions for high-level access to these structures, and interaction with dfhack itself.

3. Some functions exported by C++ plugins.

Lua code can be used both for writing scripts, which are treated by DFHack command line prompt almost as native
C++ commands, and invoked by plugins written in C++.

This document describes native API available to Lua in detail. It does not describe all of the utility functions imple-
mented by Lua files located in hack/lua/* (library/lua/* in the git repo).

Contents

• DF data structure wrapper

– Typed object references

– Named types

– Global functions

– Recursive table assignment

• DFHack API

– Native utilities

– C++ function wrappers

– Core interpreter context

• Lua Modules

– Global environment

458 Chapter 7. DFHack development guide

https://www.lua.org

DFHack Documentation, Release 50.11-r4

– utils

– argparse

– dumper

– helpdb

– profiler

– class

– custom-raw-tokens

• In-game UI Library

– gui

– gui.widgets

– gui.textures

• Plugins

– blueprint

– building-hacks

– buildingplan

– cxxrandom

– dig-now

– eventful

– luasocket

– map-render

– pathable

– reveal

– sort

– tiletypes

– xlsxreader

• Scripts

– General script API

– Importing scripts

– Enabling and disabling scripts

– Save init script

7.6. DFHack Lua API Reference 459

DFHack Documentation, Release 50.11-r4

7.6.1 DF data structure wrapper

• Typed object references

– Primitive references

– Struct references

– Container references

– Bitfield references

• Named types

• Global functions

• Recursive table assignment

Data structures of the game are defined in XML files located in library/xml (and online, and automatically exported
to lua code as a tree of objects and functions under the df global, which also broadly maps to the df namespace in the
headers generated for C++.

Warning: The wrapper provides almost raw access to the memory of the game, so mistakes in manipulating
objects are as likely to crash the game as equivalent plain C++ code would be - e.g. null pointer access is safely
detected, but dangling pointers aren’t.

Objects managed by the wrapper can be broadly classified into the following groups:

1. Typed object pointers (references).

References represent objects in DF memory with a known type.

In addition to fields and methods defined by the wrapped type, every reference has some built-in properties and
methods.

2. Untyped pointers

Represented as lightuserdata.

In assignment to a pointer NULL can be represented either as nil, or a NULL lightuserdata; reading a NULL
pointer field returns nil.

3. Named types

Objects in the df tree that represent identity of struct, class, enum and bitfield types. They host nested named
types, static methods, builtin properties & methods, and, for enums and bitfields, the bi-directional mapping
between key names and values.

4. The global object

df.global corresponds to the df::global namespace, and behaves as a mix between a named type and a
reference, containing both nested types and fields corresponding to global symbols.

In addition to the global object and top-level types the df global also contains a few global builtin utility functions.

460 Chapter 7. DFHack development guide

https://github.com/DFHack/df-structures

DFHack Documentation, Release 50.11-r4

Typed object references

The underlying primitive lua object is userdata with a metatable. Every structured field access produces a new userdata
instance.

All typed objects have the following built-in features:

• ref1 == ref2, tostring(ref)

References implement equality by type & pointer value, and string conversion.

• pairs(ref)

Returns an iterator for the sequence of actual C++ field names and values. Fields are enumerated in memory
order. Methods and lua wrapper properties are not included in the iteration.

Warning: a few of the data structures (like ui_look_list) contain unions with pointers to different types with
vtables. Using pairs on such structs is an almost sure way to crash with an access violation.

• ref._kind

Returns one of: primitive, struct, container, or bitfield, as appropriate for the referenced object.

• ref._type

Returns the named type object or a string that represents the referenced object type.

• ref:sizeof()

Returns size, address

• ref:new()

Allocates a new instance of the same type, and copies data from the current object.

• ref:delete()

Destroys the object with the C++ delete operator. If the destructor is not available, returns false. (This typically
only occurs when trying to delete an instance of a DF class with virtual methods whose vtable address has not
been found; it is impossible for delete() to determine the validity of ref.)

Warning: ref must be an object allocated with new, like in C++. Calling obj.field:delete() where
obj was allocated with new will not work. After delete() returns, ref remains as a dangling pointer, like
a raw C++ pointer would. Any accesses to ref after ref:delete() has been called are undefined behavior.

• ref:assign(object)

Assigns data from object to ref. Object must either be another ref of a compatible type, or a lua table; in the
latter case special recursive assignment rules are applied.

• ref:_displace(index[,step])

Returns a new reference with the pointer adjusted by index*step. Step defaults to the natural object size.

7.6. DFHack Lua API Reference 461

DFHack Documentation, Release 50.11-r4

Primitive references

References of the _kind 'primitive' are used for objects that don’t fit any of the other reference types. Such references
can only appear as a value of a pointer field, or as a result of calling the _field() method.

They behave as structs with a value field of the right type. If the object’s XML definition has a ref-target attribute,
they will also have a read-only ref_target field set to the corresponding type object.

To make working with numeric buffers easier, they also allow numeric indices. Note that other than excluding negative
values no bound checking is performed, since buffer length is not available. Index 0 is equivalent to the value field.

Struct references

Struct references are used for class and struct objects.

They implement the following features:

• ref.field, ref.field = value

Valid fields of the structure may be accessed by subscript.

Primitive typed fields, i.e. numbers & strings, are converted to/from matching lua values. The value of a pointer
is a reference to the target, or nil/NULL. Complex types are represented by a reference to the field within the
structure; unless recursive lua table assignment is used, such fields can only be read.

Note: In case of inheritance, superclass fields have precedence over the subclass, but fields shadowed in this
way can still be accessed as ref['subclasstype.field'].

This shadowing order is necessary because vtable-based classes are automatically exposed in their exact type,
and the reverse rule would make access to superclass fields unreliable.

• ref:_field(field)

Returns a reference to a valid field. That is, unlike regular subscript, it returns a reference to the field within the
structure even for primitive typed fields and pointers. Fails with an error if the field is not found.

• ref:vmethod(args...)

Named virtual methods are also exposed, subject to the same shadowing rules.

• pairs(ref)

Enumerates all real fields (but not methods) in memory order, which is the same as declaration order.

Container references

Containers represent vectors and arrays, possibly resizable.

A container field can associate an enum to the container reference, which allows accessing elements using string keys
instead of numerical indices.

Note that two-dimensional arrays in C++ (ie pointers to pointers) are exposed to lua as one-dimensional. The best way
to handle this is probably array[x].value:_displace(y).

Implemented features:

• ref._enum

If the container has an associated enum, returns the matching named type object.

462 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• #ref

Returns the length of the container.

• ref[index]

Accesses the container element, using either a 0-based numerical index, or, if an enum is associated, a valid
enum key string.

Accessing an invalid index is an error, but some container types may return a default value, or auto-resize instead
for convenience. Currently this relaxed mode is implemented by df-flagarray aka BitArray.

• ref:_field(index)

Like with structs, returns a pointer to the array element, if possible. Flag and bit arrays cannot return such pointer,
so it fails with an error.

• pairs(ref), ipairs(ref)

If the container has no associated enum, both behave identically, iterating over numerical indices in order. Oth-
erwise, ipairs still uses numbers, while pairs tries to substitute enum keys whenever possible.

• ref:resize(new_size)

Resizes the container if supported, or fails with an error.

• ref:insert(index,item)

Inserts a new item at the specified index. To add at the end, use #ref, or just '#' as index.

• ref:erase(index)

Removes the element at the given valid index.

Bitfield references

Bitfields behave like special fixed-size containers. Consider them to be something in between structs and fixed-size
vectors.

The _enum property points to the bitfield type. Numerical indices correspond to the shift value, and if a subfield
occupies multiple bits, the ipairs order would have a gap.

Since currently there is no API to allocate a bitfield object fully in GC-managed lua heap, consider using the lua
table assignment feature outlined below in order to pass bitfield values to dfhack API functions that need them, e.g.
matinfo:matches{metal=true}.

Named types

Named types are exposed in the df tree with names identical to the C++ version, except for the :: vs . difference.

All types and the global object have the following features:

• type._kind

Evaluates to one of struct-type, class-type, enum-type, bitfield-type or global.

• type._identity

Contains a lightuserdata pointing to the underlying DFHack::type_identity object.

All compound types (structs, classes, unions, and the global object) support:

7.6. DFHack Lua API Reference 463

DFHack Documentation, Release 50.11-r4

• type._fields

Contains a table mapping field names to descriptions of the type’s fields, including data members and functions.
Iterating with pairs() returns data fields in the order they are defined in the type. Functions and globals may
appear in an arbitrary order.

Each entry contains the following fields:

– name: the name of the field (matches the _fields table key)

– offset: for data members, the position of the field relative to the start of the type, in bytes

– count: for arrays, the number of elements

– mode: implementation detail. See struct_field_info::Mode in DataDefs.h.

Each entry may also contain the following fields, depending on its type:

– type_name: present for most fields; a string representation of the field’s type

– type: the type object matching the field’s type; present if such an object exists (e.g. present for DF types,
absent for primitive types)

– type_identity: present for most fields; a lightuserdata pointing to the field’s underlying
DFHack::type_identity object

– index_enum, ref_target: the type object corresponding to the field’s similarly-named XML attribute,
if present

– union_tag_field, union_tag_attr, original_name: the string value of the field’s similarly-named
XML attribute, if present

Types excluding the global object also support:

• type:sizeof()

Returns the size of an object of the type.

• type:new()

Creates a new instance of an object of the type.

• type:is_instance(object)

Returns true if object is same or subclass type, or a reference to an object of same or subclass type. It is permis-
sible to pass nil, NULL or non-wrapper value as object; in this case the method returns nil.

In addition to this, enum and bitfield types contain a bi-directional mapping between key strings and values, and also
map _first_item and _last_item to the min and max values.

Struct and class types with instance-vector attribute in the xml have a type.find(key) function that wraps the find
method provided in C++.

Global functions

The df table itself contains the following functions and values:

• NULL, df.NULL

Contains the NULL lightuserdata.

• df.isnull(obj)

Evaluates to true if obj is nil or NULL; false otherwise.

464 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• df.isvalid(obj[,allow_null])

For supported objects returns one of type, voidptr, ref.

If allow_null is true, and obj is nil or NULL, returns null.

Otherwise returns nil.

• df.sizeof(obj)

For types and refs identical to obj:sizeof(). For lightuserdata returns nil, address

• df.new(obj), df.delete(obj), df.assign(obj, obj2)

Equivalent to using the matching methods of obj.

• df._displace(obj,index[,step])

For refs equivalent to the method, but also works with lightuserdata (step is mandatory then).

• df.is_instance(type,obj)

Equivalent to the method, but also allows a reference as proxy for its type.

• df.new(ptype[,count])

Allocate a new instance, or an array of built-in types. The ptype argument is a string from the following list:
string, int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, bool, float,
double. All of these except string can be used with the count argument to allocate an array.

• df.reinterpret_cast(type,ptr)

Converts ptr to a ref of specified type. The type may be anything acceptable to df.is_instance. Ptr may be
nil, a ref, a lightuserdata, or a number.

Returns nil if NULL, or a ref.

Recursive table assignment

Recursive assignment is invoked when a lua table is assigned to a C++ object or field, i.e. one of:

• ref:assign{...}

• ref.field = {...}

The general mode of operation is that all fields of the table are assigned to the fields of the target structure, roughly
emulating the following code:

function rec_assign(ref,table)
for key,value in pairs(table) do

ref[key] = value
end

end

Since assigning a table to a field using = invokes the same process, it is recursive.

There are however some variations to this process depending on the type of the field being assigned to:

1. If the table contains an assign field, it is applied first, using the ref:assign(value) method. It is never
assigned as a usual field.

2. When a table is assigned to a non-NULL pointer field using the ref.field = {...} syntax, it is applied to the
target of the pointer instead.

If the pointer is NULL, the table is checked for a new field:

7.6. DFHack Lua API Reference 465

DFHack Documentation, Release 50.11-r4

a. If it is nil or false, assignment fails with an error.

b. If it is true, the pointer is initialized with a newly allocated object of the declared target type of the pointer.

c. Otherwise, table.new must be a named type, or an object of a type compatible with the pointer. The
pointer is initialized with the result of calling table.new:new().

After this auto-vivification process, assignment proceeds as if the pointer wasn’t NULL.

Obviously, the new field inside the table is always skipped during the actual per-field assignment processing.

3. If the target of the assignment is a container, a separate rule set is used:

a. If the table contains neither assign nor resize fields, it is interpreted as an ordinary 1-based lua array.
The container is resized to the #-size of the table, and elements are assigned in numeric order:

ref:resize(#table);
for i=1,#table do ref[i-1] = table[i] end

b. Otherwise, resize must be true, false, or an explicit number. If it is not false, the container is resized.
After that the usual struct-like ‘pairs’ assignment is performed.

In case resize is true, the size is computed by scanning the table for the largest numeric key.

This means that in order to reassign only one element of a container using this system, it is necessary to use:

{ resize=false, [idx]=value }

Since nil inside a table is indistinguishable from missing key, it is necessary to use df.NULL as a null pointer value.

This system is intended as a way to define a nested object tree using pure lua data structures, and then materialize it in
C++ memory in one go. Note that if pointer auto-vivification is used, an error in the middle of the recursive walk would
not destroy any objects allocated in this way, so the user should be prepared to catch the error and do the necessary
cleanup.

7.6.2 DFHack API

• Native utilities

– Input & Output

– Exception handling

– Miscellaneous

– Locking and finalization

– Persistent configuration storage

– Material info lookup

– Random number generation

• C++ function wrappers

– Gui module

∗ Screens

∗ General-purpose selections

∗ Fortress mode

466 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

∗ Announcements

∗ Other

– Job module

– Units module

∗ Military module

∗ Action Timer API

– Items module

– World module

– Maps module

– Burrows module

– Buildings module

∗ General

∗ Low-level

∗ High-level

– Constructions module

– Kitchen module

– Screen API

∗ Basic painting functions

∗ Pen API

∗ Screen management

– PenArray class

– Textures module

– Filesystem module

– Console API

– Internal API

• Core interpreter context

– Event type

DFHack utility functions are placed in the dfhack global tree.

7.6. DFHack Lua API Reference 467

DFHack Documentation, Release 50.11-r4

Native utilities

Input & Output

• dfhack.print(args...)

Output tab-separated args as standard lua print would do, but without a newline.

• print(args...), dfhack.println(args...)

A replacement of the standard library print function that works with DFHack output infrastructure.

• dfhack.printerr(args...)

Same as println; intended for errors. Uses red color and logs to stderr.log.

• dfhack.color([color])

Sets the current output color. If color is nil or -1, resets to default. Returns the previous color value.

• dfhack.is_interactive()

Checks if the thread can access the interactive console and returns true or false.

• dfhack.lineedit([prompt[,history_filename]])

If the thread owns the interactive console, shows a prompt and returns the entered string. Otherwise returns nil,
error.

Depending on the context, this function may actually yield the running coroutine and let the C++ code release
the core suspend lock. Using an explicit dfhack.with_suspend will prevent this, forcing the function to block
on input with lock held.

• dfhack.getCommandHistory(history_id, history_filename)

Returns the list of strings in the specified history. Intended to be used by GUI scripts that don’t have access to a
console and so can’t use dfhack.lineedit. The history_id parameter is some unique string that the script
uses to identify its command history, such as the script’s name. If this is the first time the history with the given
history_id is being accessed, it is initialized from the given file.

• dfhack.addCommandToHistory(history_id, history_filename, command)

Adds a command to the specified history and saves the updated history to the specified file.

• dfhack.interpreter([prompt[,history_filename[,env]]])

Starts an interactive lua interpreter, using the specified prompt string, global environment and command-line
history file.

If the interactive console is not accessible, returns nil, error.

Exception handling

• dfhack.error(msg[,level[,verbose]])

Throws a dfhack exception object with location and stack trace. The verbose parameter controls whether the
trace is printed by default.

• qerror(msg[,level])

Calls dfhack.error() with verbose being false. Intended to be used for user-caused errors in scripts, where
stack traces are not desirable.

468 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.pcall(f[,args...])

Invokes f via xpcall, using an error function that attaches a stack trace to the error. The same function is used by
SafeCall in C++, and dfhack.safecall.

• safecall(f[,args...]), dfhack.safecall(f[,args...])

Just like pcall, but also prints the error using printerr before returning. Intended as a convenience function.

• dfhack.saferesume(coroutine[,args...])

Compares to coroutine.resume like dfhack.safecall vs pcall.

• dfhack.exception

Metatable of error objects used by dfhack. The objects have the following properties:

err.where The location prefix string, or nil.

err.message The base message string.

err.stacktrace The stack trace string, or nil.

err.cause A different exception object, or nil.

err.thread The coroutine that has thrown the exception.

err.verbose Boolean, or nil; specifies if where and stacktrace should be printed.

tostring(err), or err:tostring([verbose]) Converts the exception to string.

• dfhack.exception.verbose

The default value of the verbose argument of err:tostring().

Miscellaneous

• dfhack.VERSION

DFHack version string constant.

• dfhack.curry(func,args...), or curry(func,args...)

Returns a closure that invokes the function with args combined both from the curry call and the closure call itself.
I.e. curry(func,a,b)(c,d) equals func(a,b,c,d).

Locking and finalization

• dfhack.with_suspend(f[,args...])

Calls f with arguments after grabbing the DF core suspend lock. Suspending is necessary for accessing a con-
sistent state of DF memory.

Returned values and errors are propagated through after releasing the lock. It is safe to nest suspends.

Every thread is allowed only one suspend per DF frame, so it is best to group operations together in one big
critical section. A plugin can choose to run all lua code inside a C++-side suspend lock.

• dfhack.call_with_finalizer(num_cleanup_args,always,cleanup_fn[,cleanup_args...],fn[,
args...])

Invokes fn with args, and after it returns or throws an error calls cleanup_fn with cleanup_args. Any return
values from fn are propagated, and errors are re-thrown.

7.6. DFHack Lua API Reference 469

DFHack Documentation, Release 50.11-r4

The num_cleanup_args integer specifies the number of cleanup_args, and the always boolean specifies if
cleanup should be called in any case, or only in case of an error.

• dfhack.with_finalize(cleanup_fn,fn[,args...])

Calls fn with arguments, then finalizes with cleanup_fn. Implemented using call_with_finalizer(0,
true,...).

• dfhack.with_onerror(cleanup_fn,fn[,args...])

Calls fn with arguments, then finalizes with cleanup_fn on any thrown error. Implemented using
call_with_finalizer(0,false,...).

• dfhack.with_temp_object(obj,fn[,args...])

Calls fn(obj,args...), then finalizes with obj:delete().

Persistent configuration storage

This api is intended for storing configuration options in the world itself. It is intended for data that is world-dependent.

Entries are identified by a string key, but it is also possible to manage multiple entries with the same key; their identity
is determined by entry_id. Every entry has a mutable string value, and an array of 7 mutable ints.

• dfhack.persistent.get(key), entry:get()

Retrieves a persistent config record with the given string key, or refreshes an already retrieved entry. If there are
multiple entries with the same key, it is undefined which one is retrieved by the first version of the call.

Returns entry, or nil if not found.

• dfhack.persistent.delete(key), entry:delete()

Removes an existing entry. Returns true if succeeded.

• dfhack.persistent.get_all(key[,match_prefix])

Retrieves all entries with the same key, or starting with key..’/’. Calling get_all('',true) will match all
entries.

If none found, returns nil; otherwise returns an array of entries.

• dfhack.persistent.save({key=str1, ...}[,new]), entry:save([new])

Saves changes in an entry, or creates a new one. Passing true as new forces creation of a new entry even if one
already exists; otherwise the existing one is simply updated. Returns entry, did_create_new

The data is kept in memory, so no I/O occurs when getting or saving keys. It is all written to a json file in the game
save directory when the game is saved.

It is also possible to associate one bit per map tile with an entry, using these two methods:

• entry:getTilemask(block[, create])

Retrieves the tile bitmask associated with this entry in the given map block. If create is true, an empty mask
is created if none exists; otherwise the function returns nil, which must be assumed to be the same as an all-zero
mask.

• entry:deleteTilemask(block)

Deletes the associated tile mask from the given map block.

Note that these masks are only saved in fortress mode, and also that deleting the persistent entry will NOT delete the
associated masks.

470 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Material info lookup

A material info record has fields:

• type, index, material

DF material code pair, and a reference to the material object.

• mode

One of 'builtin', 'inorganic', 'plant', 'creature'.

• inorganic, plant, creature

If the material is of the matching type, contains a reference to the raw object.

• figure

For a specific creature material contains a ref to the historical figure.

Functions:

• dfhack.matinfo.decode(type,index)

Looks up material info for the given number pair; if not found, returns nil.

•decode(matinfo),decode(item),decode(obj)

Uses matinfo.type/matinfo.index, item getter vmethods, or obj.mat_type/obj.mat_index to get the
code pair.

• dfhack.matinfo.find(token[,token...])

Looks up material by a token string, or a pre-split string token sequence.

• dfhack.matinfo.getToken(...), info:getToken()

Applies decode and constructs a string token.

• info:toString([temperature[,named]])

Returns the human-readable name at the given temperature.

• info:getCraftClass()

Returns the classification used for craft skills.

• info:matches(obj)

Checks if the material matches job_material_category or job_item. Accept dfhack_material_category auto-
assign table.

Random number generation

• dfhack.random.new([seed[,perturb_count]])

Creates a new random number generator object. Without any arguments, the object is initialized using current
time. Otherwise, the seed must be either a non-negative integer, or a list of such integers. The second argument
may specify the number of additional randomization steps performed to improve the initial state.

• rng:init([seed[,perturb_count]])

Re-initializes an already existing random number generator object.

7.6. DFHack Lua API Reference 471

DFHack Documentation, Release 50.11-r4

• rng:random([limit])

Returns a random integer. If limit is specified, the value is in the range [0, limit); otherwise it uses the whole
32-bit unsigned integer range.

• rng:drandom()

Returns a random floating-point number in the range [0,1).

• rng:drandom0()

Returns a random floating-point number in the range (0,1).

• rng:drandom1()

Returns a random floating-point number in the range [0,1].

• rng:unitrandom()

Returns a random floating-point number in the range [-1,1].

• rng:unitvector([size])

Returns multiple values that form a random vector of length 1, uniformly distributed over the corresponding
sphere surface. The default size is 3.

• fn = rng:perlin([dim]); fn(x[,y[,z]])

Returns a closure that computes a classical Perlin noise function of dimension dim, initialized from this random
generator. Dimension may be 1, 2 or 3 (default).

C++ function wrappers

• Gui module

– Screens

– General-purpose selections

– Fortress mode

– Announcements

– Other

• Job module

• Units module

– Military module

– Action Timer API

• Items module

• World module

• Maps module

• Burrows module

• Buildings module

– General

– Low-level

472 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– High-level

• Constructions module

• Kitchen module

• Screen API

– Basic painting functions

– Pen API

– Screen management

• PenArray class

• Textures module

• Filesystem module

• Console API

• Internal API

Thin wrappers around C++ functions, similar to the ones for virtual methods. One notable difference is that these
explicit wrappers allow argument count adjustment according to the usual lua rules, so trailing false/nil arguments can
be omitted.

• dfhack.getOSType()

Returns the OS type string from symbols.xml.

• dfhack.getDFVersion()

Returns the DF version string from symbols.xml.

• dfhack.getDFHackVersion()

• dfhack.getDFHackRelease()

• dfhack.getDFHackBuildID()

• dfhack.getCompiledDFVersion()

• dfhack.getGitDescription()

• dfhack.getGitCommit()

• dfhack.getGitXmlCommit()

• dfhack.getGitXmlExpectedCommit()

• dfhack.gitXmlMatch()

• dfhack.isRelease()

• dfhack.isPrerelease()

Return information about the DFHack build in use.

Note: getCompiledDFVersion() returns the DF version specified at compile time, while getDFVersion()
returns the version and typically the OS as well. These do not necessarily match - for example, DFHack 0.34.11-
r5 worked with DF 0.34.10 and 0.34.11, so the former function would always return 0.34.11 while the latter
would return v0.34.10 <platform> or v0.34.11 <platform>.

7.6. DFHack Lua API Reference 473

DFHack Documentation, Release 50.11-r4

• dfhack.getDFPath()

Returns the DF directory path.

• dfhack.getHackPath()

Returns the dfhack directory path, i.e. ".../df/hack/".

• dfhack.getSavePath()

Returns the path to the current save directory, or nil if no save loaded.

• dfhack.getTickCount()

Returns the tick count in ms, exactly as DF ui uses.

• dfhack.isWorldLoaded()

Checks if the world is loaded.

• dfhack.isMapLoaded()

Checks if the world and map are loaded.

• dfhack.TranslateName(name[,in_english,only_last_name])

Convert a language_name or only the last name part to string.

• dfhack.df2utf(string)

Convert a string from DF’s CP437 encoding to UTF-8.

• dfhack.df2console()

Convert a string from DF’s CP437 encoding to the correct encoding for the DFHack console.

Warning: When printing CP437-encoded text to the console (for example, names returned from dfhack.
TranslateName()), use print(dfhack.df2console(text)) to ensure proper display on all platforms.

• dfhack.utf2df(string)

Convert a string from UTF-8 to DF’s CP437 encoding.

• dfhack.toSearchNormalized(string)

Replace non-ASCII alphabetic characters in a CP437-encoded string with their nearest ASCII equivalents, if
possible, and returns a CP437-encoded string. Note that the returned string may be longer than the input string.
For example, ä is replaced with a, and æ is replaced with ae.

• dfhack.run_command(command[, ...])

Run an arbitrary DFHack command, with the core suspended, and send output to the DFHack console. The
command can be passed as a table, multiple string arguments, or a single string argument (not recommended -
in this case, the usual DFHack console tokenization is used).

A command_result constant starting with CR_ is returned, where CR_OK indicates success.

The following examples are equivalent:

dfhack.run_command({'ls', 'quick'})
dfhack.run_command('ls', 'quick')
dfhack.run_command('ls quick') -- not recommended

474 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.run_command_silent(command[, ...])

Similar to run_command(), but instead of printing to the console, returns an output, command_result pair.
output is a single string - see dfhack.internal.runCommand() to obtain colors as well.

Gui module

Screens

• dfhack.gui.getCurViewscreen([skip_dismissed])

Returns the topmost viewscreen. If skip_dismissed is true, ignores screens already marked to be removed.

• dfhack.gui.getFocusStrings(viewscreen)

Returns a table of string representations of the current UI focuses. The strings have a “screen/foo/bar/baz. . . ”
format e.g..:

[1] = "dwarfmode/Info/CREATURES/CITIZEN"
[2] = "dwardmode/Squads"

• dfhack.gui.matchFocusString(focus_string[, viewscreen])

Returns true if the given focus_string is found in the current focus strings, or as a prefix to any of the focus
strings, or false if no match is found. Matching is case insensitive. If viewscreen is specified, gets the focus
strings to match from the given viewscreen.

• dfhack.gui.getCurFocus([skip_dismissed])

Returns the focus string of the current viewscreen.

• dfhack.gui.getViewscreenByType(type[, depth])

Returns the topmost viewscreen out of the top depth viewscreens with the specified type (e.g. df.
viewscreen_titlest), or nil if none match. If depth is not specified or is less than 1, all viewscreens
are checked.

• dfhack.gui.getDFViewscreen([skip_dismissed[, viewscreen]])

Returns the topmost viewscreen not owned by DFHack. If skip_dismissed is true, ignores screens already
marked to be removed. If viewscreen is specified, starts the scan at the given viewscreen.

General-purpose selections

• dfhack.gui.getSelectedWorkshopJob([silent])

• dfhack.gui.getSelectedJob([silent])

• dfhack.gui.getSelectedUnit([silent])

• dfhack.gui.getSelectedItem([silent])

• dfhack.gui.getSelectedBuilding([silent])

• dfhack.gui.getSelectedCivZone([silent])

• dfhack.gui.getSelectedStockpile([silent])

7.6. DFHack Lua API Reference 475

DFHack Documentation, Release 50.11-r4

• dfhack.gui.getSelectedPlant([silent])

Returns the currently selected in-game object or the indicated thing associated with the selected in-game object.
For example, Calling getSelectedJob when a building is selected will return the job associated with the build-
ing (e.g. the ConstructBuilding job). If silent is ommitted or set to false and a selected object cannot be
found, then an error is printed to the console.

• dfhack.gui.getAnyUnit(screen)

• dfhack.gui.getAnyItem(screen)

• dfhack.gui.getAnyBuilding(screen)

• dfhack.gui.getAnyCivZone(screen)

• dfhack.gui.getAnyStockpile(screen)

• dfhack.gui.getAnyPlant(screen)

Similar to the corresponding getSelected functions, but operate on the screen given instead of the current
screen and always return nil silently on failure.

Fortress mode

• dfhack.gui.getDwarfmodeViewDims()

Returns dimensions of the displayed map viewport. See getPanelLayout() in the gui.dwarfmode module
for a more Lua-friendly version.

• dfhack.gui.resetDwarfmodeView([pause])

Resets the fortress mode sidebar menus and cursors to their default state. If pause is true, also pauses the game.

• dfhack.gui.pauseRecenter(pos[,pause]) dfhack.gui.pauseRecenter(x,y,z[,pause])

Same as resetDwarfmodeView, but also recenter if position is valid. If pause is false, skip pausing. Respects
RECENTER_INTERFACE_SHUTDOWN_MS in DF’s init.txt (the delay before input is recognized when a recenter
occurs.)

• dfhack.gui.revealInDwarfmodeMap(pos[,center[,highlight]]) dfhack.gui.
revealInDwarfmodeMap(x,y,z[,center[,highlight]])

Centers the view on the given coordinates. If center is true, make sure the position is in the exact center of the
view, else just bring it on screen. If highlight is true, then mark the target tile with a pulsing highlight until
the player clicks somewhere else.

pos can be a df.coord instance or a table assignable to a df.coord (see Recursive table assignment), e.g.:

{x = 5, y = 7, z = 11}
getSelectedUnit().pos
copyall(df.global.cursor)

If the position is invalid, the function will simply ensure the current window position is clamped between valid
values.

• dfhack.gui.refreshSidebar()

Refreshes the fortress mode sidebar. This can be useful when making changes to the map, for example, because
DF only updates the sidebar when the cursor position changes.

• dfhack.gui.inRenameBuilding()

Returns true if a building is being renamed.

476 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Announcements

• dfhack.gui.writeToGamelog(text)

Writes a string to gamelog.txt without doing an announcement.

• dfhack.gui.makeAnnouncement(type,flags,pos,text,color[,is_bright])

Adds an announcement with given announcement_type, text, color, and brightness. The is_bright boolean actu-
ally seems to invert the brightness.

The announcement is written to gamelog.txt. The announcement_flags argument provides a custom set of
announcements.txt options, which specify if the message should actually be displayed in the announcement
list, and whether to recenter or show a popup.

Returns the index of the new announcement in df.global.world.status.reports, or -1.

• dfhack.gui.addCombatReport(unit,slot,report_index)

Adds the report with the given index (returned by makeAnnouncement) to the specified group of the given unit.
Returns true on success.

• dfhack.gui.addCombatReportAuto(unit,flags,report_index)

Adds the report with the given index to the appropriate group(s) of the given unit, as requested by the flags.

• dfhack.gui.showAnnouncement(text,color[,is_bright])

Adds a regular announcement with given text, color, and brightness. The is_bright boolean actually seems to
invert the brightness.

• dfhack.gui.showZoomAnnouncement(type,pos,text,color[,is_bright])

Like above, but also specifies a position you can zoom to from the announcement menu.

• dfhack.gui.showPopupAnnouncement(text,color[,is_bright])

Pops up a titan-style modal announcement window.

• dfhack.gui.showAutoAnnouncement(type,pos,text,color[,is_bright,unit1,unit2])

Uses the type to look up options from announcements.txt, and calls the above operations accordingly. The units
are used to call addCombatReportAuto.

• dfhack.gui.autoDFAnnouncement(report,text) dfhack.gui.autoDFAnnouncement(type,pos,
text,color[,is_bright,unit1,unit2,is_sparring])

Takes a df.report_init (see: structure definition) and a string and processes them just like DF does. Can
also be built from parameters instead of a report_init. Setting is_sparring to true means the report will be
added to sparring logs (if applicable) rather than hunting or combat.

The announcement will not display if units are involved and the player can’t see them (or hear, for adventure
mode sound announcement types.) Text is parsed using & as an escape character, with &r adding a blank line
(equivalent to \n \n,) && being just &, and any other combination causing neither character to display.

If you want a guaranteed announcement without parsing, use dfhack.gui.showAutoAnnouncement instead.

• dfhack.gui.getMousePos([allow_out_of_bounds])

Returns the map coordinates of the map tile the mouse is over as a table of {x, y, z}. If the cursor
is not over a valid tile, returns nil. To allow the function to return coordinates outside of the map, set
allow_out_of_bounds to true.

7.6. DFHack Lua API Reference 477

https://github.com/DFHack/df-structures/blob/master/df.announcements.xml

DFHack Documentation, Release 50.11-r4

Other

• dfhack.gui.getDepthAt(x, y)

Returns the distance from the z-level of the tile at map coordinates (x, y) to the closest rendered ground z-level
below. Defaults to 0, unless overridden by plugins.

Job module

• dfhack.job.cloneJobStruct(job)

Creates a deep copy of the given job.

• dfhack.job.printJobDetails(job)

Prints info about the job.

• dfhack.job.printItemDetails(jobitem,idx)

Prints info about the job item.

• dfhack.job.removeJob(job)

Cancels a job, cleans up all references to it, and removes it from the world.

• dfhack.job.getGeneralRef(job, type)

Searches for a general_ref with the given type.

• dfhack.job.getSpecificRef(job, type)

Searches for a specific_ref with the given type.

• dfhack.job.getHolder(job)

Returns the building holding the job.

• dfhack.job.getWorker(job)

Returns the unit performing the job.

• dfhack.job.setJobCooldown(building,worker,cooldown)

Prevent the worker from taking jobs at the specified workshop for the specified cooldown period (in ticks). This
doesn’t decrease the cooldown period in any circumstances.

• dfhack.job.removeWorker(job,cooldown)

Removes the worker from the specified workshop job, and sets the cooldown period (using the same logic as
setJobCooldown). Returns true on success.

• dfhack.job.checkBuildingsNow()

Instructs the game to check buildings for jobs next frame and assign workers.

• dfhack.job.checkDesignationsNow()

Instructs the game to check designations for jobs next frame and assign workers.

• dfhack.job.is_equal(job1,job2)

Compares important fields in the job and nested item structures.

• dfhack.job.is_item_equal(job_item1,job_item2)

Compares important fields in the job item structures.

478 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.job.linkIntoWorld(job,new_id)

Adds job into df.global.job_list, and if new_id is true, then also sets its id and increases df.global.
job_next_id

• dfhack.job.listNewlyCreated(first_id)

Returns the current value of df.global.job_next_id, and if there are any jobs with first_id <= id <
job_next_id, a lua list containing them.

• dfhack.job.attachJobItem(job, item, role, filter_idx, insert_idx)

Attach a real item to this job. If the item is intended to satisfy a job_item filter, the index of that filter should be
passed in filter_idx; otherwise, pass -1. Similarly, if you don’t care where the item is inserted, pass -1 for
insert_idx. The role param is a df.job_item_ref.T_role. If the item needs to be brought to the job site,
then the value should be df.job_item_ref.T_role.Hauled.

• dfhack.job.isSuitableItem(job_item, item_type, item_subtype)

Does basic sanity checks to verify if the suggested item type matches the flags in the job item.

• dfhack.job.isSuitableMaterial(job_item, mat_type, mat_index, item_type)

Likewise, if replacing material.

• dfhack.job.getName(job)

Returns the job’s description, as seen in the Units and Jobs screens.

Units module

• dfhack.units.isUnitInBox(unit,x1,y1,z1,x2,y2,z2)

The unit is within the specified coordinates.

• dfhack.units.isActive(unit)

The unit is active (alive and on the map).

• dfhack.units.isVisible(unit)

The unit is visible on the map.

• dfhack.units.isCitizen(unit[,ignore_sanity])

The unit is an alive sane citizen of the fortress; wraps the same checks the game uses to decide game-over by
extinction, with an additional sanity check. You can identify citizens, regardless of their sanity, by passing true
as the optional second parameter.

• dfhack.units.isFortControlled(unit)

Similar to dfhack.units.isCitizen(unit), but is based on checks for units hidden in ambush, and includes
tame animals. Returns false if not in fort mode.

• dfhack.units.isOwnCiv(unit)

The unit belongs to the player’s civilization.

• dfhack.units.isOwnGroup(unit)

The unit belongs to the player’s group.

• dfhack.units.isOwnRace(unit)

The unit belongs to the player’s race.

7.6. DFHack Lua API Reference 479

DFHack Documentation, Release 50.11-r4

• dfhack.units.isAlive(unit)

The unit isn’t dead or undead.

• dfhack.units.isDead(unit)

The unit is completely dead and passive, or a ghost. Equivalent to dfhack.units.isKilled(unit) or
dfhack.units.isGhost(unit).

• dfhack.units.isKilled(unit)

The unit has been killed.

• dfhack.units.isSane(unit)

The unit is capable of rational action, i.e. not dead, insane, zombie, or active werewolf.

• dfhack.units.isCrazed

The unit is berserk and will attack all other creatures except members of its own species that are also crazed.
(can be modified by curses)

• dfhack.units.isGhost(unit)

The unit is a ghost.

• dfhack.units.isHidden(unit)

The unit is hidden to the player, accounting for sneaking. Works for any game mode.

• dfhack.units.isHidingCurse(unit)

The unit is hiding a curse.

• dfhack.units.isMale(unit)

• dfhack.units.isFemale(unit)

• dfhack.units.isBaby(unit)

• dfhack.units.isChild(unit)

• dfhack.units.isAdult(unit)

• dfhack.units.isGay(unit)

• dfhack.units.isNaked(unit)

Simple unit property checks

• dfhack.units.isVisiting(unit)

The unit is visiting. eg. Merchants, Diplomatics, travelers.

• dfhack.units.isTrainableHunting(unit)

The unit is trainable for hunting.

• dfhack.units.isTrainableWar(unit)

The unit is trainable for war.

• dfhack.units.isTrained(unit)

The unit is trained.

• dfhack.units.isHunter(unit)

The unit is a trained hunter.

480 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.units.isWar(unit)

The unit is trained for war.

• dfhack.units.isTame(unit)

• dfhack.units.isTamable(unit)

• dfhack.units.isDomesticated(unit)

• dfhack.units.isMarkedForTraining(unit)

• dfhack.units.isMarkedForTaming(unit)

• dfhack.units.isMarkedForWarTraining(unit)

• dfhack.units.isMarkedForHuntTraining(unit)

• dfhack.units.isMarkedForSlaughter(unit)

• dfhack.units.isMarkedForGelding(unit)

• dfhack.units.isGeldable(unit)

• dfhack.units.isGelded(unit)

• dfhack.units.isEggLayer(unit)

• dfhack.units.isEggLayerRace(unit)

• dfhack.units.isGrazer(unit)

• dfhack.units.isMilkable(unit)

Simple unit property checks.

• dfhack.units.isForest(unit)

The unit is of the forest.

• dfhack.units.isMischievous(unit)

The unit is mischievous.

• dfhack.units.isAvailableForAdoption(unit)

The unit is available for adoption.

• dfhack.units.isPet(unit)

• dfhack.units.isOpposedToLife(unit)

• dfhack.units.hasExtravision(unit)

• dfhack.units.isBloodsucker(unit)

Simple checks of caste attributes that can be modified by curses.

• dfhack.units.isDwarf(unit)

The unit is of the correct race for the fortress.

• dfhack.units.isAnimal(unit)

• dfhack.units.isMerchant(unit)

• dfhack.units.isDiplomat(unit)

Simple unit type checks.

7.6. DFHack Lua API Reference 481

DFHack Documentation, Release 50.11-r4

• dfhack.units.isVisitor(unit)

The unit is a regular visitor with no special purpose (eg. merchant).

• dfhack.units.isInvader(unit)

The unit is an active invader or marauder.

• dfhack.units.isUndead(unit[,include_vamps])

The unit is undead. Pass true as the optional second parameter to count vampires as undead.

• dfhack.units.isNightCreature(unit)

• dfhack.units.isSemiMegabeast(unit)

• dfhack.units.isMegabeast(unit)

• dfhack.units.isTitan(unit)

• dfhack.units.isDemon(unit)

Simple enemy type checks.

• dfhack.units.isDanger(unit)

The unit is dangerous, and probably hostile. This includes Great Dangers (see below), semi-megabeasts, night
creatures, undead, invaders, and crazed units.

• dfhack.units.isGreatDanger(unit)

The unit is of Great Danger. This include demons, titans, and megabeasts.

• dfhack.units.getPosition(unit)

Returns true x,y,z of the unit, or nil if invalid; may be not equal to unit.pos if caged.

• dfhack.units.getUnitsInBox(x1,y1,z1,x2,y2,z2[,filter])

Returns a table of all units within the specified coordinates. If the filter argument is given, only units where
filter(unit) returns true will be included. Note that pos2xyz() cannot currently be used to convert coordi-
nate objects to the arguments required by this function.

• dfhack.units.getUnitByNobleRole(role_name)

Returns the unit assigned to the given noble role, if any. role_name must be one of the position codes associated
with the active fort or civilization government. For example: CAPTAIN_OF_THE_GUARD, MAYOR, or BARON. Note
that if more than one unit has the role, only the first will be returned. See getUnitsByNobleRole below for
retrieving all units with a particular role.

• dfhack.units.getUnitsByNobleRole(role_name)

Returns a list of units (possibly empty) assigned to the given noble role.

• dfhack.units.getCitizens([ignore_sanity])

Returns a list of all living citizens.

• dfhack.units.teleport(unit, pos)

Moves the specified unit and any riders to the target coordinates, setting tile occupancy flags appropriately.
Returns true if successful.

• dfhack.units.getGeneralRef(unit, type)

Searches for a general_ref with the given type.

482 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.units.getSpecificRef(unit, type)

Searches for a specific_ref with the given type.

• dfhack.units.getContainer(unit)

Returns the container (cage) item or nil.

• dfhack.units.setNickname(unit,nick)

Sets the unit’s nickname properly.

• dfhack.units.getOuterContainerRef(unit)

Returns a table (in the style of a specific_ref struct) of the outermost object that contains the unit (or one of
the unit itself.) The type field contains a specific_ref_type of UNIT, ITEM_GENERAL, or VERMIN_EVENT.
The object field contains a pointer to a unit, item, or vermin, respectively.

• dfhack.units.getVisibleName(unit)

Returns the language_name object visible in game, accounting for false identities.

• dfhack.units.getIdentity(unit)

Returns the false identity of the unit if it has one, or nil.

• dfhack.units.getNemesis(unit)

Returns the nemesis record of the unit if it has one, or nil.

• dfhack.units.getPhysicalAttrValue(unit, attr_type)

• dfhack.units.getMentalAttrValue(unit, attr_type)

Computes the effective attribute value, including curse effect.

• dfhack.units.casteFlagSet(race, caste, flag)

Returns whether the given df.caste_raw_flags flag is set for the given race and caste.

• dfhack.units.getMiscTrait(unit, type[, create])

Finds (or creates if requested) a misc trait object with the given id.

• dfhack.units.getAge(unit[,true_age])

Returns the age of the unit in years as a floating-point value. If true_age is true, ignores false identities.

• dfhack.units.isValidLabor(unit, unit_labor)

Returns whether the indicated labor is settable for the given unit.

• dfhack.units.setLaborValidity(unit_labor, isValid)

Sets the given labor to the given (boolean) validity for all units that are part of your fortress civilization. Valid
labors are allowed to be toggled in the in-game labor management screens (including DFHack’s labor manipu-
lator screen).

• dfhack.units.getNominalSkill(unit, skill[, use_rust])

Retrieves the nominal skill level for the given unit. If use_rust is true, subtracts the rust penalty.

• dfhack.units.getEffectiveSkill(unit, skill)

Computes the effective rating for the given skill, taking into account exhaustion, pain etc.

• dfhack.units.getExperience(unit, skill[, total])

Returns the experience value for the given skill. If total is true, adds experience implied by the current rating.

7.6. DFHack Lua API Reference 483

DFHack Documentation, Release 50.11-r4

• dfhack.units.computeMovementSpeed(unit)

Computes number of frames * 100 it takes the unit to move in its current state of mind and body.

• dfhack.units.computeSlowdownFactor(unit)

Meandering and floundering in liquid introduces additional slowdown. It is random, but the function computes
and returns the expected mean factor as a float.

• dfhack.units.getNoblePositions(unit)

Returns a list of tables describing noble position assignments, or nil. Every table has fields entity, assignment
and position.

• dfhack.units.getProfessionName(unit[,ignore_noble,plural])

Retrieves the profession name using custom profession, noble assignments or raws. The ignore_noble boolean
disables the use of noble positions.

• dfhack.units.getCasteProfessionName(race,caste,prof_id[,plural])

Retrieves the profession name for the given race/caste using raws.

• dfhack.units.getProfessionColor(unit[,ignore_noble])

Retrieves the color associated with the profession, using noble assignments or raws. The ignore_noble boolean
disables the use of noble positions.

• dfhack.units.getCasteProfessionColor(race,caste,prof_id)

Retrieves the profession color for the given race/caste using raws.

• dfhack.units.getGoalType(unit[,goalIndex])

Retrieves the goal type of the dream that the given unit has. By default the goal of the first dream is returned.
The goalIndex parameter may be used to retrieve additional dream goals. Currently only one dream per unit is
supported by Dwarf Fortress. Support for multiple dreams may be added in future versions of Dwarf Fortress.

• dfhack.units.getGoalName(unit[,goalIndex])

Retrieves the short name describing the goal of the dream that the given unit has. By default the goal of the first
dream is returned. The goalIndex parameter may be used to retrieve additional dream goals. Currently only one
dream per unit is supported by Dwarf Fortress. Support for multiple dreams may be added in future versions of
Dwarf Fortress.

• dfhack.units.isGoalAchieved(unit[,goalIndex])

Checks if given unit has achieved the goal of the dream. By default the status of the goal of the first dream is
returned. The goalIndex parameter may be used to check additional dream goals. Currently only one dream
per unit is supported by Dwarf Fortress. Support for multiple dreams may be added in future versions of Dwarf
Fortress.

• dfhack.units.getReadableName(unit)

Returns a string that includes the language name of the unit (if any), the race of the unit, whether it is trained for
war or hunting, and any syndrome-given descriptions (such as “necromancer”).

• dfhack.units.getStressCategory(unit)

Returns a number from 0-6 indicating stress. 0 is most stressed; 6 is least. Note that 0 is guaranteed to remain
the most stressed but 6 could change in the future.

• dfhack.units.getStressCategoryRaw(stress_level)

Identical to getStressCategory but takes a raw stress level instead of a unit.

484 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.units.getStressCutoffs()

Returns a table of the cutoffs used by the above stress level functions.

Military module

• dfhack.military.makeSquad(assignment_id)

Creates a new squad associated with the assignment (ie df::entity_position_assignment, via id) and
returns it. Fails if a squad already exists that is associated with that assignment, or if the assignment is not a fort
mode player controlled squad. Note: This function does not name the squad: consider setting a nickname (under
squad.name.nickname), and/or filling out the language_name object at squad.name. The returned squad is
otherwise complete and requires no more setup to work correctly.

• dfhack.military.updateRoomAssignments(squad_id, assignment_id, squad_use_flags)

Sets the sleep, train, indiv_eq, and squad_eq flags when training at a barracks.

• dfhack.military.getSquadName(squad_id)

Returns the name of a squad as a string.

Action Timer API

This is an API to allow manipulation of unit action timers, to speed them up or slow them down. All functions in this
API have overflow/underflow protection when modifying action timers (the value will cap out). Actions with a timer
of 0 (or less) will not be modified as they are completed (or invalid in the case of negatives). Timers will be capped
to go no lower than 1. affectedActionType parameters are integers from the DF enum unit_action_type. E.g.
df.unit_action_type.Move. affectedActionTypeGroup parameters are integers from the (custom) DF enum
unit_action_type_group. They are as follows:

• All (does not include unknown unit action types)

• Movement

• MovementFeet (affects only walking and crawling speed. if you need to differentiate between walking and
crawling, check the unit’s flags1.on_ground flag, like the Pegasus boots do in the DFHack modding guide)

• MovementFeet (for walking speed, such as with pegasus boots from the DFHack modding guide)

• Combat (includes bloodsucking)

• Work

API functions:

• subtractActionTimers(unit, amount, affectedActionType)

Subtract amount (32-bit integer) from the timers of any actions the unit is performing of affectedActionType
(usually one or zero actions in normal gameplay).

• subtractGroupActionTimers(unit, amount, affectedActionTypeGroup)

Subtract amount (32-bit integer) from the timers of any actions the unit is performing that match the
affectedActionTypeGroup category.

• multiplyActionTimers(unit, amount, affectedActionType)

Multiply the timers of any actions of affectedActionType the unit is performing by amount (float) (usually
one or zero actions in normal gameplay).

7.6. DFHack Lua API Reference 485

DFHack Documentation, Release 50.11-r4

• multiplyGroupActionTimers(unit, amount, affectedActionTypeGroup)

Multiply the timers of any actions that match the affectedActionTypeGroup category the unit is performing
by amount (float).

• setActionTimers(unit, amount, affectedActionType)

Set the timers of any action the unit is performing of affectedActionType to amount (32-bit integer) (usually
one or zero actions in normal gameplay).

• setGroupActionTimers(unit, amount, affectedActionTypeGroup)

Set the timers of any action the unit is performing that match the affectedActionTypeGroup category to
amount (32-bit integer).

Items module

• dfhack.items.getPosition(item)

Returns true x,y,z of the item, or nil if invalid; may be not equal to item.pos if in inventory.

• dfhack.items.getBookTitle(item)

Returns the title of the “book” item, or an empty string if the item isn’t a “book” or it doesn’t have a title. A
“book” is a codex or a tool item that has page or writings improvements, such as scrolls and quires.

• dfhack.items.getDescription(item, type[, decorate])

Returns the string description of the item, as produced by the getItemDescriptionmethod. If decorate is true,
also adds markings for quality and improvements.

• dfhack.items.getGeneralRef(item, type)

Searches for a general_ref with the given type.

• dfhack.items.getSpecificRef(item, type)

Searches for a specific_ref with the given type.

• dfhack.items.getOwner(item)

Returns the owner unit or nil.

• dfhack.items.setOwner(item,unit)

Replaces the owner of the item. If unit is nil, removes ownership. Returns false in case of error.

• dfhack.items.getContainer(item)

Returns the container item or nil.

• dfhack.items.getOuterContainerRef(item)

Returns a table (in the style of a specific_ref struct) of the outermost object that contains the item (or one of
the item itself.) The type field contains a specific_ref_type of UNIT, ITEM_GENERAL, or VERMIN_EVENT.
The object field contains a pointer to a unit, item, or vermin, respectively.

• dfhack.items.getContainedItems(item)

Returns a list of items contained in this one.

• dfhack.items.getHolderBuilding(item)

Returns the holder building or nil.

486 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.items.getHolderUnit(item)

Returns the holder unit or nil.

• dfhack.items.moveToGround(item,pos)

Move the item to the ground at position. Returns false if impossible.

• dfhack.items.moveToContainer(item,container)

Move the item to the container. Returns false if impossible.

• dfhack.items.moveToBuilding(item,building[,use_mode[,force_in_building])

Move the item to the building. Returns false if impossible.

use_mode defaults to 0. If set to 2, the item will be treated as part of the building.

If force_in_building is true, the item will be considered to be stored by the building (used for items tem-
porarily used in traps in vanilla DF)

• dfhack.items.moveToInventory(item,unit,use_mode,body_part)

Move the item to the unit inventory. Returns false if impossible.

• dfhack.items.remove(item[, no_uncat])

Removes the item, and marks it for garbage collection unless no_uncat is true.

• dfhack.items.makeProjectile(item)

Turns the item into a projectile, and returns the new object, or nil if impossible.

• dfhack.items.isCasteMaterial(item_type)

Returns true if this item type uses a creature/caste pair as its material.

• dfhack.items.getSubtypeCount(item_type)

Returns the number of raw-defined subtypes of the given item type, or -1 if not applicable.

• dfhack.items.getSubtypeDef(item_type, subtype)

Returns the raw definition for the given item type and subtype, or nil if invalid.

• dfhack.items.getItemBaseValue(item_type, subtype, material, mat_index)

Calculates the base value for an item of the specified type and material.

• dfhack.items.getValue(item[, caravan_state])

Calculates the value of an item. If a df.caravan_state object is given (from df.global.plotinfo.
caravans or df.global.main_interface.trade.mer), then the value is modified by civ properties and
any trade agreements that might be in effect.

• dfhack.items.isRequestedTradeGood(item[, caravan_state])

Returns whether a caravan will pay extra for the given item. If caravan_state is not given, checks all active
caravans.

• dfhack.items.createItem(item_type, item_subtype, mat_type, mat_index, unit)

Creates an item, similar to the createitem plugin.

• dfhack.items.checkMandates(item)

Returns true if the item is free from mandates, or false if mandates prevent trading the item.

7.6. DFHack Lua API Reference 487

DFHack Documentation, Release 50.11-r4

• dfhack.items.canTrade(item)

Checks whether the item can be traded.

• dfhack.items.canTradeWithContents(item)

Returns false if the item or any contained items cannot be traded.

• canTradeAnyWithContents(item)

Returns true if the item is empty and can be traded or if the item contains any item that can be traded.

• dfhack.items.markForTrade(item, depot)

Marks the given item for trade at the given depot.

• dfhack.items.isRouteVehicle(item)

Checks whether the item is an assigned hauling vehicle.

• dfhack.items.isSquadEquipment(item)

Checks whether the item is assigned to a squad.

World module

• dfhack.world.ReadPauseState()

Returns true if the game is paused.

• dfhack.world.SetPauseState(paused)

Sets the pause state of the game.

• dfhack.world.ReadCurrentYear()

Returns the current game year.

• dfhack.world.ReadCurrentTick()

Returns the number of game ticks (df.global.world.frame_counter) since the start of the current game
year.

• dfhack.world.ReadCurrentMonth()

Returns the current game month, ranging from 0-11 (The Dwarven year has 12 months).

• dfhack.world.ReadCurrentDay()

Returns the current game day, ranging from 1-28 (Each Dwarven month as 28 days)

• dfhack.world.ReadCurrentWeather()

Returns the current game weather (df.weather_type).

• dfhack.world.SetCurrentWeather(weather)

Sets the current game weather to weather.

• dfhack.world.ReadWorldFolder()

Returns the name of the directory/folder the current saved game is under, or an empty string if no game was
loaded this session.

• dfhack.world.isFortressMode([gametype])

• dfhack.world.isAdventureMode([gametype])

488 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.world.isArena([gametype])

• dfhack.world.isLegends([gametype])

Without any arguments, returns true if the current gametype matches. Optionally accepts a gametype id to match
against.

Maps module

• dfhack.maps.getSize()

Returns map size in blocks: x, y, z

• dfhack.maps.getTileSize()

Returns map size in tiles: x, y, z

• dfhack.maps.getBlock(x,y,z)

Returns a map block object for given x,y,z in local block coordinates.

• dfhack.maps.isValidTilePos(coords), or isValidTilePos(x,y,z)

Checks if the given df::coord or x,y,z in local tile coordinates are valid.

• dfhack.maps.isTileVisible(coords), or isTileVisible(x,y,z)

Checks if the given df::coord or x,y,z in local tile coordinates is visible.

• dfhack.maps.getTileBlock(coords), or getTileBlock(x,y,z)

Returns a map block object for given df::coord or x,y,z in local tile coordinates.

• dfhack.maps.ensureTileBlock(coords), or ensureTileBlock(x,y,z)

Like getTileBlock, but if the block is not allocated, try creating it.

• dfhack.maps.getTileType(coords), or getTileType(x,y,z)

Returns the tile type at the given coordinates, or nil if invalid.

• dfhack.maps.getTileFlags(coords), or getTileFlags(x,y,z)

Returns designation and occupancy references for the given coordinates, or nil, nil if invalid.

• dfhack.maps.getRegionBiome(region_coord2d), or getRegionBiome(x,y)

Returns the biome info struct for the given global map region.

dfhack.maps.getBiomeType(region_coord2d) or getBiomeType(x,y)

Returns the biome_type for the given global map region.

• dfhack.maps.enableBlockUpdates(block[,flow,temperature])

Enables updates for liquid flow or temperature, unless already active.

• dfhack.maps.spawnFlow(pos,type,mat_type,mat_index,dimension)

Spawns a new flow (i.e. steam/mist/dust/etc) at the given pos, and with the given parameters. Returns it, or nil
if unsuccessful.

• dfhack.maps.getGlobalInitFeature(index)

Returns the global feature object with the given index.

7.6. DFHack Lua API Reference 489

DFHack Documentation, Release 50.11-r4

• dfhack.maps.getLocalInitFeature(region_coord2d,index)

Returns the local feature object with the given region coords and index.

• dfhack.maps.getTileBiomeRgn(coords), or getTileBiomeRgn(x,y,z)

Returns x, y for use with getRegionBiome and getBiomeType.

• dfhack.maps.getPlantAtTile(pos), or getPlantAtTile(x,y,z)

Returns the plant struct that owns the tile at the specified position.

• dfhack.maps.getWalkableGroup(pos)

Returns the walkability group for the given tile position. A return value of 0 indicates that the tile is not walkable.
The data comes from a pathfinding cache maintained by DF.

Note: This cache is only updated when the game is unpaused, and thus can get out of date if doors are forbidden
or unforbidden, or tools like liquids or tiletypes are used. It also cannot possibly take into account anything that
depends on the actual units, like burrows, or the presence of invaders.

• dfhack.maps.canWalkBetween(pos1, pos2)

Checks if both positions are walkable and also share a walkability group.

• dfhack.maps.hasTileAssignment(tilemask)

Checks if the tile_bitmask object is not nil and contains any set bits; returns true or false.

• dfhack.maps.getTileAssignment(tilemask,x,y)

Checks if the tile_bitmask object is not nil and has the relevant bit set; returns true or false.

• dfhack.maps.setTileAssignment(tilemask,x,y,enable)

Sets the relevant bit in the tile_bitmask object to the enable argument.

• dfhack.maps.resetTileAssignment(tilemask[,enable])

Sets all bits in the mask to the enable argument.

Burrows module

• dfhack.burrows.findByName(name[, ignore_final_plus])

Returns the burrow pointer or nil. if ignore_final_plus is true, then + characters at the end of the names
are ignored, both for the specified name and the names of the burrows that it matches against.

• dfhack.burrows.clearUnits(burrow)

Removes all units from the burrow.

• dfhack.burrows.isAssignedUnit(burrow,unit)

Checks if the unit is in the burrow.

• dfhack.burrows.setAssignedUnit(burrow,unit,enable)

Adds or removes the unit from the burrow.

• dfhack.burrows.clearTiles(burrow)

Removes all tiles from the burrow.

490 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.burrows.listBlocks(burrow)

Returns a table of map block pointers.

• dfhack.burrows.isAssignedTile(burrow,tile_coord)

Checks if the tile is in burrow.

• dfhack.burrows.setAssignedTile(burrow,tile_coord,enable)

Adds or removes the tile from the burrow. Returns false if invalid coords.

• dfhack.burrows.isAssignedBlockTile(burrow,block,x,y)

Checks if the tile within the block is in burrow.

• dfhack.burrows.setAssignedBlockTile(burrow,block,x,y,enable)

Adds or removes the tile from the burrow. Returns false if invalid coords.

Buildings module

General

• dfhack.buildings.getGeneralRef(building, type)

Searches for a general_ref with the given type.

• dfhack.buildings.getSpecificRef(building, type)

Searches for a specific_ref with the given type.

• dfhack.buildings.setOwner(civzone,unit)

Replaces the owner of the civzone. If unit is nil, removes ownership. Returns false in case of error.

• dfhack.buildings.getSize(building)

Returns width, height, centerx, centery.

• dfhack.buildings.findAtTile(pos), or findAtTile(x,y,z)

Scans the buildings for the one located at the given tile. Does not work on civzones. Warning: linear scan if the
map tile indicates there are buildings at it.

• dfhack.buildings.findCivzonesAt(pos), or findCivzonesAt(x,y,z)

Scans civzones, and returns a lua sequence of those that touch the given tile, or nil if none.

• dfhack.buildings.getCorrectSize(width, height, type, subtype, custom, direction)

Computes correct dimensions for the specified building type and orientation, using width and height for flexible
dimensions. Returns is_flexible, width, height, center_x, center_y.

• dfhack.buildings.checkFreeTiles(pos,size[,extents,change_extents,allow_occupied,
allow_wall])

Checks if the rectangle defined by pos and size, and possibly extents, can be used for placing a building.
If change_extents is true, bad tiles are removed from extents. If allow_occupied, the occupancy test is
skipped. Set allow_wall to true if the building is unhindered by walls (such as an activity zone).

• dfhack.buildings.countExtentTiles(extents,defval)

Returns the number of tiles included by extents, or defval.

7.6. DFHack Lua API Reference 491

DFHack Documentation, Release 50.11-r4

• dfhack.buildings.containsTile(building, x, y)

Checks if the building contains the specified tile. If the building contains extents, then the extents are checked.
Otherwise, returns whether the x and y map coordinates are within the building’s bounding box.

• dfhack.buildings.hasSupport(pos,size)

Checks if a bridge constructed at specified position would have support from terrain, and thus won’t collapse if
retracted.

• dfhack.buildings.getStockpileContents(stockpile)

Returns a list of items stored on the given stockpile. Ignores empty bins, barrels, and wheelbarrows assigned as
storage and transport for that stockpile.

• dfhack.buildings.getCageOccupants(cage)

Returns a list of units in the given built cage. Note that this is different from the list of units assigned to the cage,
which can be accessed with cage.assigned_units.

Low-level

Low-level building creation functions:

• dfhack.buildings.allocInstance(pos, type, subtype, custom)

Creates a new building instance of given type, subtype and custom type, at specified position. Returns the object,
or nil in case of an error.

• dfhack.buildings.setSize(building, width, height, direction)

Configures an object returned by allocInstance, using specified parameters wherever appropriate. If the
building has fixed size along any dimension, the corresponding input parameter will be ignored. Returns false
if the building cannot be placed, or true, width, height, rect_area, true_area. Returned width and height are the
final values used by the building; true_area is less than rect_area if any tiles were removed from designation. You
can specify a non-rectangular designation for building types that support extents by setting the room.extents
bitmap before calling this function. The extents will be reset, however, if the size returned by this function doesn’t
match the input size parameter.

• dfhack.buildings.constructAbstract(building)

Links a fully configured object created by allocInstance into the world. The object must be an abstract
building, i.e. a stockpile or civzone. Returns true, or false if impossible.

• dfhack.buildings.constructWithItems(building, items)

Links a fully configured object created by allocInstance into the world for construction, using a list of specific
items as material. Returns true, or false if impossible.

• dfhack.buildings.constructWithFilters(building, job_items)

Links a fully configured object created by allocInstance into the world for construction, using a list of job_item
filters as inputs. Returns true, or false if impossible. Filter objects are claimed and possibly destroyed in any
case. Use a negative quantity field value to auto-compute the amount from the size of the building.

• dfhack.buildings.deconstruct(building)

Destroys the building, or queues a deconstruction job. Returns true if the building was destroyed and deallocated
immediately.

• dfhack.buildings.notifyCivzoneModified(building)

492 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Rebuilds the civzone <-> overlapping building association mapping. Call after changing extents or modifying
size in some fashion

• dfhack.buildings.markedForRemoval(building)

Returns true if the building is marked for removal (with x), false otherwise.

• dfhack.buildings.getRoomDescription(building[, unit])

If the building is a room, returns a description including quality modifiers, e.g. “Royal Bedroom”. Otherwise,
returns an empty string.

The unit argument is passed through to DF and may modify the room’s value depending on the unit given.

• dfhack.buildings.completeBuild(building)

Complete an unconstructed or partially-constructed building and link it into the world.

High-level

More high-level functions are implemented in lua and can be loaded by require('dfhack.buildings'). See hack/
lua/dfhack/buildings.lua.

Among them are:

• dfhack.buildings.getFiltersByType(argtable,type,subtype,custom)

Returns a sequence of lua structures, describing input item filters suitable for the specified building type,
or nil if unknown or invalid. The returned sequence is suitable for use as the job_items argument of
constructWithFilters. Uses tables defined in buildings.lua.

Argtable members material (the default name), bucket, barrel, chain, mechanism, screw, pipe, anvil,
weapon are used to augment the basic attributes with more detailed information if the building has input items
with the matching name (see the tables for naming details). Note that it is impossible to override any properties
this way, only supply those that are not mentioned otherwise; one exception is that flags2.non_economic is
automatically cleared if an explicit material is specified.

• dfhack.buildings.constructBuilding{...}

Creates a building in one call, using options contained in the argument table. Returns the building, or nil, error.

Note: Despite the name, unless the building is abstract, the function creates it in an ‘unconstructed’ stage, with a
queued in-game job that will actually construct it. I.e. the function replicates programmatically what can be done
through the construct building menu in the game ui, except that it does less environment constraint checking.

The following options can be used:

– pos = coordinates, or x = ..., y = ..., z = ...

Mandatory. Specifies the left upper corner of the building.

– type = df.building_type.FOO, subtype = ..., custom = ...

Mandatory. Specifies the type of the building. Obviously, subtype and custom are only expected if the type
requires them.

– fields = { ... }

Initializes fields of the building object after creation with df.assign. If room.extents is assigned this
way and this function returns with error, the memory allocated for the extents is freed.

7.6. DFHack Lua API Reference 493

DFHack Documentation, Release 50.11-r4

– width = ..., height = ..., direction = ...

Sets size and orientation of the building. If it is fixed-size, specified dimensions are ignored.

– full_rectangle = true

For buildings like stockpiles or farm plots that can normally accommodate individual tile exclusion, forces
an error if any tiles within the specified width*height are obstructed.

– items = { item, item ... }, or filters = { {...}, {...}... }

Specifies explicit items or item filters to use in construction. It is the job of the user to ensure they are
correct for the building type.

– abstract = true

Specifies that the building is abstract and does not require construction. Required for stockpiles and civ-
zones; an error otherwise.

– material = {...}, mechanism = {...}, ...

If none of items, filter, or abstract is used, the function uses getFiltersByType to compute
the input item filters, and passes the argument table through. If no filters can be determined this way,
constructBuilding throws an error.

Constructions module

• dfhack.constructions.designateNew(pos,type,item_type,mat_index)

Designates a new construction at given position. If there already is a planned but not completed construction
there, changes its type. Returns true, or false if obstructed. Note that designated constructions are technically
buildings.

• dfhack.constructions.designateRemove(pos), or designateRemove(x,y,z)

If there is a construction or a planned construction at the specified coordinates, designates it for removal, or
instantly cancels the planned one. Returns true, was_only_planned if removed; or false if none found.

• dfhack.constructions.findAtTile(pos), or findAtTile(x,y,z)

Returns the construction at the given position, or nil if there isn’t one.

• dfhack.constructions.insert(construction)

Properly inserts the given construction into the game. Returns false and fails to insert if there was already a
construction at the position.

Kitchen module

• dfhack.kitchen.findExclusion(type, item_type, item_subtype, mat_type, mat_index)

Finds a kitchen exclusion in the vectors in df.global.ui.kitchen. Returns -1 if not found.

– type is a df.kitchen_exc_type, i.e. df.kitchen_exc_type.Cook or df.kitchen_exc_type.
Brew.

– item_type is a df.item_type

– item_subtype, mat_type, and mat_index are all numeric

• dfhack.kitchen.addExclusion(type, item_type, item_subtype, mat_type, mat_index)

494 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.kitchen.removeExclusion(type, item_type, item_subtype, mat_type, mat_index)

Adds or removes a kitchen exclusion, using the same parameters as findExclusion. Both return true on
success and false on failure, e.g. when adding an exclusion that already exists or removing one that does not.

Screen API

The screen module implements support for drawing to the tiled screen of the game. Note that drawing only has any
effect when done from callbacks, so it can only be feasibly used in the core context.

• Basic painting functions

• Pen API

• Screen management

Basic painting functions

Common parameters to these functions include:

• x, y: screen coordinates in tiles; the upper left corner of the screen is x = 0, y = 0

• pen: a pen object

• map: a boolean indicating whether to draw to a separate map buffer (defaults to false, which is suitable for off-map
text or a screen that hides the map entirely). Note that only third-party plugins like TWBT currently implement a
separate map buffer. If no such plugins are enabled, passing true has no effect. However, this parameter should
still be used to ensure that scripts work properly with such plugins.

Functions:

• dfhack.screen.getWindowSize()

Returns width, height of the screen.

• dfhack.screen.getMousePos()

Returns x,y of the UI interface tile the mouse is over, with the upper left corner being 0,0. To get the map tile
coordinate that the mouse is over, see dfhack.gui.getMousePos().

• dfhack.screen.getMousePixels()

Returns x,y of the screen coordinates the mouse is over in pixels, with the upper left corner being 0,0.

• dfhack.screen.inGraphicsMode()

Checks if [GRAPHICS:YES] was specified in init.

• dfhack.screen.paintTile(pen,x,y[,char,tile,map])

Paints a tile using given parameters. See below for a description of pen.

Returns false on error, e.g. if coordinates are out of bounds

• dfhack.screen.readTile(x,y[,map])

Retrieves the contents of the specified tile from the screen buffers. Returns a pen object, or nil if invalid or
TrueType.

7.6. DFHack Lua API Reference 495

DFHack Documentation, Release 50.11-r4

• dfhack.screen.paintString(pen,x,y,text[,map])

Paints the string starting at x,y. Uses the string characters in sequence to override the ch field of pen.

Returns true if painting at least one character succeeded.

• dfhack.screen.fillRect(pen,x1,y1,x2,y2[,map])

Fills the rectangle specified by the coordinates with the given pen. Returns true if painting at least one character
succeeded.

• dfhack.screen.findGraphicsTile(pagename,x,y)

Finds a tile from a graphics set (i.e. the raws used for creatures), if in graphics mode and loaded.

Returns: tile, tile_grayscale, or nil if not found. The values can then be used for the tile field of pen structures.

• dfhack.screen.hideGuard(screen,callback[,args...])

Removes screen from the viewscreen stack, calls the callback (with optional supplied arguments), and then re-
stores the screen on the top of the viewscreen stack.

• dfhack.screen.clear()

Fills the screen with blank background.

• dfhack.screen.invalidate()

Requests repaint of the screen by setting a flag. Unlike other functions in this section, this may be used at any
time.

• dfhack.screen.getKeyDisplay(key)

Returns the string that should be used to represent the given logical keybinding on the screen in texts like “press
Key to . . . ”.

• dfhack.screen.keyToChar(key)

Returns the integer character code of the string input character represented by the given logical keybinding, or
nil if not a string input key.

• dfhack.screen.charToKey(charcode)

Returns the keybinding representing the given string input character, or nil if impossible.

Pen API

The pen argument used by dfhack.screen functions may be represented by a table with the following possible fields:

ch Provides the ordinary tile character, as either a 1-character string or a number. Can be overridden with
the char function parameter.

fg Foreground color for the ordinary tile. Defaults to COLOR_GREY (7).

bg Background color for the ordinary tile. Defaults to COLOR_BLACK (0).

bold Bright/bold text flag. If nil, computed based on (fg & 8); fg is masked to 3 bits. Otherwise should
be true/false.

tile Graphical tile id. Ignored unless [GRAPHICS:YES] was in init.txt.

tile_color = true Specifies that the tile should be shaded with fg/bg.

tile_fg, tile_bg If specified, overrides tile_color and supplies shading colors directly.

keep_lower If set to true, will not overwrite the background tile when filling in the foreground tile.

496 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

write_to_lower If set to true, the specified tile will be written to the background instead of the fore-
ground.

top_of_text If set to true, the specified tile will have the top half of the specified ch character super-
imposed over the lower half of the tile.

bottom_of_text If set to true, the specified tile will have the bottom half of the specified ch character
superimposed over the top half of the tile.

Alternatively, it may be a pre-parsed native object with the following API:

• dfhack.pen.make(base[,pen_or_fg,bg,bold])

Creates a new pre-parsed pen by combining its arguments according to the following rules:

1. The base argument may be a pen object, a pen table as specified above, or a single color value. In the
single value case, it is split into fg and bold properties, and others are initialized to 0. This argument will
be converted to a pre-parsed object and returned if there are no other arguments.

2. If the pen_or_fg argument is specified as a table or object, it completely replaces the base, and is returned
instead of it.

3. Otherwise, the non-nil subset of the optional arguments is used to update the fg, bg and bold properties
of the base. If the bold flag is nil, but pen_or_fg is a number, bold is deduced from it like in the simple
base case.

This function always returns a new pre-parsed pen, or nil.

• dfhack.pen.parse(base[,pen_or_fg,bg,bold])

Exactly like the above function, but returns base or pen_or_fg directly if they are already a pre-parsed native
object.

• pen.property, pen.property = value, pairs(pen)

Pre-parsed pens support reading and setting their properties, but don’t behave exactly like a simple table would;
for instance, assigning to pen.tile_color also resets pen.tile_fg and pen.tile_bg to nil.

Screen management

In order to actually be able to paint to the screen, it is necessary to create and register a viewscreen (basically a modal
dialog) with the game.

Warning: As a matter of policy, in order to avoid user confusion, all interface screens added by dfhack should
bear the “DFHack” signature.

Screens are managed with the following functions:

• dfhack.screen.show(screen[,below])

Displays the given screen, possibly placing it below a different one. The screen must not be already shown.
Returns true if success.

• dfhack.screen.dismiss(screen[,to_first])

Marks the screen to be removed when the game enters its event loop. If to_first is true, all screens up to the
first one will be deleted.

• dfhack.screen.isDismissed(screen)

Checks if the screen is already marked for removal.

7.6. DFHack Lua API Reference 497

DFHack Documentation, Release 50.11-r4

Apart from a native viewscreen object, these functions accept a table as a screen. In this case, show creates a new
native viewscreen that delegates all processing to methods stored in that table.

Note:

• The gui.Screen class provides stubs for all of the functions listed below, and its use is recommended

• Lua-implemented screens are only supported in the core context.

Supported callbacks and fields are:

• screen._native

Initialized by show with a reference to the backing viewscreen object, and removed again when the object is
deleted.

• function screen:onShow()

Called by dfhack.screen.show if successful.

• function screen:onDismiss()

Called by dfhack.screen.dismiss if successful.

• function screen:onDestroy()

Called from the destructor when the viewscreen is deleted.

• function screen:onResize(w, h)

Called before onRender or onIdle when the window size has changed.

• function screen:onRender()

Called when the viewscreen should paint itself. This is the only context where the above painting functions work
correctly.

If omitted, the screen is cleared; otherwise it should do that itself. In order to make a dialog where portions of
the parent viewscreen are still visible in the background, call screen:renderParent().

If artifacts are left on the parent even after this function is called, such as when the window is dragged or
is resized, any code can set gui.Screen.request_full_screen_refresh to true. Then when screen.
renderParent() is next called, it will do a full flush of the graphics and clear the screen of artifacts.

• function screen:onIdle()

Called every frame when the screen is on top of the stack.

• function screen:onHelp()

Called when the help keybinding is activated (usually ‘?’).

• function screen:onInput(keys)

Called when keyboard or mouse events are available. If any keys are pressed, the keys argument is a table
mapping them to true. Note that this refers to logical keybindings computed from real keys via options; if
multiple interpretations exist, the table will contain multiple keys.

The table also may contain special keys:

_STRING Maps to an integer in range 0-255. Duplicates a separate “STRING_A???” code for convenience.

_MOUSE_L, _MOUSE_R, _MOUSE_M If the left, right, and/or middle mouse button was just pressed.

_MOUSE_L_DOWN, _MOUSE_R_DOWN, _MOUSE_M_DOWN If the left, right, and/or middle mouse button is being
held down.

498 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

If this method is omitted, the screen is dismissed on reception of the LEAVESCREEN key.

• function screen:onGetSelectedUnit()

• function screen:onGetSelectedItem()

• function screen:onGetSelectedJob()

• function screen:onGetSelectedBuilding()

Implement these to provide a return value for the matching dfhack.gui.getSelected... function.

PenArray class

Screens that require significant computation in their onRender() method can use a dfhack.penarray instance to cache
their output.

• dfhack.penarray.new(w, h)

Creates a new penarray instance with an internal buffer of w * h tiles. These dimensions currently cannot be
changed after a penarray is instantiated.

• penarray:clear()

Clears the internal buffer, similar to dfhack.screen.clear().

• penarray:get_dims()

Returns the x and y dimensions of the internal buffer.

• penarray:get_tile(x, y)

Returns a pen corresponding to the tile at (x, y) in the internal buffer. Note that indices are 0-based.

• penarray:set_tile(x, y, pen)

Sets the tile at (x, y) in the internal buffer to the pen given.

• penarray:draw(x, y, w, h, bufferx, buffery)

Draws the contents of the internal buffer, beginning at (bufferx, buffery) and spanning w columns and h rows,
to the screen starting at (x, y). Any invalid screen and buffer coordinates are skipped.

bufferx and buffery default to 0.

Textures module

In order for the game to render a particular tile (graphic), it needs to know the texpos - the position in the vector of the
registered game textures (also the graphical tile id passed as the tile field in a Pen). Adding new textures to the vector
is not difficult, but the game periodically deletes textures that are in the vector, and that’s a problem since it invalidates
the texpos value that used to point to that texture. The textures module solves this problem by providing a stable
handle instead of a raw texpos. When we need to draw a particular tile, we can look up the current texpos value
via the handle. Texture module can register textures in two ways: to reserved and dynamic ranges. Reserved range is
a limit buffer in a game texture vector, that will never be wiped. It is good for static assets, which need to be loaded
at the very beginning and will be used during the process running. In other cases, it is better to use dynamic range. If
reserved range buffer limit has been reached, dynamic range will be used by default.

• loadTileset(file, tile_px_w, tile_px_h[, reserved])

Loads a tileset from the image file with give tile dimensions in pixels. The image will be sliced in row major
order. Returns an array of TexposHandle. reserved is optional boolean argument, which indicates texpos
range. true - reserved, false - dynamic (default).

7.6. DFHack Lua API Reference 499

DFHack Documentation, Release 50.11-r4

Example usage:

local logo_textures = dfhack.textures.loadTileset('hack/data/art/dfhack.png', 8, 12)
local first_texposhandle = logo_textures[1]

• getTexposByHandle(handle)

Get the current texpos for the given TexposHandle. Always use this method to get the texpos for your texture.
texpos can change when game textures are reset, but the handle will be the same.

• createTile(pixels, tile_px_w, tile_px_h[, reserved])

Create and register a new texture with the given tile dimensions and an array of pixels in row major or-
der. Each pixel is an integer representing color in packed RBGA format (for example, #0022FF11). Returns
a TexposHandle. reserved is optional boolean argument, which indicates texpos range. true - reserved,
false - dynamic (default).

• createTileset(pixels, texture_px_w, texture_px_h, tile_px_w, tile_px_h[, reserved])

Create and register a new texture with the given texture dimensions and an array of pixels in row major order.
Then slice it into tiles with the given tile dimensions. Each pixel is an integer representing color in packed RBGA
format (for example #0022FF11). Returns an array of TexposHandle. reserved is optional boolean argument,
which indicates texpos range. true - reserved, false - dynamic (default).

• deleteHandle(handle)

handle here can be single TexposHandle or an array of TexposHandle. Deletes all metadata and texture(s)
related to the given handle(s). The handles become invalid after this call.

Filesystem module

Most of these functions return true on success and false on failure, unless otherwise noted.

• dfhack.filesystem.exists(path)

Returns true if path exists.

• dfhack.filesystem.isfile(path)

Returns true if path exists and is a file.

• dfhack.filesystem.isdir(path)

Returns true if path exists and is a directory.

• dfhack.filesystem.getcwd()

Returns the current working directory. To retrieve the DF path, use dfhack.getDFPath() instead.

• dfhack.filesystem.chdir(path)

Changes the current directory to path. Use with caution.

• dfhack.filesystem.restore_cwd()

Restores the current working directory to what it was when DF started.

• dfhack.filesystem.get_initial_cwd()

Returns the value of the working directory when DF was started.

• dfhack.filesystem.mkdir(path)

Creates a new directory. Returns false if unsuccessful, including if path already exists.

500 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.filesystem.mkdir_recursive(path)

Creates a new directory, including any intermediate directories that don’t exist yet. Returns true if the folder
was created or already existed, or false if unsuccessful.

• dfhack.filesystem.rmdir(path)

Removes a directory. Only works if the directory is already empty.

• dfhack.filesystem.mtime(path)

Returns the modification time (in seconds) of the file or directory specified by path, or -1 if path does not exist.
This depends on the system clock and should only be used locally.

• dfhack.filesystem.atime(path)

• dfhack.filesystem.ctime(path)

Return values vary across operating systems - return the st_atime and st_ctime fields of a C++ stat struct,
respectively.

• dfhack.filesystem.listdir(path)

Lists files/directories in a directory. Returns {} if path does not exist.

• dfhack.filesystem.listdir_recursive(path [, depth = 10[, include_prefix = true]])

Lists all files/directories in a directory and its subdirectories. All directories are listed before their contents.
Returns a table with subtables of the format:

{path: 'path to file', isdir: true|false}

Note that listdir() returns only the base name of each directory entry, while listdir_recursive() returns
the initial path and all components following it for each entry. Set include_prefix to false if you don’t want
the path string prepended to the returned filenames.

Console API

• dfhack.console.clear()

Clears the console; equivalent to the cls built-in command.

• dfhack.console.flush()

Flushes all output to the console. This can be useful when printing text that does not end in a newline but should
still be displayed.

Internal API

These functions are intended for the use by dfhack developers, and are only documented here for completeness:

• dfhack.internal.getPE()

Returns the PE timestamp of the DF executable (only on Windows)

• dfhack.internal.getMD5()

Returns the MD5 of the DF executable (only on OS X and Linux)

• dfhack.internal.getAddress(name)

Returns the global address name, or nil.

7.6. DFHack Lua API Reference 501

DFHack Documentation, Release 50.11-r4

• dfhack.internal.setAddress(name, value)

Sets the global address name. Returns the value of getAddress before the change.

• dfhack.internal.getVTable(name)

Returns the pre-extracted vtable address name, or nil.

• dfhack.internal.getImageBase()

Returns the mmap base of the executable.

• dfhack.internal.getRebaseDelta()

Returns the ASLR rebase offset of the DF executable.

• dfhack.internal.adjustOffset(offset[,to_file])

Returns the re-aligned offset, or nil if invalid. If to_file is true, the offset is adjusted from memory to file. This
function returns the original value everywhere except windows.

• dfhack.internal.getMemRanges()

Returns a sequence of tables describing virtual memory ranges of the process.

• dfhack.internal.patchMemory(dest,src,count)

Like memmove below, but works even if dest is read-only memory, e.g. code. If destination overlaps a completely
invalid memory region, or another error occurs, returns false.

• dfhack.internal.patchBytes(write_table[, verify_table])

The first argument must be a lua table, which is interpreted as a mapping from memory addresses to byte values
that should be stored there. The second argument may be a similar table of values that need to be checked before
writing anything.

The function takes care to either apply all of write_table, or none of it. An empty write_table with a
nonempty verify_table can be used to reasonably safely check if the memory contains certain values.

Returns true if successful, or nil, error_msg, address if not.

• dfhack.internal.memmove(dest,src,count)

Wraps the standard memmove function. Accepts both numbers and refs as pointers.

• dfhack.internal.memcmp(ptr1,ptr2,count)

Wraps the standard memcmp function.

• dfhack.internal.memscan(haystack,count,step,needle,nsize)

Searches for needle of nsize bytes in haystack, using count steps of step bytes. Returns: step_idx, sum_idx,
found_ptr, or nil if not found.

• dfhack.internal.diffscan(old_data, new_data, start_idx, end_idx, eltsize[, oldval,
newval, delta])

Searches for differences between buffers at ptr1 and ptr2, as integers of size eltsize. The oldval, newval or delta
arguments may be used to specify additional constraints. Returns: found_index, or nil if end reached.

• dfhack.internal.cxxDemangle(mangled_name)

Decodes a mangled C++ symbol name. Returns the demangled name on success, or nil, error_message on
failure.

502 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dfhack.internal.getDir(path)

Lists files/directories in a directory. Returns: file_names or empty table if not found. Identical to dfhack.
filesystem.listdir(path).

• dfhack.internal.strerror(errno)

Wraps strerror() - returns a string describing a platform-specific error code

• dfhack.internal.addScriptPath(path, search_before)

Registers path as a script path. If search_before is passed and true, the path will be searched before the
default paths (e.g. dfhack-config/scripts, hack/scripts); otherwise, it will be searched after.

Returns true if successful or false otherwise (e.g. if the path does not exist or has already been registered).

• dfhack.internal.removeScriptPath(path)

Removes path from the list of script paths and returns true if successful.

• dfhack.internal.getScriptPaths()

Returns the list of script paths in the order they are searched, including defaults. (This can change if a world is
loaded.)

• dfhack.internal.findScript(name)

Searches script paths for the script name and returns the path of the first file found, or nil on failure.

Note: This requires an extension to be specified (.lua or .rb) - use dfhack.findScript() to include the
.lua extension automatically.

• dfhack.internal.runCommand(command[, use_console])

Runs a DFHack command with the core suspended. Used internally by the dfhack.run_command() family of
functions.

– command: either a table of strings or a single string which is parsed by the default console tokenization
strategy (not recommended)

– use_console: if true, output is sent directly to the DFHack console

Returns a table with a status key set to a command_result constant (status = CR_OK indicates success).
Additionally, if use_console is not true, enumerated table entries of the form {color, text} are included,
e.g. result[1][0] is the color of the first piece of text printed (a COLOR_ constant). These entries can be
iterated over with ipairs().

• dfhack.internal.md5(string)

Returns the MD5 hash of the given string.

• dfhack.internal.md5File(filename[,first_kb])

Computes the MD5 hash of the given file. Returns hash, length on success (where length is the number of
bytes read from the file), or nil, error on failure.

If the parameter first_kb is specified and evaluates to true, and the hash was computed successfully, a table
containing the first 1024 bytes of the file is returned as the third return value.

• dfhack.internal.threadid()

Returns a numeric identifier of the current thread.

7.6. DFHack Lua API Reference 503

DFHack Documentation, Release 50.11-r4

• dfhack.internal.msizeAddress(address)

Returns the allocation size of an address. Does not require a heap snapshot. This function will crash on an invalid
pointer. Windows only.

• dfhack.internal.getHeapState()

Returns the state of the heap. 0 == ok or empty, 1 == heap bad ptr, 2 == heap bad begin, 3 == heap bad node.
Does not require a heap snapshot. This may be unsafe to use directly from lua if the heap is corrupt. Windows
only.

• dfhack.internal.heapTakeSnapshot()

Clears any existing heap snapshot, and takes an internal heap snapshot for later consumption. Windows only.
Returns the same values as getHeapState()

• dfhack.internal.isAddressInHeap(address)

Checks if an address is a member of the heap. It may be dangling. Requires a heap snapshot.

• dfhack.internal.isAddressActiveInHeap(address)

Checks if an address is a member of the heap, and actively in use (ie valid). Requires a heap snapshot.

• dfhack.internal.isAddressUsedAfterFreeInHeap(address)

Checks if an address is a member of the heap, but is not currently allocated (ie use after free). Requires a heap
snapshot. Note that Windows eagerly removes freed pointers from the heap, so this is unlikely to trigger.

• dfhack.internal.getAddressSizeInHeap(address)

Gets the allocated size of a member of the heap. Useful for detecting misaligns, as this does not return block
size. Requires a heap snapshot.

• dfhack.internal.getRootAddressOfHeapObject(address)

Gets the base heap allocation address of a address that lies internally within a piece of allocated memory. Eg,
if you have a heap allocated struct and call this function on the address of the second member, it will return the
address of the struct. Returns 0 if the address is not found. Requires a heap snapshot.

• dfhack.internal.getClipboardTextCp437()

Gets the system clipboard text (and converts text to CP437 encoding).

• dfhack.internal.setClipboardTextCp437(text)

Sets the system clipboard text from a CP437 string.

• dfhack.internal.getSuppressDuplicateKeyboardEvents()

• dfhack.internal.setSuppressDuplicateKeyboardEvents(suppress)

Gets and sets the flag for whether to suppress DF key events when a DFHack keybinding is matched and a
command is launched.

504 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Core interpreter context

While plugins can create any number of interpreter instances, there is one special context managed by the DFHack
core. It is the only context that can receive events from DF and plugins.

Core context specific functions:

• dfhack.is_core_context

Boolean value; true in the core context.

• dfhack.timeout(time,mode,callback)

Arranges for the callback to be called once the specified period of time passes. The mode argument specifies
the unit of time used, and may be one of 'frames' (raw FPS), 'ticks' (unpaused FPS), 'days', 'months',
'years' (in-game time). All timers other than 'frames' are canceled when the world is unloaded, and cannot
be queued until it is loaded again. Returns the timer id, or nil if unsuccessful due to world being unloaded.

• dfhack.timeout_active(id[,new_callback])

Returns the active callback with the given id, or nil if inactive or nil id. If called with 2 arguments, replaces the
current callback with the given value, if still active. Using timeout_active(id,nil) cancels the timer.

• dfhack.onStateChange.foo = function(code)

Creates a handler for state change events. Receives the same SC_ codes as plugin_onstatechange() in C++.

Event type

An event is a native object transparently wrapping a lua table, and implementing a __call metamethod. When it is
invoked, it loops through the table with next and calls all contained values. This is intended as an extensible way to
add listeners.

This type itself is available in any context, but only the core context has the actual events defined by C++ code.

Features:

• dfhack.event.new()

Creates a new instance of an event.

• event[key] = function

Sets the function as one of the listeners. Assign nil to remove it.

Note: The df.NULL key is reserved for the use by the C++ owner of the event; it is an error to try setting it.

• #event

Returns the number of non-nil listeners.

• pairs(event)

Iterates over all listeners in the table.

• event(args...)

Invokes all listeners contained in the event in an arbitrary order using dfhack.safecall.

7.6. DFHack Lua API Reference 505

DFHack Documentation, Release 50.11-r4

7.6.3 Lua Modules

• Global environment

– String class extensions

• utils

• argparse

• dumper

• helpdb

• profiler

– Examples

• class

• custom-raw-tokens

DFHack sets up the lua interpreter so that the built-in require function can be used to load shared lua code from
hack/lua/. The dfhack namespace reference itself may be obtained via require('dfhack'), although it is initially
created as a global by C++ bootstrap code.

The following module management functions are provided:

• mkmodule(name)

Creates an environment table for the module. Intended to be used as:

local _ENV = mkmodule('foo')
...
return _ENV

If called the second time, returns the same table; thus providing reload support.

• reload(name)

Reloads a previously require-d module “name” from the file. Intended as a help for module development.

• dfhack.BASE_G

This variable contains the root global environment table, which is used as a base for all module and script envi-
ronments. Its contents should be kept limited to the standard Lua library and API described in this document.

Global environment

A number of variables and functions are provided in the base global environment by the mandatory init file dfhack.lua:

• Color constants

These are applicable both for dfhack.color() and color fields in DF functions or structures:

COLOR_RESET, COLOR_BLACK, COLOR_BLUE, COLOR_GREEN, COLOR_CYAN,
COLOR_RED, COLOR_MAGENTA, COLOR_BROWN, COLOR_GREY, COLOR_DARKGREY,
COLOR_LIGHTBLUE, COLOR_LIGHTGREEN, COLOR_LIGHTCYAN, COLOR_LIGHTRED,
COLOR_LIGHTMAGENTA, COLOR_YELLOW, COLOR_WHITE

COLOR_GREY and COLOR_DARKGREY can also be spelled COLOR_GRAY and COLOR_DARKGRAY.

506 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• State change event codes, used by dfhack.onStateChange

Available only in the core context, as is the event itself:

SC_WORLD_LOADED, SC_WORLD_UNLOADED, SC_MAP_LOADED, SC_MAP_UNLOADED,
SC_VIEWSCREEN_CHANGED, SC_CORE_INITIALIZED

• Command result constants (equivalent to command_result in C++), used by dfhack.run_command() and
related functions:

CR_OK, CR_LINK_FAILURE, CR_NEEDS_CONSOLE, CR_NOT_IMPLEMENTED, CR_FAILURE,
CR_WRONG_USAGE, CR_NOT_FOUND

• Functions already described above

safecall, qerror, mkmodule, reload

• Miscellaneous constants

NEWLINE, COMMA, PERIOD evaluate to the relevant character strings.

DEFAULT_NIL is an unspecified unique token used by the class module below.

• printall(obj)

If the argument is a lua table or DF object reference, prints all fields.

• printall_recurse(obj)

If the argument is a lua table or DF object reference, prints all fields recursively.

• copyall(obj)

Returns a shallow copy of the table or reference as a lua table.

• pos2xyz(obj)

The object must have fields x, y and z. Returns them as 3 values. If obj is nil, or x is -30000 (the usual marker
for undefined coordinates), returns nil.

• xyz2pos(x,y,z)

Returns a table with x, y and z as fields.

• same_xyz(a,b)

Checks if a and b have the same x, y and z fields.

• get_path_xyz(path,i)

Returns path.x[i], path.y[i], path.z[i].

• pos2xy(obj), xy2pos(x,y), same_xy(a,b), get_path_xy(a,b)

Same as above, but for 2D coordinates.

• safe_index(obj,index...)

Walks a sequence of dereferences, which may be represented by numbers or strings. Returns nil if any of obj or
indices is nil, or a numeric index is out of array bounds.

• ensure_key(t, key[, default_value])

If the Lua table t doesn’t include the specified key, t[key] is set to the value of default_value, which defaults
to {} if not set. The new or existing value of t[key] is then returned.

7.6. DFHack Lua API Reference 507

DFHack Documentation, Release 50.11-r4

• ensure_keys(t, key...)

Walks a series of keys, creating any missing keys as empty tables. The new or existing table from the last specified
key is returned from the function.

String class extensions

DFHack extends Lua’s basic string class to include a number of convenience functions. These are invoked just like
standard string functions, e.g.:

if imastring:startswith('imaprefix') then

• string:startswith(prefix)

Returns true if the first #prefix characters of the string are equal to prefix. Note that prefix is not interpreted
as a pattern.

• string:endswith(suffix)

Returns true if the last #suffix characters of the string are equal to suffix. Note that suffix is not interpreted
as a pattern.

• string:split([delimiter[, plain]])

Split a string by the given delimiter. If no delimiter is specified, space (' ') is used. The delimiter is treated as a
pattern unless a plain is specified and set to true. To treat multiple successive delimiter characters as a single
delimiter, e.g. to avoid getting empty string elements, pass a pattern like ' +'. Be aware that passing patterns
that match empty strings (like ' *') will result in improper string splits.

• string:trim()

Removes spaces (i.e. everything that matches '%s') from the start and end of a string. Spaces between non-space
characters are left untouched.

• string:wrap([width])

Inserts newlines into a string so no individual line exceeds the given width. Lines are split at space-separated
word boundaries. Any existing newlines are kept in place. If a single word is longer than width, it is split over
multiple lines. If width is not specified, 72 is used.

• string:escape_pattern()

Escapes regex special chars in a string. E.g. 'a+b' -> 'a%+b'.

utils

• utils.compare(a,b)

Comparator function; returns -1 if a<b, 1 if a>b, 0 otherwise.

• utils.compare_name(a,b)

Comparator for names; compares empty string last.

• utils.is_container(obj)

Checks if obj is a container ref.

• utils.make_index_sequence(start,end)

Returns a lua sequence of numbers in start..end.

508 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• utils.make_sort_order(data, ordering)

Computes a sorted permutation of objects in data, as a table of integer indices into the data sequence. Uses
data.n as input length if present.

The ordering argument is a sequence of ordering specs, represented as lua tables with following possible fields:

ord.key = function(value) Computes comparison key from input data value. Not called on nil. If omitted, the
comparison key is the value itself.

ord.key_table = function(data) Computes a key table from the data table in one go.

ord.compare = function(a,b) Comparison function. Defaults to utils.compare above. Called on non-nil
keys; nil sorts last.

ord.nil_first = true/false If true, nil keys are sorted first instead of last.

ord.reverse = true/false If true, sort non-nil keys in descending order.

For every comparison during sorting the specs are applied in order until an unambiguous decision is reached.
Sorting is stable.

Example of sorting a sequence by field foo:

local spec = { key = function(v) return v.foo end }
local order = utils.make_sort_order(data, { spec })
local output = {}
for i = 1,#order do output[i] = data[order[i]] end

Separating the actual reordering of the sequence in this way enables applying the same permutation to multiple
arrays. This function is used by the sort plugin.

• for link,item in utils.listpairs(list)

Iterates a df-list structure, for example df.global.world.job_list.

• utils.assign(tgt, src)

Does a recursive assignment of src into tgt. Uses df.assign if tgt is a native object ref; otherwise recurses into
lua tables.

• utils.clone(obj, deep)

Performs a shallow, or semi-deep copy of the object as a lua table tree. The deep mode recurses into lua tables
and subobjects, except pointers to other heap objects. Null pointers are represented as df.NULL. Zero-based
native containers are converted to 1-based lua sequences.

• utils.clone_with_default(obj, default, force)

Copies the object, using the default lua table tree as a guide to which values should be skipped as uninteresting.
The force argument makes it always return a non-nil value.

• utils.parse_bitfield_int(value, type_ref)

Given an int value, and a bitfield type in the df tree, it returns a lua table mapping the enabled bit keys to true,
unless value is 0, in which case it returns nil.

• utils.list_bitfield_flags(bitfield[, list])

Adds all enabled bitfield keys to list or a newly-allocated empty sequence, and returns it. The bitfield
argument may be nil.

• utils.sort_vector(vector,field,cmpfun)

Sorts a native vector or lua sequence using the comparator function. If field is not nil, applies the comparator
to the field instead of the whole object.

7.6. DFHack Lua API Reference 509

DFHack Documentation, Release 50.11-r4

• utils.linear_index(vector,key[,field])

Searches for key in the vector, and returns index, found_value, or nil if none found.

• utils.binsearch(vector,key,field,cmpfun,min,max)

Does a binary search in a native vector or lua sequence for key, using cmpfun and field like sort_vector. If
min and max are specified, they are used as the search subrange bounds.

If found, returns item, true, idx. Otherwise returns nil, false, insert_idx, where insert_idx is the correct insertion
point.

• utils.insert_sorted(vector,item,field,cmpfun)

Does a binary search, and inserts item if not found. Returns did_insert, vector[idx], idx.

• utils.insert_or_update(vector,item,field,cmpfun)

Like insert_sorted, but also assigns the item into the vector cell if insertion didn’t happen.

As an example, you can use this to set skill values:

utils.insert_or_update(soul.skills, {new=true, id=..., rating=...}, 'id')

(For an explanation of new=true, see Recursive table assignment)

• utils.erase_sorted_key(vector,key,field,cmpfun)

Removes the item with the given key from the list. Returns: did_erase, vector[idx], idx.

• utils.erase_sorted(vector,item,field,cmpfun)

Exactly like erase_sorted_key, but if field is specified, takes the key from item[field].

• utils.search_text(text,search_tokens)

Returns true if all the search tokens are found within text. The text and search tokens are normalized to
lower case and special characters (e.g. A with a circle on it) are converted to their “basic” forms (e.g. a).
search_tokens can be a string or a table of strings. If it is a string, it is split into space-separated tokens before
matching. The search tokens are treated literally, so any special regular expression characters do not need to
be escaped. If utils.FILTER_FULL_TEXT is true, then the search tokens can match any part of text. If it
is false, then the matches must happen at the beginning of words within text. You can change the value of
utils.FILTER_FULL_TEXT in gui/control-panel on the “Preferences” tab.

• utils.call_with_string(obj,methodname,...)

Allocates a temporary string object, calls obj:method(tmp,...), and returns the value written into the tem-
porary after deleting it.

• utils.getBuildingName(building)

Returns the string description of the given building.

• utils.getBuildingCenter(building)

Returns an x/y/z table pointing at the building center.

• utils.split_string(string, delimiter)

Splits the string by the given delimiter, and returns a sequence of results.

• utils.prompt_yes_no(prompt, default)

Presents a yes/no prompt to the user. If default is not nil, allows just pressing Enter to submit the default
choice. If the user enters 'abort', throws an error.

510 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• utils.prompt_input(prompt, checkfun, quit_str)

Presents a prompt to input data, until a valid string is entered. Once checkfun(input) returns true, . . . , passes
the values through. If the user enters the quit_str (defaults to '~~~'), throws an error.

• utils.check_number(text)

A prompt_input checkfun that verifies a number input.

argparse

The argparse module provides functions to help scripts process commandline parameters.

• argparse.processArgs(args, validArgs)

A basic commandline processing function with simple syntax, useful if your script doesn’t need the more ad-
vanced features of argparse.processArgsGetopt().

If validArgs is specified, it should contain a set of valid option names (without the leading dashes). For
example:

argparse.processArgs(args, utils.invert{'opt1', 'opt2', 'opt3'})

processArgs returns a map of option names it found in args to:

– the token that came after the option

– '' if the next token was another option

– a list of strings if the next token was '[' (see below)

Options in args from the commandline can be prefixed with either one dash ('-') or two dashes ('--'). The
user can add a backslash before the dash to allow a string to be identified as an option value instead of another
option. For example: yourscript --opt1 \-arg1.

If a '[' token is found in args, the subsequent tokens will be interpreted as elements of a list until the matching
closing ']' is found. Brackets can be nested, but the inner brackets will be added to the list of tokens as literal
'[' and ']' strings.

Example commandlines:

yourscript --optName --opt2
yourscript --optName value
yourscript --optName [list of values]
yourscript --optName [list of [nested values] [in square brackets]]
yourscript --optName \--value

Note that processArgs does not support non-option (“positional”) parameters. They are supported by
processArgsGetopt (see below).

• argparse.processArgsGetopt(args, optionActions)

A fully-featured commandline processing function, with behavior based on the popular getopt library. You
would use this instead of the simpler processArgs function if any of the following are true:

– You want both short (e.g. -f) and aliased long-form (e.g. --filename) options

– You have commandline components that are not arguments to options (e.g. you want to run your script like
yourscript command --verbose arg1 arg2 arg3 instead of yourscript command --verbose
--opt1 arg1 --opt2 arg2 --opt3 arg3).

7.6. DFHack Lua API Reference 511

DFHack Documentation, Release 50.11-r4

– You want the convenience of combining options into shorter strings (e.g. '-abcarg' instead of '-a -b
-c arg)

– You want to be able to parse and validate the option arguments as the commandline is being processed, as
opposed to validating everything after commandline processing is complete.

Commandlines processed by processArgsGetopt can have both “short” and “long” options, with each short
option often having a long-form alias that behaves exactly the same as the short form. Short options have prop-
erties that make them very easy to type quickly by users who are familiar with your script options. Long options,
on the other hand, are easily understandable by everyone and are useful in places where clarity is more important
than brevity, e.g. in example commands. Each option can be configured to take an argument, which will be the
string token that follows the option name on the commandline.

Short options are a single letter long and are specified on a commandline by prefixing them with a single dash
(e.g. the short option a would appear on the commandline as -a). Multiple successive short options that do not
take arguments can be combined into a single option string (e.g. '-abc' instead of '-a -b -c'). Moreover,
the argument for a short option can be appended directly to the single-letter option without an intervening space
(e.g. -d param can be written as -dparam). These two convenience shorthand forms can be combined, allowing
groups of short parameters to be written together, as long as at most the last short option takes an argument (e.g.
combining the previous two examples into -abcdparam)

Long options focus on clarity. They are usually entire words, or several words combined with hyphens (-) or
underscores (_). If they take an argument, the argument can be separated from the option name by a space or an
equals sign (=). For example, the following two commandlines are equivalent: yourscript --style pretty
and yourscript --style=pretty.

Another reason to use long options is if they represent an esoteric parameter that you don’t expect to be commonly
used and that you don’t want to “waste” a single-letter option on. In this case, you can define a long option without
a corresponding short option.

processArgsGetopt takes two parameters:

args: list of space-separated strings the user wrote on the commandline
optionActions: list of option specifications

and returns a list of positional parameters – that is, all strings that are neither options nor argruments to options.
Options and positional parameters can appear in any order on the commandline, as long as arguments to options
immediately follow the option itself.

Each option specification in optionActions has the following format: {shortOptionName,
longOptionAlias, hasArg=boolean, handler=fn}

– shortOptionName is a one-character string (or '' or nil if the parameter only has a long form). Numbers
cannot be short options, and negative numbers (e.g. '-10') will be interpreted as positional parameters
and returned in the positional parameters list.

– longOptionAlias is an optional longer form of the short option name. If no short option name is specified,
then this element is required.

– hasArg indicates whether the handler function for the option takes a parameter.

– handler is the handler function for the option. If hasArg is true then the next token on the commandline
is passed to the handler function as an argument.

Example usage:

local args = {...}
local open_readonly, filename = false, nil -- set defaults

(continues on next page)

512 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

local positionals = argparse.processArgsGetopt(args, {
{'r', handler=function() open_readonly = true end},
{'f', 'filename', hasArg=true,
handler=function(optarg) filename = optarg end}

})

In this example, if args is {'first', '-rf', 'fname', 'second'} or, equivalently, {'first', '-r',
'--filename', 'myfile.txt', 'second'} (note the double dash in front of the long option alias), then
open_readonly will be true, filename will be 'myfile.txt' and positionals will be {'first',
'second'}.

• argparse.stringList(arg, arg_name, list_length)

Parses a comma-separated sequence of strings and returns a lua list. Leading and trailing spaces are trimmed
from the strings. If arg_name is specified, it is used to make error messages more useful. If list_length
is specified and greater than 0, then exactly that number of elements must be found or the function will error.
Example:

stringList('hello , world,alist', 'words') => {'hello', 'world', 'alist'}

• argparse.numberList(arg, arg_name, list_length)

Parses a comma-separated sequence of numeric strings and returns a list of the discovered numbers (as numbers,
not strings). If arg_name is specified, it is used to make error messages more useful. If list_length is
specified and greater than 0, exactly that number of elements must be found or the function will error. Example:

numberList('10, -20 , 30.5') => {10, -20, 30.5}

• argparse.coords(arg, arg_name, skip_validation)

Parses a comma-separated coordinate string and returns a coordinate table of {x, y, z}. If the string 'here'
is passed, returns the coordinates of the active game cursor, or throws an error if the cursor is not active.
This function also verifies that the coordinates are valid for the current map and throws if they are not (unless
skip_validation is set to true).

• argparse.positiveInt(arg, arg_name)

Throws if tonumber(arg) is not a positive integer; otherwise returns tonumber(arg). If arg_name is speci-
fied, it is used to make error messages more useful.

• argparse.nonnegativeInt(arg, arg_name)

Throws if tonumber(arg) is not a non-negative integer; otherwise returns tonumber(arg). If arg_name is
specified, it is used to make error messages more useful.

• argparse.boolean(arg, arg_name)

Converts string.lower(arg) from “yes/no/on/off/true/false/etc. . . ” to a lua boolean. Throws if the value can’t
be converted, otherwise returns true/false. If arg_name is specified, it is used to make error messages more
useful.

7.6. DFHack Lua API Reference 513

DFHack Documentation, Release 50.11-r4

dumper

A third-party lua table dumper module from http://lua-users.org/wiki/DataDumper. Defines one function:

• dumper.DataDumper(value, varname, fastmode, ident, indent_step)

Returns value converted to a string. The indent_step argument specifies the indentation step size in spaces.
For the other arguments see the original documentation link above.

helpdb

Unified interface for DFHack tool help text. Help text is read from the rendered text in hack/docs/docs/tools. If
no rendered text exists, help is read from the script sources (for scripts) or the string passed to the PluginCommand
initializer (for plugins). See DFHack documentation system for details on how DFHack’s help system works.

The database is loaded when DFHack initializes, but can be explicitly refreshed with a call to helpdb.refresh() if
docs are added/changed during a play session.

Each entry has several properties associated with it:

• The entry name, which is the name of a plugin, script, or command provided by a plugin.

• The entry types, which can be builtin, plugin, and/or command. Entries for built-in commands (like ls or
quicksave) are both type builtin and command. Entries named after plugins are type plugin, and if that
plugin also provides a command with the same name as the plugin, then the entry is also type command. Entry
types are returned as a map of one or more of the type strings to true.

• Short help, a the ~54 character description string.

• Long help, the entire contents of the associated help file.

• A list of tags that define the groups that the entry belongs to.

• helpdb.refresh()

Scan for changes in available commands and their documentation.

• helpdb.is_entry(str), helpdb.is_entry(list)

Returns whether the given string (or list of strings) is an entry (are all entries) in the db.

• helpdb.get_entry_types(entry)

Returns the set (that is, a map of string to true) of entry types for the given entry.

• helpdb.get_entry_short_help(entry)

Returns the short (~54 character) description for the given entry.

• helpdb.get_entry_long_help(entry[, width])

Returns the full help text for the given entry. If width is specified, the text will be wrapped at that width,
preserving block indents. The wrap width defaults to 80.

• helpdb.get_entry_tags(entry)

Returns the set of tag names for the given entry.

• helpdb.is_tag(str), helpdb.is_tag(list)

Returns whether the given string (or list of strings) is a (are all) valid tag name(s).

• helpdb.get_tags()

Returns the full alphabetized list of valid tag names.

514 Chapter 7. DFHack development guide

http://lua-users.org/wiki/DataDumper

DFHack Documentation, Release 50.11-r4

• helpdb.get_tag_data(tag)

Returns a list of entries that have the given tag. The returned table also has a description key that contains
the string description of the tag.

• helpdb.search_entries([include[, exclude]])

Returns a list of names for entries that match the given filters. The list is alphabetized by their last path component,
with populated path components coming before null path components (e.g. autobutcher will immediately
follow gui/autobutcher). The optional include and exclude filter params are maps (or lists of maps) with
the following elements:

str if a string, filters by the given substring. if a table of strings, includes entry names that match any
of the given substrings.

tag if a string, filters by the given tag name. if a table of strings, includes entries that match any of
the given tags.

entry_type if a string, matches entries of the given type. if a table of strings, includes entries that
match any of the given types.

Elements in a map are ANDed together (e.g. if both str and tag are specified, the match is on any of the str
elements AND any of the tag elements).

If lists of filters are passed instead of a single map, the maps are ORed (that is, the match succeeds if any of the
filters match).

If include is nil or empty, then all entries are included. If exclude is nil or empty, then no entries are filtered
out.

profiler

A third-party lua profiler module from http://lua-users.org/wiki/PepperfishProfiler. Module defines one function to
create profiler objects which can be used to profile and generate report.

• profiler.newProfiler([variant[, sampling_frequency]])

Returns a profile object with variant either 'time' or 'call'. 'time' variant takes optional
sampling_frequency parameter to select lua instruction counts between samples. Default is 'time' variant
with 10*1000 frequency.

'call' variant has much higher runtime cost which will increase the runtime of profiled code by factor of ten.
For the extreme costs it provides accurate function call counts that can help locate code which takes much time
in native calls.

• obj:start()

Resets collected statistics. Then it starts collecting new statistics.

• obj:stop()

Stops profile collection.

• obj:report(outfile[, sort_by_total_time])

Write a report from previous statistics collection to outfile. outfile should be writeable io file object (io.
open or io.stdout). Passing true as second parameter sort_by_total_time switches sorting order to use
total time instead of default self time order.

• obj:prevent(function)

Adds an ignore filter for a function. It will ignore the pointed function and all of it children.

7.6. DFHack Lua API Reference 515

http://lua-users.org/wiki/PepperfishProfiler

DFHack Documentation, Release 50.11-r4

Examples

local prof = profiler.newProfiler()
prof:start()

profiledCode()

prof:stop()

local out = io.open("lua-profile.txt", "w+")
prof:report(out)
out:close()

class

Implements a trivial single-inheritance class system.

• Foo = defclass(Foo[, ParentClass])

Defines or updates class Foo. The Foo = defclass(Foo) syntax is needed so that when the module or script
is reloaded, the class identity will be preserved through the preservation of global variable values.

The defclass function is defined as a stub in the global namespace, and using it will auto-load the class module.

• Class.super

This class field is set by defclass to the parent class, and allows a readable Class.super.method(self, ...)
syntax for calling superclass methods.

• Class.ATTRS { foo = xxx, bar = yyy }

Declares certain instance fields to be attributes, i.e. auto-initialized from fields in the table used as the constructor
argument. If omitted, they are initialized with the default values specified in this declaration.

If the default value should be nil, use ATTRS { foo = DEFAULT_NIL }.

Declaring an attribute is mostly the same as defining your init method like this:

function Class.init(args)
self.attr1 = args.attr1 or default1
self.attr2 = args.attr2 or default2
...

end

The main difference is that attributes are processed as a separate initialization step, before any init methods are
called. They also make the direct relation between instance fields and constructor arguments more explicit.

• new_obj = Class{ foo = arg, bar = arg, ... }

Calling the class as a function creates and initializes a new instance. Initialization happens in this order:

1. An empty instance table is created, and its metatable set.

2. The preinit methods are called via invoke_before (see below) with the table used as the argument to
the class. These methods are intended for validating and tweaking that argument table.

3. Declared ATTRS are initialized from the argument table or their default values.

4. The init methods are called via invoke_after with the argument table. This is the main constructor
method.

516 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

5. The postinit methods are called via invoke_after with the argument table. Place code that should be
called after the object is fully constructed here.

Predefined instance methods:

• instance:assign{ foo = xxx }

Assigns all values in the input table to the matching instance fields.

• instance:callback(method_name, [args...])

Returns a closure that invokes the specified method of the class, properly passing in self, and optionally a number
of initial arguments too. The arguments given to the closure are appended to these.

• instance:cb_getfield(field_name)

Returns a closure that returns the specified field of the object when called.

• instance:cb_setfield(field_name)

Returns a closure that sets the specified field to its argument when called.

• instance:invoke_before(method_name, args...)

Navigates the inheritance chain of the instance starting from the most specific class, and invokes the specified
method with the arguments if it is defined in that specific class. Equivalent to the following definition in every
class:

function Class:invoke_before(method, ...)
if rawget(Class, method) then

rawget(Class, method)(self, ...)
end
Class.super.invoke_before(method, ...)

end

• instance:invoke_after(method_name, args...)

Like invoke_before, only the method is called after the recursive call to super, i.e. invocations happen in the
parent to child order.

These two methods are inspired by the Common Lisp before and after methods, and are intended for implementing
similar protocols for certain things. The class library itself uses them for constructors.

To avoid confusion, these methods cannot be redefined.

custom-raw-tokens

A module for reading custom tokens added to the raws by mods.

• customRawTokens.getToken(typeDefinition, token)

Where typeDefinition is a type definition struct as seen in df.global.world.raws (e.g.: dfhack.gui.
getSelectedItem().subtype) and token is the name of the custom token you want read. The arguments
from the token will then be returned as strings using single or multiple return values. If the token is not present,
the result is false; if it is present but has no arguments, the result is true. For creature_raw, it checks against
no caste. For plant_raw, it checks against no growth.

• customRawTokens.getToken(typeInstance, token)

Where typeInstance is a unit, entity, item, job, projectile, building, plant, or interaction instance. Gets
typeDefinition and then returns the same as getToken(typeDefinition, token). For units, it gets the

7.6. DFHack Lua API Reference 517

DFHack Documentation, Release 50.11-r4

token from the race or caste instead if applicable. For plant growth items, it gets the token from the plant or plant
growth instead if applicable. For plants it does the same but with growth number -1.

• customRawTokens.getToken(raceDefinition, casteNumber, token)

The same as getToken(unit, token) but with a specified race and caste. Caste number -1 is no caste.

• customRawTokens.getToken(raceDefinition, casteName, token)

The same as getToken(unit, token) but with a specified race and caste, using caste name (e.g. “FEMALE”)
instead of number.

• customRawTokens.getToken(plantDefinition, growthNumber, token)

The same as getToken(plantGrowthItem, token) but with a specified plant and growth. Growth number
-1 is no growth.

• customRawTokens.getToken(plantDefinition, growthName, token)

The same as getToken(plantGrowthItem, token) but with a specified plant and growth, using growth name
(e.g. “LEAVES”) instead of number.

It is recommended to prefix custom raw tokens with the name of your mod to avoid duplicate behaviour where two
mods make callbacks that work on the same tag.

Examples:

• Using an eventful onReactionComplete hook, something for disturbing dwarven science:

if customRawTokens.getToken(reaction, "EXAMPLE_MOD_CAUSES_INSANITY") then
-- make unit who performed reaction go insane

• Using an eventful onProjItemCheckMovement hook, a fast or slow-firing crossbow:

-- check projectile distance flown is zero, get firer, etc...
local multiplier = tonumber(customRawTokens.getToken(bow, "EXAMPLE_MOD_FIRE_RATE_
→˓MULTIPLIER")) or 1
if firer.counters.think_counter > 0 then
firer.counters.think_counter = math.max(math.floor(firer.counters.think_counter *␣

→˓multiplier), 1)
end

• Something for a script that prints help text about different types of units:

local unit = dfhack.gui.getSelectedUnit()
if not unit then return end
local helpText = customRawTokens.getToken(unit, "EXAMPLE_MOD_HELP_TEXT")
if helpText then print(helpText) end

• Healing armour:

-- (per unit every tick)
local healAmount = 0
for _, entry in ipairs(unit.inventory) do

if entry.mode == 2 then -- Worn
healAmount = healAmount + tonumber((customRawTokens.getToken(entry.item,

→˓"EXAMPLE_MOD_HEAL_AMOUNT")) or 0)
end

end
unit.body.blood_count = math.min(unit.body.blood_max, unit.body.blood_count +␣
→˓healAmount) (continues on next page)

518 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

7.6.4 In-game UI Library

• gui

– Misc

– ViewRect class

– Painter class

– View class

– Screen class

– ZScreen class

– ZScreenModal class

– FramedScreen class

• gui.widgets

– Widget class

– Panel class

– Window class

– ResizingPanel class

– Pages class

– EditField class

– Scrollbar class

– Label class

– WrappedLabel class

– TooltipLabel class

– HotkeyLabel class

– CycleHotkeyLabel class

– ToggleHotkeyLabel class

– HelpButton class

– ConfigureButton class

– BannerPanel class

– TextButton class

– List class

– FilteredList class

– TabBar class

– Tab class

7.6. DFHack Lua API Reference 519

DFHack Documentation, Release 50.11-r4

– RangeSlider class

• gui.textures

A number of lua modules with names starting with gui are dedicated to wrapping the natives of the dfhack.screen
module in a way that is easy to use. This allows relatively easily and naturally creating dialogs that integrate in the
main game UI window.

These modules make extensive use of the class module, and define things ranging from the basic Painter, View and
Screen classes, to fully functional predefined dialogs.

gui

This module defines the most important classes and functions for implementing interfaces. This documents those of
them that are considered stable.

Misc

• CLEAR_PEN

The black pen used to clear the screen. In graphics mode, it will clear the foreground and set the background to
the standard black tile.

• TRANSPARENT_PEN

A pen that will clear all textures from the UI layer, making the tile transparent.

• KEEP_LOWER_PEN

A pen that will write tiles over existing background tiles instead of clearing them.

• simulateInput(screen, keys...)

This function wraps an undocumented native function that passes a set of keycodes to a screen, and is the official
way to do that.

Every argument after the initial screen may be nil, a numeric keycode, a string keycode, a sequence of numeric
or string keycodes, or a mapping of keycodes to true or false. For instance, it is possible to use the table passed
as argument to onInput.

You can send mouse clicks as will by setting the _MOUSE_L key or other mouse-related pseudo-keys documented
with the screen:onInput(keys) function above. Note that if you are simulating a click at a specific spot
on the screen, you must set df.global.gps.mouse_x and df.global.gps.mouse_y if you are clicking on
the interface layer or df.global.gps.precise_mouse_x and df.global.gps.precise_mouse_y if you are
clicking on the map.

• mkdims_xy(x1,y1,x2,y2)

Returns a table containing the arguments as fields, and also width and height that contains the rectangle di-
mensions.

• mkdims_wh(x1,y1,width,height)

Returns the same kind of table as mkdims_xy, only this time it computes x2 and y2.

• is_in_rect(rect,x,y)

Checks if the given point is within a rectangle, represented by a table produced by one of the mkdims functions.

520 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• blink_visible(delay)

Returns true or false, with the value switching to the opposite every delay msec. This is intended for rendering
blinking interface objects.

• getKeyDisplay(keycode)

Wraps dfhack.screen.getKeyDisplay in order to allow using strings for the keycode argument.

• invert_color(color, bold)

This inverts the brightness of color. If this color is coming from a pen’s foreground color, include pen.bold
in bold for this to work properly.

ViewRect class

This class represents an on-screen rectangle with an associated independent clip area rectangle. It is the base of the
Painter class, and is used by Views to track their client area.

• ViewRect{ rect = ..., clip_rect = ..., view_rect = ..., clip_view = ... }

The constructor has the following arguments:

rect The mkdims rectangle in screen coordinates of the logical viewport. Defaults to the whole
screen.

clip_rect The clip rectangle in screen coordinates. Defaults to rect.

view_rect A ViewRect object to copy from; overrides both rect and clip_rect.

clip_view A ViewRect object to intersect the specified clip area with.

• rect:isDefunct()

Returns true if the clip area is empty, i.e. no painting is possible.

• rect:inClipGlobalXY(x,y)

Checks if these global coordinates are within the clip rectangle.

• rect:inClipLocalXY(x,y)

Checks if these coordinates (specified relative to x1,y1) are within the clip rectangle.

• rect:localXY(x,y)

Converts a pair of global coordinates to local; returns x_local,y_local.

• rect:globalXY(x,y)

Converts a pair of local coordinates to global; returns x_global,y_global.

• rect:viewport(x,y,w,h) or rect:viewport(subrect)

Returns a ViewRect representing a sub-rectangle of the current one. The arguments are specified in local co-
ordinates; the subrect argument must be a mkdims table. The returned object consists of the exact specified
rectangle, and a clip area produced by intersecting it with the clip area of the original object.

7.6. DFHack Lua API Reference 521

DFHack Documentation, Release 50.11-r4

Painter class

The painting natives in dfhack.screen apply to the whole screen, are completely stateless and don’t implement
clipping.

The Painter class inherits from ViewRect to provide clipping and local coordinates, and tracks current cursor position
and current pen. It also supports drawing to a separate map buffer if applicable (see map() below for details).

• Painter{ ..., pen = ..., key_pen = ... }

In addition to ViewRect arguments, Painter accepts a suggestion of the initial value for the main pen, and the
keybinding pen. They default to COLOR_GREY and COLOR_LIGHTGREEN otherwise.

There are also some convenience functions that wrap this constructor:

– Painter.new(rect,pen)

– Painter.new_view(view_rect,pen)

– Painter.new_xy(x1,y1,x2,y2,pen)

– Painter.new_wh(x1,y1,width,height,pen)

• painter:isValidPos()

Checks if the current cursor position is within the clip area.

• painter:viewport(x,y,w,h)

Like the superclass method, but returns a Painter object.

• painter:cursor()

Returns the current cursor x,y in screen coordinates.

• painter:cursorX()

Returns just the current x cursor coordinate

• painter:cursorY()

Returns just the current y cursor coordinate

• painter:seek(x,y)

Sets the current cursor position, and returns self. Either of the arguments may be nil to keep the current value.

• painter:advance(dx,dy)

Adds the given offsets to the cursor position, and returns self. Either of the arguments may be nil to keep the
current value.

• painter:newline([dx])

Advances the cursor to the start of the next line plus the given x offset, and returns self.

• painter:pen(...)

Sets the current pen to dfhack.pen.parse(old_pen,...), and returns self.

• painter:color(fg[,bold[,bg]])

Sets the specified colors of the current pen and returns self.

• painter:key_pen(...)

Sets the current keybinding pen to dfhack.pen.parse(old_pen,...), and returns self.

522 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• painter:map(to_map)

Enables or disables drawing to a separate map buffer. to_map is a boolean that will be passed as the map pa-
rameter to any dfhack.screen functions that accept it. Note that only third-party plugins like TWBT currently
implement a separate map buffer; if none are enabled, this function has no effect (but should still be used to
ensure proper support for such plugins). Returns self.

• painter:clear()

Fills the whole clip rectangle with CLEAR_PEN, and returns self.

• painter:fill(x1,y1,x2,y2[,...]) or painter:fill(rect[,...])

Fills the specified local coordinate rectangle with dfhack.pen.parse(cur_pen,...), and returns self.

• painter:char([char[, ...]])

Paints one character using char and dfhack.pen.parse(cur_pen,...); returns self. The char argument, if
not nil, is used to override the ch property of the pen.

• painter:tile([char, tile[, ...]])

Like char() above, but also allows overriding the tile property on ad-hoc basis.

• painter:string(text[, ...])

Paints the string with dfhack.pen.parse(cur_pen,...); returns self.

• painter:key(keycode[, ...])

Paints the description of the keycode using dfhack.pen.parse(cur_key_pen,...); returns self.

• painter:key_string(keycode, text, ...)

A convenience wrapper around both key() and string() that prints both the specified keycode description and
text, separated by :. Any extra arguments are passed directly to string(). Returns self.

Unless specified otherwise above, all Painter methods return self, in order to allow chaining them like this:

painter:pen(foo):seek(x,y):char(1):advance(1):string('bar')...

View class

This class is the common abstract base of both the stand-alone screens and common widgets to be used inside them. It
defines the basic layout, rendering and event handling framework.

The class defines the following attributes:

visible Specifies that the view should be painted. This can be a boolean or a function that returns a boolean.

active Specifies that the view should receive events, if also visible. This can be a boolean or a function
that returns a boolean.

view_id Specifies an identifier to easily identify the view among subviews. This is reserved for use by
script writers and should not be set by library widgets for their internal subviews.

on_focus Called when the view gains keyboard focus; see setFocus() below.

on_unfocus Called when the view loses keyboard focus.

It also always has the following fields:

subviews Contains a table of all subviews. The sequence part of the table is used for iteration. In addition,
subviews are also indexed under their view_id, if any; see addviews() below.

7.6. DFHack Lua API Reference 523

DFHack Documentation, Release 50.11-r4

parent_view A reference to the parent view. This field is nil until the view is added as a subview to
another view with addviews().

focus_group The list of widgets in a hierarchy. This table is unique and empty when a view is initialized,
but is replaced by a shared table when the view is added to a parent via addviews(). If a view in
the focus group has keyboard focus, that widget can be accessed via focus_group.cur.

focus A boolean indicating whether the view currently has keyboard focus.

These fields are computed by the layout process:

frame_parent_rect The ViewRect representing the client area of the parent view.

frame_rect The mkdims rect of the outer frame in parent-local coordinates.

frame_body The ViewRect representing the body part of the View’s own frame.

The class has the following methods:

• view:addviews(list)

Adds the views in the list to the subviews sequence. If any of the views in the list have view_id attributes
that don’t conflict with existing keys in subviews, also stores them under the string keys. Finally, copies any
non-conflicting string keys from the subviews tables of the listed views.

Thus, doing something like this:

self:addviews{
Panel{

view_id = 'panel',
subviews = {

Label{ view_id = 'label' }
}

}
}

Would make the label accessible as both self.subviews.label and self.subviews.panel.subviews.
label.

• view:getWindowSize()

Returns the dimensions of the frame_body rectangle.

• view:getMousePos([view_rect])

Returns the mouse x,y in coordinates local to the given ViewRect (or frame_body if no ViewRect is passed) if
it is within its clip area, or nothing otherwise.

• view:getMouseFramePos()

Returns the mouse x,y in coordinates local to frame_rect if it is within its clip area, or nothing otherwise.

• view:updateLayout([parent_rect])

Recomputes layout of the view and its subviews. If no argument is given, re-uses the previous parent rect. The
process goes as follows:

1. Calls preUpdateLayout(parent_rect) via invoke_before.

2. Uses computeFrame(parent_rect) to compute the desired frame.

3. Calls postComputeFrame(frame_body) via invoke_after.

4. Calls updateSubviewLayout(frame_body) to update children.

5. Calls postUpdateLayout(frame_body) via invoke_after.

524 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• view:computeFrame(parent_rect) (for overriding)

Called by updateLayout in order to compute the frame rectangle(s). Should return the mkdims rectangle for the
outer frame, and optionally also for the body frame. If only one rectangle is returned, it is used for both frames,
and the margin becomes zero.

• view:updateSubviewLayout(frame_body)

Calls updateLayout on all children.

• view:render(painter)

Given the parent’s painter, renders the view via the following process:

1. Calls onRenderFrame(painter, frame_rect) to paint the outer frame.

2. Creates a new painter using the frame_body rect.

3. Calls onRenderBody(new_painter) to paint the client area.

4. Calls renderSubviews(new_painter) to paint visible children.

• view:renderSubviews(painter)

Calls render on all visible subviews in the order they appear in the subviews sequence.

• view:onRenderFrame(painter, rect) (for overriding)

Called by render to paint the outer frame; by default does nothing.

• view:onRenderBody(painter) (for overriding)

Called by render to paint the client area; by default does nothing.

• view:onInput(keys) (for overriding)

Override this to handle events. By default directly calls inputToSubviews. Return a true value from this method
to signal that the event has been handled and should not be passed on to more views.

• view:inputToSubviews(keys)

Calls onInput on all visible active subviews, iterating the subviews sequence in reverse order, so that topmost
subviews get events first. Returns true if any of the subviews handled the event. If a subview within the view’s
focus_group has focus and it and all of its ancestors are active and visible, that subview is offered the chance
to handle the input before any other subviews.

• view:getPreferredFocusState()

Returns false by default, but should be overridden by subclasses that may want to take keyboard focus (if it is
unclaimed) when they are added to a parent view with addviews().

• view:setFocus(focus)

Sets the keyboard focus to the view if focus is true, or relinquishes keyboard focus if focus is false. Views
that newly acquire keyboard focus will trigger the on_focus callback, and views that lose keyboard focus will
trigger the on_unfocus callback. While a view has focus, all keyboard input is sent to that view before any of
its siblings or parents. Keyboard input is propagated as normal (see inputToSubviews() above) if there is no
view with focus or if the view with focus returns false from its onInput() function.

7.6. DFHack Lua API Reference 525

DFHack Documentation, Release 50.11-r4

Screen class

This is a View subclass intended for use as a stand-alone modal dialog or screen. It adds the following methods:

• screen:isShown()

Returns true if the screen is currently in the game engine’s display stack.

• screen:isDismissed()

Returns true if the screen is dismissed.

• screen:isActive()

Returns true if the screen is shown and not dismissed.

• screen:invalidate()

Requests a repaint. Note that currently using it is not necessary, because repaints are constantly requested auto-
matically, due to issues with native screens happening otherwise.

• screen:renderParent()

Asks the parent native screen to render itself, or clears the screen if impossible.

• screen:sendInputToParent(...)

Uses simulateInput to send keypresses to the native parent screen.

• screen:show([parent])

Adds the screen to the display stack with the given screen as the parent; if parent is not specified, places
this one one topmost. Before calling dfhack.screen.show, calls self:onAboutToShow(parent). Note
that onAboutToShow() can dismiss active screens, and therefore change the potential parent. If parent is
not specified, this function will re-detect the current topmost window after self:onAboutToShow(parent)
returns. This function returns self as a convenience so you can write such code as local view =
MyScreen{params=val}:show().

• screen:onAboutToShow(parent) (for overriding)

Called when dfhack.screen.show is about to be called.

• screen:onShow()

Called by dfhack.screen.show once the screen is successfully shown.

• screen:dismiss()

Dismisses the screen. A dismissed screen does not receive any more events or paint requests, but may remain in
the display stack for a short time until the game removes it.

• screen:onDismiss() (for overriding)

Called by dfhack.screen.dismiss().

• screen:onDestroy() (for overriding)

Called by the native code when the screen is fully destroyed and removed from the display stack. Place code that
absolutely must be called whenever the screen is removed by any means here.

• screen:onResize, screen:onRender

Defined as callbacks for native code.

526 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

ZScreen class

A screen subclass that allows multi-layer interactivity. For example, a DFHack GUI tool implemented as a ZScreen
can allow the player to interact with the underlying map, or even other DFHack ZScreen windows! That is, even when
the DFHack tool window is visible, players will be able to use vanilla designation tools, select units, and scan/drag the
map around.

At most one ZScreen can have input focus at a time. That ZScreen’s widgets will have a chance to handle the input
before anything else. If unhandled, the input skips all unfocused ZScreens under that ZScreen and is passed directly to
the first non-ZScreen viewscreen. There are class attributes that can be set to control what kind of unhandled input is
passed to the lower layers.

If multiple ZScreens are visible and the player scrolls or left/right clicks on a visible element of a non-focused ZScreen,
that ZScreen will be given focus. This allows multiple DFHack GUI tools to be usable at the same time. If the mouse is
clicked away from the ZScreen widgets, that ZScreen loses focus. If no ZScreen has focus, all input is passed directly
through to the first underlying non-ZScreen viewscreen.

For a ZScreen with keyboard focus, if Esc or the right mouse button is pressed, and the ZScreen widgets don’t otherwise
handle them, then the ZScreen is dismissed.

All this behavior is implemented in ZScreen:onInput(), which subclasses must not override. Instead, ZScreen
subclasses should delegate all input processing to subviews. Consider using a Window class widget subview as your
top level input processor.

When rendering, the parent viewscreen is automatically rendered first, so subclasses do not have to call
self:renderParent(). Calls to logic() (a world “tick” when playing the game) are also passed through, so the
game progresses normally and can be paused/unpaused as normal by the player. Note that passing logic() calls
through to the underlying map is required for allowing the player to drag the map with the mouse. ZScreen subclasses
can set attributes that control whether the game is paused when the ZScreen is shown and whether the game is forced to
continue being paused while the ZScreen is shown. If pausing is forced, child Window widgets will show a force-pause
indicator to show which tool is forcing the pausing.

ZScreen provides the following functions:

• zscreen:raise()

Raises the ZScreen to the top of the viewscreen stack, gives it keyboard focus, and returns a reference to self. A
common pattern is to check if a tool dialog is already active when the tool command is run and raise the existing
dialog if it exists or show a new dialog if it doesn’t. See the sample code below for an example.

• zscreen:isMouseOver()

The default implementation iterates over the direct subviews of the ZScreen subclass (which usually only includes
a single Window subview) and sees if getMouseFramePos() returns a position for any of them. Subclasses can
override this function if that logic is not appropriate.

• zscreen:hasFocus()

Whether the ZScreen has keyboard focus. Subclasses will generally not need to check this because they can
assume if they are getting input, then they have focus.

ZScreen subclasses can set the following attributes:

• defocusable (default: true)

Whether the ZScreen loses keyboard focus when the player clicks on an area of the screen other than the tool
window. If the player clicks on a different ZScreen window, focus still transfers to that other ZScreen.

• initial_pause (default: DEFAULT_INITIAL_PAUSE or not pass_mouse_clicks)

Whether to pause the game when the ZScreen is shown. If not explicitly set, this attribute will be true if the
system-wide DEFAULT_INITIAL_PAUSE is true (which is its default value) or if the pass_mouse_clicks at-

7.6. DFHack Lua API Reference 527

DFHack Documentation, Release 50.11-r4

tribute is false (see below). It depends on pass_mouse_clicks because if the player normally pauses/unpauses
the game with the mouse, they will not be able to pause the game like they usually do while the ZScreen has
focus. DEFAULT_INITIAL_PAUSE can be customized permanently via gui/control-panel or set for the session
by running a command like:

:lua require('gui.widgets').DEFAULT_INITIAL_PAUSE = false

• force_pause (default: false)

Whether to ensure the game stays paused while the ZScreen is shown, regardless of whether it has input focus.

• pass_pause (default: true)

Whether to pass the pause key to the lower viewscreens if it is not handled by this ZScreen.

• pass_movement_keys (default: false)

Whether to pass the map movement keys to the lower viewscreens if they are not handled by this ZScreen.

• pass_mouse_clicks (default: true)

Whether to pass mouse clicks to the lower viewscreens if they are not handled by this ZScreen.

Here is an example skeleton for a ZScreen tool window:

local gui = require('gui')
local widgets = require('gui.widgets')

MyWindow = defclass(MyWindow, widgets.Window)
MyWindow.ATTRS {

frame_title='My Window',
frame={w=50, h=45},
resizable=true, -- if resizing makes sense for your dialog
resize_min={w=50, h=20}, -- try to allow users to shrink your windows

}

function MyWindow:init()
self:addviews{
-- add subview widgets here

}
end

function MyWindow:onInput(keys)
-- if required

end

MyScreen = defclass(MyScreen, gui.ZScreen)
MyScreen.ATTRS {

focus_path='myscreen',
-- set pause and passthrough attributes as appropriate
-- (but most tools can use the defaults)

}

function MyScreen:init()
self:addviews{MyWindow{}}

end

function MyScreen:onDismiss()
(continues on next page)

528 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

view = nil
end

view = view and view:raise() or MyScreen{}:show()

ZScreenModal class

A ZScreen convenience subclass that sets the attributes to something appropriate for modal dialogs. The game is force
paused, and no input is passed through to the underlying viewscreens.

FramedScreen class

A Screen subclass that paints a visible frame around its body. Most dialogs should inherit from this class.

A framed screen has the following attributes:

frame_style A table that defines a set of pens to draw various parts of the frame.

frame_title A string to display in the middle of the top of the frame.

frame_width Desired width of the client area. If nil, the screen will occupy the whole width.

frame_height Likewise, for height.

frame_inset The gap between the frame and the client area. Defaults to 0.

frame_background The pen to fill in the frame with. Defaults to CLEAR_PEN.

There are the following predefined frame style tables:

• FRAME_WINDOW

A frame suitable for a draggable, optionally resizable window.

• FRAME_PANEL

A frame suitable for a static (non-draggable, non-resizable) panel.

• FRAME_MEDIUM

A frame suitable for overlay widget panels.

• FRAME_THIN

A frame suitable for floating tooltip panels that need the DFHack signature.

• FRAME_BOLD

A frame suitable for a non-draggable panel meant to capture the user’s focus, like an important notification,
confirmation dialog or error message.

• FRAME_INTERIOR

A frame suitable for light interior accent elements. This frame does not have a visible DFHack signature on it,
so it must not be used as the most external frame for a DFHack-owned UI.

• FRAME_INTERIOR_MEDIUM

A copy of FRAME_MEDIUM that lacks the DFHack signature. Suitable for panels that are part of a larger widget
cluster. Must not be used as the most external frame for a DFHack-owned UI.

7.6. DFHack Lua API Reference 529

DFHack Documentation, Release 50.11-r4

gui.widgets

This module implements some basic widgets based on the View infrastructure.

Widget class

Base of all the widgets. Inherits from View and has the following attributes:

• frame = {...}

Specifies the constraints on the outer frame of the widget. If omitted, the widget will occupy the whole parent
rectangle.

The frame is specified as a table with the following possible fields:

l gap between the left edges of the frame and the parent.

t gap between the top edges of the frame and the parent.

r gap between the right edges of the frame and the parent.

b gap between the bottom edges of the frame and the parent.

w maximum width of the frame.

h maximum height of the frame.

xalign X alignment of the frame.

yalign Y alignment of the frame.

First the l,t,r,b fields restrict the available area for placing the frame. If w and h are not specified or larger
than the computed area, it becomes the frame. Otherwise the smaller frame is placed within the are based on the
xalign/yalign fields. If the align hints are omitted, they are assumed to be 0, 1, or 0.5 based on which of the
l/r/t/b fields are set.

• frame_inset = {...}

Specifies the gap between the outer frame, and the client area. The attribute may be a simple integer value to
specify a uniform inset, or a table with the following fields:

l left margin.

t top margin.

r right margin.

b bottom margin.

x left/right margin, if l and/or r are omitted.

y top/bottom margin, if t and/or b are omitted.

Omitted fields are interpreted as having the value of 0.

• frame_background = pen

The pen to fill the outer frame with. Defaults to no fill.

530 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Panel class

Inherits from Widget, and intended for framing and/or grouping subviews. It is a good class to choose for your “main
screen” since it supports window dragging and frames.

Has attributes:

• subviews = {}

Used to initialize the subview list in the constructor.

• on_render = function(painter)

Called from onRenderBody.

• on_layout = function(frame_body)

Called from postComputeFrame.

• draggable = bool (default: false)

• drag_anchors = {} (default: {title=true, frame=false/true, body=true})

• drag_bound = 'frame' or 'body' (default: 'frame')

• on_drag_begin = function() (default: nil)

• on_drag_end = function(success, new_frame) (default: nil)

If draggable is set to true, then the above attributes come into play when the panel is dragged around the
screen, either with the mouse or the keyboard. drag_anchors sets which parts of the panel can be clicked on
with the left mouse button to start dragging. The frame is a drag anchor by default only if resizable (below)
is false. drag_bound configures whether the frame of the panel (if any) can be dragged outside the containing
parent’s boundary. The body will never be draggable outside of the parent, but you can allow the frame to cross
the boundary by setting drag_bound to 'body'. The boolean passed to the on_drag_end callback will be
true if the drag was “successful” (i.e. not canceled) and false otherwise. Dragging can be canceled by right
clicking while dragging with the mouse, hitting Esc (while dragging with the mouse or keyboard), or by calling
Panel:setKeyboaredDragEnabled(false) (while dragging with the keyboard). If it is more convenient to
do so, you can choose to override the panel:onDragBegin and/or the panel:onDragEnd methods instead of
setting the on_drag_begin and/or on_drag_end attributes.

• resizable = bool (default: false)

• resize_anchors = {} (default: {t=false, l=true, r=true, b=true}

• resize_min = {} (default: w and h from the frame, or {w=5, h=5})

• on_resize_begin = function() (default: nil)

• on_resize_end = function(success, new_frame) (default: nil)

If resizable is set to true, then the player can click the mouse on any edge specified in resize_anchors
and drag the border to resize the window. If two adjacent edges are enabled as anchors, then the tile where they
meet can be used to resize both edges at the same time. The minimum dimensions specified in resize_min
(or inherited from frame are respected when resizing. The panel is also prevented from resizing beyond the
boundaries of its parent. When the player clicks on a valid anchor, on_resize_begin() is called. The boolean
passed to the on_resize_end callback will be true if the drag was “successful” (i.e. not canceled) and false
otherwise. Dragging can be canceled by right clicking while resizing with the mouse, hitting Esc (while resizing
with the mouse or keyboard), or by calling Panel:setKeyboardResizeEnabled(false) (while resizing with
the keyboard). If it is more convenient to do so, you can choose to override the panel:onResizeBegin and/or
the panel:onResizeEnd methods instead of setting the on_resize_begin and/or on_resize_end attributes.

• autoarrange_subviews = bool (default: false)

7.6. DFHack Lua API Reference 531

DFHack Documentation, Release 50.11-r4

• autoarrange_gap = int (default: 0)

If autoarrange_subviews is set to true, the Panel will automatically handle subview layout. Subviews are
laid out vertically according to their current height, with autoarrange_gap empty lines between subviews.
This allows you to have widgets dynamically change height or become visible/hidden and you don’t have to
worry about recalculating subview positions.

• frame_style, frame_title (default: nil)

If defined, a frame will be drawn around the panel and subviews will be inset by 1. The attributes are identical to
what is defined in the FramedScreen class. When using the predefined frame styles in the guimodule, remember
to require the gui module and prefix the identifier with gui., e.g. gui.GREY_LINE_FRAME.

Has functions:

• panel:setKeyboardDragEnabled(bool)

If called with true and the panel is not already in keyboard drag mode, then any current drag or resize operations
are halted where they are (not canceled), the panel siezes input focus (see View class above for information on
the DFHack focus subsystem), and further keyboard cursor keys move the window as if it were being dragged.
Shift-cursor keys move by larger amounts. Hit Enter to commit the new window position or Esc to cancel. If
dragging is canceled, then the window is moved back to its original position.

• panel:setKeyboardResizeEnabled(bool)

If called with true and the panel is not already in keyboard resize mode, then any current drag or resize operations
are halted where they are (not canceled), the panel siezes input focus (see View class above for information on
the DFHack focus subsystem), and further keyboard cursor keys resize the window as if it were being dragged
from the lower right corner. If neither the bottom or right edge is a valid anchor, an appropriate corner will be
chosen. Shift-cursor keys move by larger amounts. Hit Enter to commit the new window size or Esc to cancel.
If resizing is canceled, then the window size from before the resize operation is restored.

• panel:onDragBegin()

• panel:onDragEnd(success, new_frame)

• panel:onResizeBegin()

• panel:onResizeEnd(success, new_frame)

The default implementations of these methods call the associated attribute (if set). You can override them in a subclass
if that is more convenient than setting the attributes.

Double clicking:

If the panel is resizable and the user double-clicks on the top edge (the frame title, if the panel has a frame), then the
panel will jump to its maximum size. If the panel has already been maximized in this fashion, then it will jump to its
minimum size. Both jumps respect the resizable edges defined by the resize_anchors attribute.

The time duration that a double click can span is defined by the global variable DOUBLE_CLICK_MS. The default value
is 500 and can be changed by the end user with a command like:

:lua require('gui.widgets').DOUBLE_CLICK_MS=1000

532 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Window class

Subclass of Panel; sets Panel attributes to useful defaults for a top-level framed, draggable window.

ResizingPanel class

Subclass of Panel; automatically adjusts its own frame height and width to the minimum required to show its subviews.
Pairs nicely with a parent Panel that has autoarrange_subviews enabled.

It has the following attributes:

auto_height Sets self.frame.h from the positions and height of its subviews (default is true).

auto_width Sets self.frame.w from the positions and width of its subviews (default is false).

Pages class

Subclass of Panel; keeps exactly one child visible.

• Pages{ ..., selected = ... }

Specifies which child to select initially; defaults to the first one.

• pages:getSelected()

Returns the selected index, child.

• pages:setSelected(index)

Selects the specified child, hiding the previous selected one. It is permitted to use the subview object, or its
view_id as index.

EditField class

Subclass of Widget; implements a simple edit field.

Attributes:

label_text The optional text label displayed before the editable text.

text The current contents of the field.

text_pen The pen to draw the text with.

on_char Input validation callback; used as on_char(new_char,text). If it returns false, the character
is ignored.

on_change Change notification callback; used as on_change(new_text,old_text).

on_submit Enter key callback; if set the field will handle the key and call on_submit(text).

key If specified, the field is disabled until this key is pressed. Must be given as a string.

key_sep If specified, will be used to customize how the activation key is displayed. See token.key_sep
in the Label documentation below.

modal Whether the EditField should prevent input from propagating to other widgets while it has focus.
You can set this to true, for example, if you don’t want a List widget to react to arrow keys while
the user is editing.

7.6. DFHack Lua API Reference 533

DFHack Documentation, Release 50.11-r4

ignore_keys If specified, must be a list of key names that the edit field should ignore. This is useful if you
have plain string characters that you want to use as hotkeys (like +).

An EditField will only read and process text input if it has keyboard focus. It will automatically acquire keyboard
focus when it is added as a subview to a parent that has not already granted keyboard focus to another widget. If you
have more than one EditField on a screen, you can select which has focus by calling setFocus(true) on the field
object.

If an activation key is specified, the EditField will manage its own focus. It will start in the unfocused state, and
pressing the activation key will acquire keyboard focus. Pressing the Enter key will release keyboard focus and then
call the on_submit callback. Pressing the Escape key (or r-clicking with the mouse) will also release keyboard focus,
but first it will restore the text that was displayed before the EditField gained focus and then call the on_change
callback.

The EditField cursor can be moved to where you want to insert/remove text. You can click where you want the cursor
to move or you can use any of the following keyboard hotkeys:

• Left/Right arrow: move the cursor one character to the left or right.

• Ctrl-B/Ctrl-F: move the cursor one word back or forward.

• Ctrl-A/Ctrl-E: move the cursor to the beginning/end of the text.

The widget also supports integration with the system clipboard:

• Ctrl-C: copy current text to the system clipboard

• Ctrl-X: copy current text to the system clipboard and clear text in widget

• Ctrl-V: paste text from the system clipboard (text is converted to cp437)

The EditField class also provides the following functions:

• editfield:setCursor([cursor_pos])

Sets the text insert cursor to the specified position. If cursor_pos is not specified or is past the end of the current
text string, the cursor will be set to the end of the current input (that is, #editfield.text + 1).

• editfield:setText(text[, cursor_pos])

Sets the input text string and, optionally, the cursor position. If the cursor position is not specified, it sets it to
the end of the string.

• editfield:insert(text)

Inserts the given text at the current cursor position.

Scrollbar class

This Widget subclass implements mouse-interactive scrollbars whose bar sizes represent the amount of content cur-
rently visible in an associated display widget (like a Label class or a List class). They are styled like scrollbars used in
vanilla DF.

Scrollbars have the following attributes:

on_scroll A callback called when the scrollbar is scrolled. If the scrollbar is clicked, the callback will
be called with one of the following string parameters: “up_large”, “down_large”, “up_small”, or
“down_small”. If the scrollbar is dragged, the callback will be called with the value that top_elem
should be set to on the next call to update() (see below).

The Scrollbar widget implements the following methods:

534 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• scrollbar:update(top_elem, elems_per_page, num_elems)

Updates the info about the widget that the scrollbar is paired with. The top_elem param is the (one-based) index
of the first visible element. The elems_per_page param is the maximum number of elements that can be shown
at one time. The num_elems param is the total number of elements that the paried widget can scroll through. If
elems_per_page or num_elems is not specified, the most recently specified value for these parameters is used.
The scrollbar will adjust its scrollbar size and position according to the values passed to this function.

Clicking on the arrows at the top or the bottom of a scrollbar will scroll an associated widget by a small amount.
Clicking on the unfilled portion of the scrollbar above or below the filled area will scroll by a larger amount in that
direction. The amount of scrolling done in each case in determined by the associated widget, and after scrolling is
complete, the associated widget must call scrollbar:update() with updated new display info.

If the mouse wheel is scrolled while the mouse is over the Scrollbar widget’s parent view, then the parent is scrolled
accordingly. Holding Shift while scrolling will result in faster movement.

You can click and drag the scrollbar to scroll to a specific spot, or you can click and hold on the end arrows or in the
unfilled portion of the scrollbar to scroll multiple times, just like in a normal browser scrollbar. The speed of scroll
events when the mouse button is held down is controlled by two global variables:

SCROLL_INITIAL_DELAY_MS The delay before the second scroll event.

SCROLL_DELAY_MS The delay between further scroll events.

The defaults are 300 and 20, respectively, but they can be overridden by the user in their dfhack-config/init/
dfhack.init file, for example:

:lua require('gui.widgets').SCROLL_DELAY_MS = 100

Label class

This Widget subclass implements flowing semi-static text.

It has the following attributes:

text_pen Specifies the pen for active text.

text_dpen Specifies the pen for disabled text.

text_hpen Specifies the pen for text hovered over by the mouse, if a click handler is registered. By default,
this will invert the foreground and background colors.

disabled Boolean or a callback; if true, the label is disabled.

enabled Boolean or a callback; if false, the label is disabled.

auto_height Sets self.frame.h from the text height.

auto_width Sets self.frame.w from the text width.

on_click A callback called when the label is clicked (optional)

on_rclick A callback called when the label is right-clicked (optional)

scroll_keys Specifies which keys the label should react to as a table. The table should map keys to the
number of lines to scroll as positive or negative integers or one of the keywords supported by the
scroll method. The default is up/down arrows scrolling by one line and page up/down scrolling by
one page.

The text itself is represented as a complex structure, and passed to the object via the text argument of the constructor,
or via the setText method, as one of:

• A simple string, possibly containing newlines.

7.6. DFHack Lua API Reference 535

DFHack Documentation, Release 50.11-r4

• A sequence of tokens.

Every token in the sequence in turn may be either a string, possibly containing newlines, or a table with the following
possible fields:

• token.text = ...

Specifies the main text content of a token, and may be a string, or a callback returning a string.

• token.gap = ...

Specifies the number of character positions to advance on the line before rendering the token.

• token.tile, token.htile

Specifies a pen or texture index (or a function that returns a pen or texture index) to paint as one tile before the
main part of the token. If htile is specified, that is used instead of tile when the Label is hovered over with
the mouse.

• token.width = ...

If specified either as a value or a callback, the text (or tile) field is padded or truncated to the specified number.

• token.pad_char = '?'

If specified together with width, the padding area is filled with this character instead of just being skipped over.

• token.key = '...'

Specifies the keycode associated with the token. The string description of the key binding is added to the text
content of the token.

• token.key_sep = '...'

Specifies the separator to place between the keybinding label produced by token.key, and the main text of
the token. If the separator starts with ‘()’, the token is formatted as text..' ('..binding..sep:sub(2).
Otherwise it is simply binding..sep..text.

• token.enabled, token.disabled

Same as the attributes of the label itself, but applies only to the token.

• token.pen, token.dpen, token.hpen

Specify the pen, disabled pen, and hover pen to be used for the token’s text. The fields may be either the pen
itself, or a callback that returns it.

• token.on_activate

If this field is not nil, and token.key is set, the token will actually respond to that key binding unless disabled,
and call this callback. Eventually this may be extended with mouse click support.

• token.id

Specifies a unique identifier for the token.

• token.line, token.x1, token.x2

Reserved for internal use.

The Label widget implements the following methods:

• label:setText(new_text)

Replaces the text currently contained in the widget.

• label:itemById(id)

Finds a token by its id field.

536 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• label:getTextHeight()

Computes the height of the text.

• label:getTextWidth()

Computes the width of the text.

• label:scroll(nlines)

This method takes the number of lines to scroll as positive or negative integers or one of the following keywords:
+page, -page, +halfpage, -halfpage, home, or end. It returns the number of lines that were actually scrolled
(negative for scrolling up).

• label:shouldHover()

This method returns whether or not this widget should show a hover effect, generally you want to return true if
there is some type of mouse handler present. For example, for a HotKeyLabel:

function HotkeyLabel:shouldHover()
-- When on_activate is set, text should also hover on mouseover
return HotkeyLabel.super.shouldHover(self) or self.on_activate

end

WrappedLabel class

This Label subclass represents text that you want to be able to dynamically wrap. This frees you from having to pre-split
long strings into multiple lines in the Label text list.

It has the following attributes:

text_to_wrap The string (or a table of strings or a function that returns a string or a table of strings) to
display. The text will be autowrapped to the width of the widget, though any existing newlines will
be kept.

indent The number of spaces to indent the text from the left margin. The default is 0.

The displayed text is refreshed and rewrapped whenever the widget bounds change. To force a refresh (to pick up
changes in the string that text_to_wrap returns, for example), all updateLayout() on this widget or on a widget
that contains this widget.

TooltipLabel class

This WrappedLabel subclass represents text that you want to be able to dynamically hide, like help text in a tooltip.

It has the following attributes:

show_tooltip Boolean or a callback; if true, the widget is visible.

The text_pen attribute of the Label class is overridden with a default of COLOR_GREY and the indent attribute of
the WrappedLabel class is overridden with a default of 2.

The text of the tooltip can be passed in the inherited text_to_wrap attribute so it can be autowrapped, or in the basic
text attribute if no wrapping is required.

7.6. DFHack Lua API Reference 537

DFHack Documentation, Release 50.11-r4

HotkeyLabel class

This Label subclass is a convenience class for formatting text that responds to a hotkey or mouse click.

It has the following attributes:

key The hotkey keycode to display, e.g. 'CUSTOM_A'.

key_sep If specified, will be used to customize how the activation key is displayed. See token.key_sep
in the Label documentation.

label The string (or a function that returns a string) to display after the hotkey.

on_activate If specified, it is the callback that will be called whenever the hotkey is pressed or the label
is clicked.

The HotkeyLabel widget implements the following methods:

• hotkeylabel:setLabel(label)

Updates the label without altering the hotkey text.

• hotkeylabel:setOnActivate(on_activate)

Updates the on_activate callback.

CycleHotkeyLabel class

This Label subclass represents a group of related options that the user can cycle through by pressing a specified hotkey
or clicking on the text.

It has the following attributes:

key The hotkey keycode to display, e.g. 'CUSTOM_A'.

key_back Similar to key, but will cycle backwards (optional)

key_sep If specified, will be used to customize how the activation key is displayed. See token.key_sep
in the Label documentation.

label The string (or a function that returns a string) to display after the hotkey.

label_width The number of spaces to allocate to the label (for use in aligning a column of
CycleHotkeyLabel labels).

label_below If true, then the option value will appear below the label instead of to the right of it. Defaults
to false.

option_gap The size of the gap between the label text and the option value. Default is 1. If set to 0,
there’ll be no gap between the strings. If label_below == true, negative values will shift the value
leftwards.

options A list of strings or tables of {label=string or fn, value=val[, pen=pen]}. String op-
tions use the same string for the label and value and use the default pen. The optional pen element
could be a color like COLOR_RED.

initial_option The value or numeric index of the initial option.

on_change The callback to call when the selected option changes. It is called as
on_change(new_option_value, old_option_value).

The index of the currently selected option in the options list is kept in the option_idx instance variable.

The CycleHotkeyLabel widget implements the following methods:

538 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• cyclehotkeylabel:cycle([backwards])

Cycles the selected option and triggers the on_change callback. If backwards is defined and is
truthy, the cycle direction will be reversed

• cyclehotkeylabel:setOption(value_or_index, call_on_change)

Sets the current option to the option with the specified value or index. If call_on_change is set to
true, then the on_change callback is triggered.

• cyclehotkeylabel:getOptionLabel([option_idx])

Retrieves the option label at the given index, or the label of the currently selected option if no index
is given.

• cyclehotkeylabel:getOptionValue([option_idx])

Retrieves the option value at the given index, or the value of the currently selected option if no index
is given.

• cyclehotkeylabel:getOptionPen([option_idx])

Retrieves the option pen at the given index, or the pen of the currently selected option if no index is
given. If an option was defined as just a string, then this function will return nil for that option.

ToggleHotkeyLabel class

This is a specialized subclass of CycleHotkeyLabel that has two options: On (with a value of true) and Off (with a
value of false). The On option is rendered in green.

HelpButton class

A 3x1 tile button with a question mark on it, intended to represent a help icon. Clicking on the icon will launch
gui/launcher with a given command string, showing the help text for that command.

It has the following attributes:

command The command to load in gui/launcher.

ConfigureButton class

A 3x1 tile button with a gear mark on it, intended to represent a configure icon. Clicking on the icon will run the given
callback.

It has the following attributes:

on_click The function on run when the icon is clicked.

7.6. DFHack Lua API Reference 539

DFHack Documentation, Release 50.11-r4

BannerPanel class

This is a Panel subclass that prints a distinctive banner along the far left and right columns of the widget frame. Note
that this is not a “proper” frame since it doesn’t have top or bottom borders. Subviews of this panel should inset their
frames one tile from the left and right edges.

TextButton class

This is a BannerPanel subclass that wraps a HotkeyLabel with some decorators on the sides to make it look more like a
button, suitable for both graphics and ASCII modes. All HotkeyLabel parameters passed to the constructor are passed
through to the wrapped HotkeyLabel.

List class

The List widget implements a simple list with paging. You can click on a list item to call the on_submit callback for
that item.

It has the following attributes:

text_pen Specifies the pen for deselected list entries.

text_hpen Specifies the pen for entries that the mouse is hovered over. Defaults to swapping the back-
ground/foreground colors.

cursor_pen Specifies the pen for the selected entry.

inactive_pen If specified, used for the cursor when the widget is not active.

icon_pen Default pen for icons.

on_select Selection change callback; called as on_select(index,choice). This is also called with nil
arguments if setChoices is called with an empty list.

on_submit Enter key or mouse click callback; if specified, the list reacts to the key/click and calls the
callback as on_submit(index,choice).

on_submit2 Shift-click callback; if specified, the list reacts to the click and calls the callback as
on_submit2(index,choice).

on_double_click Mouse double click callback; if specified, the list reacts to the click and calls the callback
as on_double_click(index,choice).

on_double_click2 Shift-double click callback; if specified, the list reacts to the click and calls the callback
as on_double_click2(index,choice).

row_height Height of every row in text lines.

icon_width If not nil, the specified number of character columns are reserved to the left of the list item
for the icons.

scroll_keys Specifies which keys the list should react to as a table.

Every list item may be specified either as a string, or as a lua table with the following fields:

text Specifies the label text in the same format as the Label text.

text_* Reserved for internal use.

key Specifies a keybinding that acts as a shortcut for the specified item.

icon Specifies an icon string, or a pen to paint a single character. May be a callback.

540 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

icon_pen When the icon is a string, used to paint it.

The list supports the following methods:

• List{ ..., choices = ..., selected = ... }

Same as calling setChoices after construction.

• list:setChoices(choices[, selected])

Replaces the list of choices, possibly also setting the currently selected index.

• list:setSelected(selected)

Sets the currently selected index. Returns the index after validation.

• list:getChoices()

Returns the list of choices.

• list:getSelected()

Returns the selected index, choice, or nothing if the list is empty.

• list:getIdxUnderMouse()

Returns the index of the list item under the mouse cursor, or nothing if the list is empty or the mouse is not over
a list item.

• list:getContentWidth()

Returns the minimal width to draw all choices without clipping.

• list:getContentHeight()

Returns the minimal width to draw all choices without scrolling.

• list:submit()

Call the on_submit callback, as if the Enter key was handled.

• list:submit2()

Call the on_submit2 callback, as if the Shift-Enter key was handled.

FilteredList class

This widget combines List, EditField and Label into a combo-box like construction that allows filtering the list.

In addition to passing through all attributes supported by List, it supports:

edit_pen If specified, used instead of cursor_pen for the edit field.

edit_below If true, the edit field is placed below the list instead of above.

edit_key If specified, the edit field is disabled until this key is pressed.

edit_ignore_keys If specified, will be passed to the filter edit field as its ignore_keys attribute.

edit_on_change If specified, will be passed to the filter edit field as its on_change attribute.

edit_on_char If specified, will be passed to the filter edit field as its on_char attribute.

not_found_label Specifies the text of the label shown when no items match the filter.

The list choices may include the following attributes:

7.6. DFHack Lua API Reference 541

DFHack Documentation, Release 50.11-r4

search_key If specified, used instead of text to match against the filter. This is required for any entries
where text is not a string.

The widget implements:

• list:setChoices(choices[, selected])

Resets the filter, and passes through to the inner list.

• list:getChoices()

Returns the list of all choices.

• list:getVisibleChoices()

Returns the filtered list of choices.

• list:getFilter()

Returns the current filter string, and the filtered list of choices.

• list:setFilter(filter[,pos])

Sets the new filter string, filters the list, and selects the item at index pos in the unfiltered list if possible.

• list:canSubmit()

Checks if there are currently any choices in the filtered list.

• list:getSelected(), list:getContentWidth(), list:getContentHeight(), list:submit()

Same as with an ordinary list.

Filter behavior:

By default, the filter matches substrings that start at the beginning of a word (or after any punctuation). You can instead
configure filters to match any substring across the full text with a command like:

:lua require('utils').FILTER_FULL_TEXT=true

TabBar class

This widget implements a set of one or more tabs to allow navigation between groups of content. Tabs automatically
wrap on the width of the window and will continue rendering on the next line(s) if all tabs cannot fit on a single line.

key Specifies a keybinding that can be used to switch to the next tab. Defaults to CUSTOM_CTRL_T.

key_back Specifies a keybinding that can be used to switch to the previous tab. Defaults to
CUSTOM_CTRL_Y.

labels A table of strings; entry representing the label text for a single tab. The order of the entries deter-
mines the order the tabs will appear in.

on_select Callback executed when a tab is selected. It receives the selected tab index as an argument. The
provided function should update the value of whichever variable your script uses to keep track of the
currently selected tab.

get_cur_page The function used by the TabBar to determine which Tab is currently selected. The function
you provide should return an integer that corresponds to the non-zero index of the currently selected
Tab (i.e. whatever variable you update in your on_select callback)

active_tab_pens A table of pens used to render active tabs. See the default implementation in widgets.lua
for an example of how to construct the table. Leave unspecified to use the default pens.

542 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

inactive_tab_pens A table of pens used to render inactive tabs. See the default implementation in wid-
gets.lua for an example of how to construct the table. Leave unspecified to use the default pens.

get_pens A function used to determine which pens should be used to render a tab. Receives the index of
the tab as the first argument and the TabBar widget itself as the second. The default implementation,
which will handle most situations, returns self.active_tab_pens, if self.get_cur_page()
== idx, otherwise returns self.inactive_tab_pens.

Tab class

This widget implements a single clickable tab and is the main component of the TabBar widget. Usage of the TabBar
widget does not require direct usage of Tab.

id The id of the tab.

label The text displayed on the tab.

on_select Callback executed when the tab is selected.

get_pens A function that is used during Tab:onRenderBody to determine the pens that should be used
for drawing. See the usage of Tab in TabBar:init() for an example. See the default value of
active_tab_pens or inactive_tab_pens in TabBar for an example of how to construct pens.

RangeSlider class

This widget implements a mouse-interactable range-slider. The player can move its two handles to set minimum and
maximum values to define a range, or they can drag the bar itself to move both handles at once. The parent widget owns
the range values, and can control them independently (e.g. with CycleHotkeyLabels). If the range values change,
the RangeSlider appearance will adjust automatically.

num_stops Used to specify the number of “notches” in the range slider, the places where handles can
stop. (this should match the parents’ number of options)

get_left_idx_fn The function used by the RangeSlider to get the notch index on which to display the left
handle.

get_right_idx_fn The function used by the RangeSlider to get the notch index on which to display the
right handle.

on_left_change Callback executed when moving the left handle.

on_right_change Callback executed when moving the right handle.

gui.textures

This module contains convenience methods for accessing default DFHack graphic assets. Pass the offset in tiles (in
row major position) to get a particular tile from the asset. offset 0 is the first tile.

• tp_green_pin(offset) tileset: hack/data/art/green-pin.png

• tp_red_pin(offset) tileset: hack/data/art/red-pin.png

• tp_icons(offset) tileset: hack/data/art/icons.png

• tp_on_off(offset) tileset: hack/data/art/on-off.png

• tp_control_panel(offset) tileset: hack/data/art/control-panel.png

• tp_border_thin(offset) tileset: hack/data/art/border-thin.png

7.6. DFHack Lua API Reference 543

DFHack Documentation, Release 50.11-r4

• tp_border_medium(offset) tileset: hack/data/art/border-medium.png

• tp_border_bold(offset) tileset: hack/data/art/border-bold.png

• tp_border_panel(offset) tileset: hack/data/art/border-panel.png

• tp_border_window(offset) tileset: hack/data/art/order-window.png

Example usage:

local textures = require('gui.textures')
local first_border_texpos = textures.tp_border_thin(1)

7.6.5 Plugins

• blueprint

• building-hacks

– Functions

– Examples

• buildingplan

• cxxrandom

– Native functions (exported to Lua)

– Lua plugin functions

– Lua plugin classes

∗ crng

∗ normal_distribution

∗ real_distribution

∗ int_distribution

∗ bool_distribution

∗ num_sequence

– Usage

• dig-now

• eventful

– List of events

– Events from EventManager

– Functions

– Examples

• luasocket

– Socket class

– Client class

544 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– Server class

– Tcp class

• map-render

– Functions

• pathable

• reveal

• sort

• tiletypes

• xlsxreader

DFHack plugins may export native functions and events to Lua contexts. These are exposed as plugins.<name>mod-
ules, which can be imported with require('plugins.<name>'). The plugins listed in this section expose functions
and/or data to Lua in this way.

In addition to any native functions documented here, plugins that can be enabled (that is, plugins that support the
enable/disable API) will have the following functions defined:

• isEnabled() returns whether the plugin is enabled.

• setEnabled(boolean) sets whether the plugin is enabled.

For plugin developers, note that a Lua file in plugins/lua is required for require() to work, even if it contains no
pure-Lua functions. This file must contain mkmodule('plugins.<name>') to import any native functions defined in
the plugin. See existing files in plugins/lua for examples.

blueprint

Lua functions provided by the blueprint plugin to programmatically generate blueprint files:

• dig(start, end, name)

• build(start, end, name)

• place(start, end, name)

• query(start, end, name)

start and end are tables containing positions (see xyz2pos). name is used as the basis for the generated
filenames.

The names of the functions are also available as the keys of the valid_phases table.

building-hacks

This plugin overwrites some methods in workshop df class so that mechanical workshops are possible. Although plugin
export a function it’s recommended to use lua decorated function.

• Functions

• Examples

7.6. DFHack Lua API Reference 545

DFHack Documentation, Release 50.11-r4

Functions

registerBuilding(table) where table must contain name, as a workshop raw name, the rest are optional:

name custom workshop id e.g. SOAPMAKER

Note: this is the only mandatory field.

fix_impassible if true make impassable tiles impassable to liquids too

consume how much machine power is needed to work. Disables reactions if not supplied
enough and needs_power==1

produce how much machine power is produced.

needs_power if produced in network < consumed stop working, default true

gears a table or {x=?,y=?} of connection points for machines.

action a table of number (how much ticks to skip) and a function which gets called on shop
update

animate a table of frames which can be a table of:

a. tables of 4 numbers {tile,fore,back,bright} OR

b. empty table (tile not modified) OR

c. {x=<number> y=<number> + 4 numbers like in first case}, this gener-
ates full frame useful for animations that change little (1-2 tiles)

canBeRoomSubset a flag if this building can be counted in room. 1 means it can, 0 means it
can’t and -1 default building behaviour

auto_gears a flag that automatically fills up gears and animations. It looks over the building
definition for gear icons and maps them.

Animate table also might contain:

frameLength how many ticks does one frame take OR

isMechanical a bool that says to try to match to mechanical system (i.e. how gears are turning)

getPower(building) returns two number - produced and consumed power if building can be modified and returns
nothing otherwise

setPower(building,produced,consumed) sets current power production and consumption for a building.

Examples

Simple mechanical workshop:

require('plugins.building-hacks').registerBuilding{name="BONE_GRINDER",
consume=15,
gears={x=0,y=0}, --connection point
animate={
isMechanical=true, --animate the same conn. point as vanilla gear
frames={
{{x=0,y=0,42,7,0,0}}, --first frame, 1 changed tile

(continues on next page)

546 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

{{x=0,y=0,15,7,0,0}} -- second frame, same
}

}

Or with auto_gears:

require('plugins.building-hacks').registerBuilding{name="BONE_GRINDER",
consume=15,
auto_gears=true
}

buildingplan

Native functions provided by the buildingplan plugin:

• bool isPlannableBuilding(df::building_type type, int16_t subtype, int32_t custom)
returns whether the building type is handled by buildingplan.

• bool isPlanModeEnabled(df::building_type type, int16_t subtype, int32_t custom) returns
whether the buildingplan UI is enabled for the specified building type.

• bool isPlannedBuilding(df::building *bld) returns whether the given building is managed by build-
ingplan.

• void addPlannedBuilding(df::building *bld) suspends the building jobs and adds the building to the
monitor list.

• void doCycle() runs a check for whether buildings in the monitor list can be assigned items and unsuspended.
This method runs automatically twice a game day, so you only need to call it directly if you want buildingplan
to do a check right now.

• void scheduleCycle() schedules a cycle to be run during the next non-paused game frame. Can be called
multiple times while the game is paused and only one cycle will be scheduled.

cxxrandom

Exposes some features of the C++11 random number library to Lua.

• Native functions (exported to Lua)

• Lua plugin functions

• Lua plugin classes

– crng

– normal_distribution

– real_distribution

– int_distribution

– bool_distribution

– num_sequence

• Usage

7.6. DFHack Lua API Reference 547

DFHack Documentation, Release 50.11-r4

Native functions (exported to Lua)

• GenerateEngine(seed)

returns engine id

• DestroyEngine(rngID)

destroys corresponding engine

• NewSeed(rngID, seed)

re-seeds engine

• rollInt(rngID, min, max)

generates random integer

• rollDouble(rngID, min, max)

generates random double

• rollNormal(rngID, avg, stddev)

generates random normal[gaus.]

• rollBool(rngID, chance)

generates random boolean

• MakeNumSequence(start, end)

returns sequence id

• AddToSequence(seqID, num)

adds a number to the sequence

• ShuffleSequence(seqID, rngID)

shuffles the number sequence

• NextInSequence(seqID)

returns the next number in sequence

Lua plugin functions

• MakeNewEngine(seed)

returns engine id

Lua plugin classes

crng

• init(id, df, dist): constructor

– id: Reference ID of engine to use in RNGenerations

– df (optional): bool indicating whether to destroy the Engine when the crng object is garbage collected

– dist (optional): lua number distribution to use

548 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• changeSeed(seed): alters engine’s seed value

• setNumDistrib(distrib): sets the number distribution crng object should use

– distrib: number distribution object to use in RNGenerations

• next(): returns the next number in the distribution

• shuffle(): effectively shuffles the number distribution

normal_distribution

• init(avg, stddev): constructor

• next(id): returns next number in the distribution

– id: engine ID to pass to native function

real_distribution

• init(min, max): constructor

• next(id): returns next number in the distribution

– id: engine ID to pass to native function

int_distribution

• init(min, max): constructor

• next(id): returns next number in the distribution

– id: engine ID to pass to native function

bool_distribution

• init(chance): constructor

• next(id): returns next boolean in the distribution

– id: engine ID to pass to native function

num_sequence

• init(a, b): constructor

• add(num): adds num to the end of the number sequence

• shuffle(): shuffles the sequence of numbers

• next(): returns next number in the sequence

7.6. DFHack Lua API Reference 549

DFHack Documentation, Release 50.11-r4

Usage

The basic idea is you create a number distribution which you generate random numbers along. The C++ relies on
engines keeping state information to determine the next number along the distribution. You’re welcome to try and
(ab)use this knowledge for your RNG purposes.

Example:

local rng = require('plugins.cxxrandom')
local norm_dist = rng.normal_distribution(6820,116) // avg, stddev
local engID = rng.MakeNewEngine(0)
-- somewhat reminiscent of the C++ syntax
print(norm_dist:next(engID))

-- a bit more streamlined
local cleanup = true --delete engine on cleanup
local number_generator = rng.crng:new(engID, cleanup, norm_dist)
print(number_generator:next())

-- simplified
print(rng.rollNormal(engID,6820,116))

The number sequences are much simpler. They’re intended for where you need to randomly generate an index, perhaps
in a loop for an array. You technically don’t need an engine to use it, if you don’t mind never shuffling.

Example:

local rng = require('plugins.cxxrandom')
local g = rng.crng:new(rng.MakeNewEngine(0), true, rng.num_sequence:new(0,table_size))
g:shuffle()
for _ = 1, table_size do

func(array[g:next()])
end

dig-now

The dig-now plugin exposes the following functions to Lua:

• dig_now_tile(pos) or dig_now_tile(x,y,z): Runs dig-now for the specified tile coordinate. Default
options apply, as if you were running the command dig-now <pos> <pos>. See the dig-now documen-
tation for details on default settings.

eventful

This plugin exports some events to lua thus allowing to run lua functions on DF world events.

• List of events

• Events from EventManager

• Functions

• Examples

550 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

List of events

1. onReactionCompleting(reaction,reaction_product,unit,input_items,input_reagents,
output_items,call_native)

Is called once per reaction product, before the reaction has a chance to call native code for item creation. Setting
call_native.value=false cancels further processing: no items are created and onReactionComplete is
not called.

2. onReactionComplete(reaction,reaction_product,unit,input_items,input_reagents,
output_items)

Is called once per reaction product, when reaction finishes and has at least one product.

3. onItemContaminateWound(item,unit,wound,number1,number2)

Is called when item tries to contaminate wound (e.g. stuck in).

4. onProjItemCheckMovement(projectile)

Is called when projectile moves.

5. onProjItemCheckImpact(projectile,somebool)

Is called when projectile hits something.

6. onProjUnitCheckMovement(projectile)

Is called when projectile moves.

7. onProjUnitCheckImpact(projectile,somebool)

Is called when projectile hits something.

8. onWorkshopFillSidebarMenu(workshop,callnative)

Is called when viewing a workshop in ‘q’ mode, to populate reactions, useful for custom viewscreens for shops.

9. postWorkshopFillSidebarMenu(workshop)

Is called after calling (or not) native fillSidebarMenu(). Useful for job button tweaking (e.g. adding custom
reactions)

Events from EventManager

These events are straight from EventManager module. Each of them first needs to be enabled. See functions for more
info. If you register a listener before the game is loaded, be aware that no events will be triggered immediately after
loading, so you might need to add another event listener for when the game first loads in some cases.

1. onBuildingCreatedDestroyed(building_id)

Gets called when building is created or destroyed.

2. onConstructionCreatedDestroyed(building_id)

Gets called when construction is created or destroyed.

3. onJobInitiated(job)

Gets called when job is issued.

4. onJobCompleted(job)

7.6. DFHack Lua API Reference 551

DFHack Documentation, Release 50.11-r4

Gets called when job is finished. The job that is passed to this function is a copy. Requires a frequency of 0 in
order to distinguish between workshop jobs that were canceled by the user and workshop jobs that completed
successfully.

5. onUnitDeath(unit_id)

Gets called on unit death.

6. onItemCreated(item_id)

Gets called when item is created (except due to traders, migrants, invaders and spider webs).

7. onSyndrome(unit_id,syndrome_index)

Gets called when new syndrome appears on a unit.

8. onInvasion(invasion_id)

Gets called when new invasion happens.

9. onInventoryChange(unit_id,item_id,old_equip,new_equip)

Gets called when someone picks up an item, puts one down, or changes the way they are holding it. If an item is
picked up, old_equip will be null. If an item is dropped, new_equip will be null. If an item is re-equipped in a
new way, then neither will be null. You absolutely must NOT alter either old_equip or new_equip or you might
break other plugins.

10. onReport(reportId)

Gets called when a report happens. This happens more often than you probably think, even if it doesn’t show up
in the announcements.

11. onUnitAttack(attackerId, defenderId, woundId)

Called when a unit wounds another with a weapon. Is NOT called if blocked, dodged, deflected, or parried.

12. onUnload()

A convenience event in case you don’t want to register for every onStateChange event.

13. onInteraction(attackVerb, defendVerb, attackerId, defenderId, attackReportId,
defendReportId)

Called when a unit uses an interaction on another.

Functions

1. registerReaction(reaction_name,callback)

Simplified way of using onReactionCompleting; the callback is function (same params as event).

2. removeNative(shop_name)

Removes native choice list from the building.

3. addReactionToShop(reaction_name,shop_name)

Add a custom reaction to the building.

4. enableEvent(evType,frequency)

Enable event checking for EventManager events. For event types use eventType table. Note that different types
of events require different frequencies to be effective. The frequency is how many ticks EventManager will wait
before checking if that type of event has happened. If multiple scripts or plugins use the same event type, the

552 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

smallest frequency is the one that is used, so you might get events triggered more often than the frequency you
use here.

5. registerSidebar(shop_name,callback)

Enable callback when sidebar for shop_name is drawn. Useful for custom workshop views e.g. using
gui.dwarfmode lib. Also accepts a class instead of function as callback. Best used with gui.dwarfmode
class WorkshopOverlay.

Examples

Spawn dragon breath on each item attempt to contaminate wound:

b=require "plugins.eventful"
b.onItemContaminateWound.one=function(item,unit,un_wound,x,y)

local flw=dfhack.maps.spawnFlow(unit.pos,6,0,0,50000)
end

Reaction complete example:

b=require "plugins.eventful"

b.registerReaction("LAY_BOMB",function(reaction,unit,in_items,in_reag,out_items,call_
→˓native)
local pos=copyall(unit.pos)
-- spawn dragonbreath after 100 ticks
dfhack.timeout(100,"ticks",function() dfhack.maps.spawnFlow(pos,6,0,0,50000) end)
--do not call real item creation code
call_native.value=false

end)

Grenade example:

b=require "plugins.eventful"
b.onProjItemCheckImpact.one=function(projectile)
-- you can check if projectile.item e.g. has correct material
dfhack.maps.spawnFlow(projectile.cur_pos,6,0,0,50000)

end

Integrated tannery:

b=require "plugins.eventful"
b.addReactionToShop("TAN_A_HIDE","LEATHERWORKS")

luasocket

A way to access csocket from lua. The usage is made similar to luasocket in vanilla lua distributions. Currently only a
subset of the functions exist and only tcp mode is implemented.

• Socket class

• Client class

7.6. DFHack Lua API Reference 553

DFHack Documentation, Release 50.11-r4

• Server class

• Tcp class

Socket class

This is a base class for client and server sockets. You can not create it - it’s like a virtual base class in c++.

• socket:close()

Closes the connection.

• socket:setTimeout(sec,msec)

Sets the operation timeout for this socket. It’s possible to set timeout to 0. Then it performs like a non-blocking
socket.

Client class

Client is a connection socket to a server. You can get this object either from tcp:connect(address,port) or from
server:accept(). It’s a subclass of socket.

• client:receive(pattern)

Receives data. Pattern is one of:

*l read one line (default, if pattern is nil)

<number> read specified number of bytes

*a read all available data

• client:send(data)

Sends data. Data is a string.

Server class

Server is a socket that is waiting for clients. You can get this object from tcp:bind(address,port).

• server:accept()

Accepts an incoming connection if it exists. Returns a client object representing that socket.

Tcp class

A class with all the tcp functionality.

• tcp:bind(address,port)

Starts listening on that port for incoming connections. Returns server object.

• tcp:connect(address,port)

Tries connecting to that address and port. Returns client object.

554 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

map-render

A way to ask DF to render a section of the fortress mode map. This uses a native DF rendering function so it’s highly
dependent on DF settings (e.g. tileset, colors, etc.)

Functions

• render_map_rect(x,y,z,w,h)

returns a table with w*h*4 entries of rendered tiles. The format is the same as df.global.gps.screen
(tile,foreground,bright,background).

pathable

This plugin implements the back end of the gui/pathable script. It exports a single Lua function, in hack/lua/
plugins/pathable.lua:

• paintScreen(cursor[,skip_unrevealed]): Paint each visible of the screen green or red, depending on
whether it can be pathed to from the tile at cursor. If skip_unrevealed is specified and true, do not draw
unrevealed tiles.

reveal

Native functions provided by the reveal plugin:

• void unhideFlood(pos): Unhides map tiles according to visibility rules, starting from the given coordinates.
This algorithm only processes adjacent hidden tiles, so it must start on a hidden tile in order to have any effect.
It will not reveal hidden sections separated by already-unhidden tiles.

Example of revealing a cavern that happens to have an open tile at the specified coordinate:

unhideFlood({x=25, y=38, z=140})

sort

The sort plugin does not export any native functions as of now. Instead, it calls Lua code to perform the actual ordering
of list items.

tiletypes

• bool tiletypes_setTile(pos, shape, material, special, variant) where the parameters are
enum values from df.tiletype_shape, df.tiletype_material, etc. Returns whether the conversion suc-
ceeded.

7.6. DFHack Lua API Reference 555

DFHack Documentation, Release 50.11-r4

xlsxreader

Utility functions to facilitate reading .xlsx spreadsheets. It provides the following low-level API methods:

• open_xlsx_file(filename) returns a file_handle or nil on error

• close_xlsx_file(file_handle) closes the specified file_handle

• list_sheets(file_handle) returns a list of strings representing sheet names

• open_sheet(file_handle, sheet_name) returns a sheet_handle. This call always succeeds, even if the
sheet doesn’t exist. Non-existent sheets will have no data, though.

• close_sheet(sheet_handle) closes the specified sheet_handle

• get_row(sheet_handle, max_tokens) returns a list of strings representing the contents of the cells in the
next row. The max_tokens parameter is optional. If set to a number > 0, it limits the number of cells read and
returned for the row.

The plugin also provides Lua class wrappers for ease of use:

• XlsxioReader provides access to .xlsx files

• XlsxioSheetReader provides access to sheets within .xlsx files

• open(filepath) initializes and returns an XlsxioReader object

The XlsxioReader class has the following methods:

• XlsxioReader:close() closes the file. Be sure to close any open child sheet handles first!

• XlsxioReader:list_sheets() returns a list of strings representing sheet names

• XlsxioReader:open_sheet(sheet_name) returns an initialized XlsxioSheetReader object

The XlsxioSheetReader class has the following methods:

• XlsxioSheetReader:close() closes the sheet

• XlsxioSheetReader:get_row(max_tokens) reads the next row from the sheet. If max_tokens is specified
and is a positive integer, only the first max_tokens elements of the row are returned.

Here is an end-to-end example:

local xlsxreader = require('plugins.xlsxreader')

local function dump_sheet(reader, sheet_name)
print('reading sheet: ' .. sheet_name)
local sheet_reader = reader:open_sheet(sheet_name)
dfhack.with_finalize(

function() sheet_reader:close() end,
function()

local row_cells = sheet_reader:get_row()
while row_cells do

printall(row_cells)
row_cells = sheet_reader:get_row()

end
end

)
end

local filepath = 'path/to/some_file.xlsx'
(continues on next page)

556 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

local reader = xlsxreader.open(filepath)
dfhack.with_finalize(

function() reader:close() end,
function()

for _,sheet_name in ipairs(reader:list_sheets()) do
dump_sheet(reader, sheet_name)

end
end

)

7.6.6 Scripts

• General script API

• Importing scripts

• Enabling and disabling scripts

• Save init script

Any files with the .lua extension placed into the hack/scripts folder (or any other folder in your Script paths) are
automatically made available as DFHack commands. The command corresponding to a script is simply the script’s
filename, relative to the scripts folder, with the extension omitted. For example:

• dfhack-config/scripts/startup.lua is invoked as startup

• hack/scripts/gui/teleport.lua is invoked as gui/teleport

Note: In general, scripts should be placed in subfolders in the following situations:

• devel: scripts that are intended exclusively for DFHack development, including examples, or scripts that are
experimental and unstable

• fix: fixes for specific DF issues

• gui: GUI front-ends for existing tools (for example, see the relationship between teleport and gui/teleport)

• modtools: scripts that are intended to be run exclusively as part of mods, not directly by end-users (as a rule
of thumb: if someone other than a mod developer would want to run a script from the console, it should not be
placed in this folder)

Scripts are read from disk when run for the first time, or if they have changed since the last time they were run.

Each script has an isolated environment where global variables set by the script are stored. Values of globals persist
across script runs in the same DF session. See devel/lua-example for an example of this behavior. Note that local
variables do not persist.

Arguments are passed in to the scripts via the ... built-in quasi-variable; when the script is called by the DFHack core,
they are all guaranteed to be non-nil strings.

Additional data about how a script is invoked is passed to the script as a special dfhack_flags global, which is unique
to each script. This table is guaranteed to exist, but individual entries may be present or absent depending on how the
script was invoked. Flags that are present are described in the subsections below.

7.6. DFHack Lua API Reference 557

DFHack Documentation, Release 50.11-r4

DFHack invokes the scripts in the core context; however it is possible to call them from any lua code (including from
other scripts) in any context with dfhack.run_script() below.

General script API

• dfhack.run_script(name[,args...])

Run a Lua script in your Script paths, as if it were started from the DFHack command-line. The name argument
should be the name of the script without its extension, as it would be used on the command line.

Example:

In DFHack prompt:

repeat -time 14 -timeUnits days -command [workorder ShearCreature] -name␣
→˓autoShearCreature

In Lua script:

dfhack.run_script("repeat", "-time", "14", "-timeUnits", "days", "-command", "[",
→˓"workorder", "ShearCreature", "]", "-name", "autoShearCreature")

Note that the dfhack.run_script() function allows Lua errors to propagate to the caller.

To run other types of commands (i.e. built-in commands or commands provided by plugins), see dfhack.
run_command(). Note that this is slightly slower than dfhack.run_script() when running Lua scripts.

• dfhack.script_help([name, [extension]])

Returns the contents of the rendered (or embedded) DFHack documentation system for the specified script.
extension defaults to “lua”, and name defaults to the name of the script where this function was called. For
example, the following can be used to print the current script’s help text:

local args = {...}
if args[1] == 'help' then

print(script_help())
return

end

Importing scripts

• dfhack.reqscript(name) or reqscript(name)

Loads a Lua script and returns its environment (i.e. a table of all global functions and variables). This is similar
to the built-in require(), but searches all Script paths for the first matching name.lua file instead of searching
the Lua library paths (like hack/lua/).

Most scripts can be made to support reqscript() without significant changes (in contrast, require() requires
the use of mkmodule() and some additional boilerplate). However, because scripts can have side effects when
they are loaded (such as printing messages or modifying the game state), scripts that intend to support being
imported must satisfy some criteria to ensure that they can be imported safely:

1. Include the following line - reqscript() will fail if this line is not present:

--@ module = true

558 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

2. Include a check for dfhack_flags.module, and avoid running any code that has side-effects if this flag
is true. For instance:

-- (function definitions)
if dfhack_flags.module then

return
end
-- (main script code with side-effects)

or:

-- (function definitions)
function main()

-- (main script code with side-effects)
end
if not dfhack_flags.module then

main()
end

Example usage:

local addThought = reqscript('add-thought')
addThought.addEmotionToUnit(unit, ...)

Circular dependencies between scripts are supported, as long as the scripts have no side-effects at load time
(which should already be the case per the above criteria).

Warning: Avoid caching the table returned by reqscript() beyond storing it in a local variable as in the
example above. reqscript() is fast for scripts that have previously been loaded and haven’t changed. If
you retain a reference to a table returned by an old reqscript() call, this may lead to unintended behavior
if the location of the script changes (e.g. if a save is loaded or unloaded, or if a script path is added in some
other way).

Tip

Mods that include custom Lua modules can write these modules to support reqscript() and distribute them
as scripts in raw/scripts. Since the entire raw folder is copied into new saves, this will allow saves to be
successfully transferred to other users who do not have the mod installed (as long as they have DFHack installed).

Backwards compatibility notes

For backwards compatibility, moduleMode is also defined if dfhack_flags.module is defined, and is set to
the same value. Support for this may be removed in a future version.

• dfhack.script_environment(name)

Similar to reqscript() but does not enforce the check for module support. This can be used to import scripts
that support being used as a module but do not declare support as described above, although it is preferred to
update such scripts so that reqscript() can be used instead.

7.6. DFHack Lua API Reference 559

DFHack Documentation, Release 50.11-r4

Enabling and disabling scripts

Scripts can choose to recognize the built-in enable and disable commands by including the following line near the
top of their file:

--@enable = true
--@module = true

Note that enableable scripts must also be modules so their isEnabled() functions can be called from outside the
script.

When the enable and disable commands are invoked, the dfhack_flags table passed to the script will have the
following fields set:

• enable: Always true if the script is being enabled or disabled

• enable_state: true if the script is being enabled, false otherwise

If you declare a global function named isEnabled that returns a boolean indicating whether your script is enabled,
then your script will be listed among the other enableable scripts and plugins when the player runs the enable command.

Example usage:

--@enable = true
--@module = true

enabled = enabled or false
function isEnabled()

return enabled
end

-- (function definitions...)

if dfhack_flags.enable then
if dfhack_flags.enable_state then

start()
enabled = true

else
stop()
enabled = false

end
end

If the state of your script can be tied to an active savegame, then your script should hook the appropriate events to load
persisted state when a savegame is loaded. For example:

local json = require('json')
local persist = require('persist-table')

local GLOBAL_KEY = 'my-script-name'
g_state = g_state or {}

dfhack.onStateChange[GLOBAL_KEY] = function(sc)
if sc ~= SC_MAP_LOADED or df.global.gamemode ~= df.game_mode.DWARF then

return
end

(continues on next page)

560 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

local state = json.decode(persist.GlobalTable[GLOBAL_KEY] or '')
g_state = state or {}

end

The attachment to dfhack.onStateChange should appear in your script code outside of any function. DFHack will
load your script as a module just before the SC_DFHACK_INITIALIZED state change event is sent, giving your code an
opportunity to run and attach hooks before the game is loaded.

If an enableable script is added to a DFHack script path while DF is running, then it will miss the initial sweep that
loads all the module scripts and any onStateChange handlers the script may want to register will not be registered
until the script is loaded via some means, either by running it or loading it as a module. If you just added new scripts
that you want to load so they can attach their onStateChange handlers, run enable without parameters or call :lua
require('script-manager').reload() to scan and load all script modules.

Save init script

If a save directory contains a file called init.lua, it is automatically loaded and executed every time the save is loaded.
The same applies to any files called init.d/*.lua. Every such script can define the following functions to be called
by dfhack:

• function onStateChange(op) ... end

Automatically called from the regular onStateChange event as long as the save is still loaded. This avoids the
need to install a hook into the global dfhack.onStateChange table, with associated cleanup concerns.

• function onUnload() ... end

Called when the save containing the script is unloaded. This function should clean up any global hooks installed
by the script. Note that when this is called, the world is already completely unloaded.

Within the init script, the path to the save directory is available as SAVE_PATH.

7.7 DFHack overlay dev guide

This guide walks you through how to build overlay widgets and register them with the overlay framework for injection
into Dwarf Fortress viewscreens.

7.7.1 Why would I want to create an overlay widget?

There are both C++ and Lua APIs for creating viewscreens and drawing to the screen. If you need very specific low-level
control, those APIs might be the right choice for you. However, here are some reasons you might want to implement
an overlay widget instead:

1. You can draw directly to an existing viewscreen instead of creating an entirely new screen on the viewscreen
stack. This allows the original viewscreen to continue processing uninterrupted and keybindings bound to that
viewscreen will continue to function. This was previously only achievable by C++ plugins.

2. You’ll get a free UI for enabling/disabling your widget and repositioning it on the screen. Widget state is saved
for you and is automatically restored when the game is restarted.

3. You don’t have to manage the C++ interposing logic yourself and can focus on the business logic, writing purely
in Lua if desired.

7.7. DFHack overlay dev guide 561

DFHack Documentation, Release 50.11-r4

In general, if you are writing a plugin or script and have anything you’d like to add to an existing screen (including live
updates of map tiles while the game is unpaused), an overlay widget is probably your easiest path to get it done. If your
plugin or script doesn’t otherwise need to be enabled to function, using the overlay allows you to avoid writing any of
the enable management code that would normally be required for you to show info in the UI.

7.7.2 Overlay widget API

Overlay widgets are Lua classes that inherit from overlay.OverlayWidget (which itself inherits from widgets.Panel).
The regular onInput(keys), onRenderFrame(dc, frame_rect), and onRenderBody(dc) functions work as nor-
mal, and they are called when the viewscreen that the widget is associated with does its usual input and render pro-
cessing. The widget gets first dibs on input processing. If a widget returns true from its onInput() function, the
viewscreen will not receive the input.

Overlay widgets can contain other Widgets and be as simple or complex as you need them to be, just like you’re building
a regular UI element.

There are a few extra capabilities that overlay widgets have that take them beyond your everyday Widget:

• If an overlay_onupdate(viewscreen) function is defined, it will be called just after the associated
viewscreen’s logic() function is called (i.e. a “tick” or a (non-graphical) “frame”). For hotspot widgets,
this function will also get called after the top viewscreen’s logic() function is called, regardless of
whether the widget is associated with that viewscreen. If this function returns true, then the widget’s
overlay_trigger() function is immediately called. Note that the viewscreen parameter will be nil
for hotspot widgets that are not also associated with the current viewscreen.

• If an overlay_trigger() function is defined, will be called when the widget’s overlay_onupdate call-
back returns true or when the player uses the CLI (or a keybinding calling the CLI) to trigger the widget.
The function must return either nil or the gui.Screen object that the widget code has allocated, shown,
and now owns. Hotspot widgets will receive no callbacks from unassociated viewscreens until the returned
screen is dismissed. Unbound hotspot widgets must allocate a Screen with this function if they want to
react to the onInput() feed or be rendered. The widgets owned by the overlay framework must not be
attached to that new screen, but the returned screen can instantiate and configure any new views that it
wants to.

If the widget can take up a variable amount of space on the screen, and you want the widget to adjust its position
according to the size of its contents, you can modify self.frame.w and self.frame.h at any time – in init() or in
any of the callbacks – to indicate a new size. The overlay framework will detect the size change and adjust the widget
position and layout.

If you don’t need to dynamically resize, just set self.frame.w and self.frame.h once in init().

Widget attributes

The overlay.OverlayWidget superclass defines the following class attributes:

• name This will be filled in with the display name of your widget, in case you have multiple widgets with the
same implementation but different configurations.

• version You can set this to any string. If the version string of a loaded widget does not match the saved settings
for that widget, then the configuration for the widget (position, enabled status) will be reset to defaults.

• default_pos (default: {x=-2, y=-2}) Override this attribute with your desired default widget position. See
the overlay docs for information on what positive and negative numbers mean for the position. Players can
change the widget position at any time via the overlay position command, so don’t assume that your widget
will always be at the default position.

562 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• default_enabled (default: false) Override this attribute if the overlay should be enabled by default if it does
not already have a state stored in dfhack-config/overlay.json.

• viewscreens (default: {}) The list of viewscreens that this widget should be associated with. When one of
these viewscreens is on top of the viewscreen stack, your widget’s callback functions for update, input,
and render will be interposed into the viewscreen’s call path. The name of the viewscreen is the name
of the DFHack class that represents the viewscreen, minus the viewscreen_ prefix and st suffix. For
example, the fort mode main map viewscreen would be dwarfmode and the adventure mode map viewscreen
would be dungeonmode. If there is only one viewscreen that this widget is associated with, it can be
specified as a string instead of a list of strings with a single element. If you only want your widget to appear
in certain contexts, you can specify a focus path, in the same syntax as the keybinding command. For
example, dwarfmode/Info/CREATURES/CITIZEN will ensure the overlay widget is only displayed when
the “Citizens” subtab under the “Units” panel is active.

• hotspot (default: false) If set to true, your widget’s overlay_onupdate function will be called whenever
the overlay plugin’s plugin_onupdate() function is called (which corresponds to one call per call to the
current top viewscreen’s logic() function). This call to overlay_onupdate is in addition to any calls
initiated from associated interposed viewscreens and will come after calls from associated viewscreens.

• overlay_only (default: false) If set to true, no widget frame will be drawn in gui/overlay for drag and drop
repositioning. Overlay widgets that don’t have a “widget” to reposition should set this to true.

• overlay_onupdate_max_freq_seconds (default: 5) This throttles how often a widget’s
overlay_onupdate function can be called (from any source). Set this to the largest amount of
time (in seconds) that your widget can take to react to changes in information and not annoy the player.
Set to 0 to be called at the maximum rate. Be aware that running more often than you really need to will
impact game FPS, especially if your widget can run while the game is unpaused. If you change the value
of this attribute dynamically, it may not be noticed until the previous timeout expires. However, if you
need a burst of high-frequency updates, set it to 0 and it will be noticed immediately.

Registering a widget with the overlay framework

Anywhere in your code after the widget classes are declared, define a table named OVERLAY_WIDGETS. The keys are
the display names for your widgets and the values are the widget classes. For example, the dwarfmonitor widgets are
declared like this:

OVERLAY_WIDGETS = {
cursor=CursorWidget,
date=DateWidget,
misery=MiseryWidget,
weather=WeatherWidget,

}

When the overlay plugin is enabled, it scans all plugins and scripts for this table and registers the widgets on your
behalf. Plugin lua code is loaded with require() and script lua code is loaded with reqscript(). If your widget
is in a script, ensure your script can be loaded as a module, or else the widget will not be discoverable. The widget
is enabled on load if it was enabled the last time the overlay plugin was loaded, and the widget’s position is restored
according to the state saved in the dfhack-config/overlay.json file.

The overlay framework will instantiate widgets from the named classes and own the resulting objects. The instantiated
widgets must not be added as subviews to any other View, including the Screen views that can be returned from the
overlay_trigger() function.

7.7. DFHack overlay dev guide 563

DFHack Documentation, Release 50.11-r4

7.7.3 Development workflows

When you are developing an overlay widget, you will likely need to reload your widget many times as you make changes.
The process for this differs slightly depending on whether your widget is attached to a plugin or is implemented in a
script.

Note that reloading a script does not clear its global environment. This is fine if you are changing existing functions
or adding new ones. If you remove a global function or other variable from the source, though, it will stick around in
your script’s global environment until you restart DF or run devel/clear-script-env.

Scripts

1. Edit the widget source

2. If the script is not in your Script paths, install your script (see the DFHack modding guide for help setting up a
dev environment so that you don’t need to reinstall your scripts after every edit).

3. Call :lua require('plugins.overlay').rescan() to reload your overlay widget

Plugins

1. Edit the widget source

2. Install the plugin so that the updated code is available in hack/lua/plugins/

3. If you have changed the compiled plugin, reload it

4. If you have changed the lua code, run :lua reload('plugins.mypluginname')

5. Call :lua require('plugins.overlay').rescan() to reload your overlay widget

7.7.4 Troubleshooting

If your widget is not getting discovered by the overlay framework, double check that:

1. OVERLAY_WIDGETS is declared, is global (not local), and contains your widget class

2. (if a script) your script is declared as a module (--@ module = true) and it does not have side effects when
loaded as a module (i.e. you check dfhack_flags.module and return before executing any statements if the
value is true)

3. your code does not have syntax errors – run :lua ~reqscript('myscriptname') (if a script) or :lua
~require('plugins.mypluginname') (if a plugin) and make sure there are no errors and the global en-
vironment contains what you expect.

If your widget is not running when you expect it to be running, run gui/overlay when on the target screen and check
to see if your widget is listed when showing overlays for the current screen. If it’s not there, verify that this screen is
included in the viewscreens list in the widget class attributes.

564 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.7.5 Widget example 1: adding text to a DF screen

This is a simple widget that displays a message at its position. The message text is retrieved from the host script or
plugin every ~20 seconds or when the AltZ hotkey is hit:

local overlay = require('plugins.overlay')
local widgets = require('gui.widgets')

MessageWidget = defclass(MessageWidget, overlay.OverlayWidget)
MessageWidget.ATTRS{

default_pos={x=5,y=-2},
viewscreens={'dwarfmode', 'dungeonmode'},
overlay_onupdate_max_freq_seconds=20,

}

function MessageWidget:init()
self:addviews{

widgets.Label{
view_id='label',
text='',

},
}

end

function MessageWidget:overlay_onupdate()
local text = getImportantMessage() -- defined in the host script/plugin
self.subviews.label:setText(text)
self.frame.w = #text

end

function MessageWidget:onInput(keys)
if keys.CUSTOM_ALT_Z then

self:overlay_onupdate()
return true

end
end

OVERLAY_WIDGETS = {message=MessageWidget}

7.7.6 Widget example 2: highlighting artifacts on the live game map

This widget is not rendered at its “position” at all, but instead monitors the map and overlays information about where
artifacts are located. Scanning for which artifacts are visible on the map can slow, so that is only done every 10 seconds
to avoid slowing down the entire game on every frame.

local overlay = require('plugins.overlay')
local widgets = require('gui.widgets')

ArtifactRadarWidget = defclass(ArtifactRadarWidget, overlay.OverlayWidget)
ArtifactRadarWidget.ATTRS{

viewscreens={'dwarfmode', 'dungeonmode'},
overlay_onupdate_max_freq_seconds=10,

(continues on next page)

7.7. DFHack overlay dev guide 565

DFHack Documentation, Release 50.11-r4

(continued from previous page)

}

function ArtifactRadarWidget:overlay_onupdate()
self.visible_artifacts_coords = getVisibleArtifactCoords()

end

function ArtifactRadarWidget:onRenderFrame()
for _,pos in ipairs(self.visible_artifacts_coords) do

-- highlight tile at given coordinates
end

end

OVERLAY_WIDGETS = {radar=ArtifactRadarWidget}

7.7.7 Widget example 3: corner hotspot

This hotspot reacts to mouseover events and launches a screen that can react to input events. The hotspot area is a 2x2
block near the lower right corner of the screen (by default, but the player can move it wherever).

local overlay = require('plugins.overlay')
local widgets = require('gui.widgets')

HotspotMenuWidget = defclass(HotspotMenuWidget, overlay.OverlayWidget)
HotspotMenuWidget.ATTRS{

default_pos={x=-3,y=-3},
frame={w=2, h=2},
hotspot=true,
viewscreens='dwarfmode',
overlay_onupdate_max_freq_seconds=0, -- check for mouseover every tick

}

function HotspotMenuWidget:init()
-- note this label only gets rendered on the associated viewscreen
-- (dwarfmode), but the hotspot is active on all screens
self:addviews{widgets.Label{text={'!!', NEWLINE, '!!'}}}
self.mouseover = false

end

function HotspotMenuWidget:overlay_onupdate()
local hasMouse = self:getMousePos()
if hasMouse and not self.mouseover then -- only trigger on mouse entry

self.mouseover = true
return true

end
self.mouseover = hasMouse

end

function HotspotMenuWidget:overlay_trigger()
return MenuScreen{hotspot_frame=self.frame}:show()

end

(continues on next page)

566 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

(continued from previous page)

OVERLAY_WIDGETS = {menu=HotspotMenuWidget}

MenuScreen = defclass(MenuScreen, gui.ZScreen)
MenuScreen.ATTRS{

focus_path='hotspot/menu',
hotspot_frame=DEFAULT_NIL,

}

function MenuScreen:init()
self.mouseover = false

-- derrive the menu frame from the hotspot frame so it
-- can appear in a nearby location
local frame = copyall(self.hotspot_frame)
-- ...

self:addviews{
widgets.Window{

frame=frame,
autoarrange_subviews=true,
subviews={

-- ...
},

},
},

}
end

7.8 DF data definitions (DF-structures)

DFHack’s information about DF’s data structures is stored in XML files in the df-structures repository. If you have
obtained a local copy of the DFHack source, DF-structures is included as a submodule in library/xml.

Data structure layouts are described in files named with the df.*.xml pattern. This information is transformed by a
Perl script (codegen.pl) into C++ headers, as well as metadata for the Lua wrapper. This ultimately allows DFHack
code to access DF data directly, with the same speed and capabilities as DF itself, which is an advantage over the
older out-of-process approach (used by debuggers and utilities like Dwarf Therapist). The main disadvantage of this
approach is that any compiled code relying on these layouts will break when DF’s layout changes, and will need to be
recompiled for every new DF version.

Addresses of DF global objects and vtables are stored in a separate file, symbols.xml. Since these are only absolute
addresses, they do not need to be compiled into DFHack code, and are instead loaded at runtime. This makes fixes and
additions to global addresses possible without recompiling DFHack. In an installed copy of DFHack, this file can be
found at the root of the hack folder.

The following pages contain more detailed information about various aspects of DF-structures:

7.8. DF data definitions (DF-structures) 567

https://github.com/DFHack/df-structures

DFHack Documentation, Release 50.11-r4

7.8.1 Data Structure Definition Syntax

Contents

• General Background

• XML file format

– Enum type definition

∗ Enum item attributes

– Bitfield type definition

– Structure type definition

∗ Common field properties

∗ Primitive fields

∗ Substructure fields

∗ Tagged unions

∗ Enum fields

∗ Nested bitfields

∗ Container fields

· Abstract container

· Pointer fields

· Abstract sequence

· Standard containers

· DF-specific containers

– Class type definition

∗ Virtual method definition

– Global object definition

– Symbol table definition

• Lisp Integration

– Reference expressions

∗ Dereference syntax

∗ Basic properties

– Reference objects

∗ Primitive types

∗ Enums

∗ Pointers

∗ Compounds

∗ Sequences

568 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– Code helpers

– Examples

This document documents the XML syntax used to define DF data structures for use in dfhack.

General Background

Originally dfhack used a file called Memory.xml to describe data structures of the game. It explicitly listed addresses
of known global variables, and offsets within structures to fields, not unlike the ini files used by Dwarf Therapist.

This format is a good choice when only a small number of fields and objects need to be accessed, and allows a program
to work with many different versions of DF, provided that the relevant fields and objects work in the same way.

However, as the number of known fields and objects grow, maintaining the explicit offset lists quickly becomes difficult
and error prone. Also, even when almost all fields of a structure become known, the format fails to represent and exploit
their relative position, which in practice is actually more stable than the specific offset values.

This format instead represents data structure layout purely via listing all fields in the correct order, exactly like a structure
definition does in the C++ language itself; in fact, these XML definitions are translated into C++ headers in a mostly
straightforward way (the more tricky bits are things like correctly processing circular references, or generating metadata
for lua). There is still a file with numeric data, but it only contains absolute addresses of global objects.

As a downside, dfhack now needs to be recompiled every time layout of some data structure changes; on the other hand,
accessing DF structures from C++ plugins now has no overhead compared with DF’s own code. Also, practice shows
that the more fields are known in a structure, the easier it is to spot what exactly has changed, and fix the exact area.

XML file format

All XML files use <data-definition> as their root tag.

They should be indented using 4 spaces per level, without tabs.

Unless noted otherwise, all non-root tags allow using a comment attribute, or a <comment>...</comment> subtag. It
may be used to include a comment string that can be used by tools processing the xml.

Excluding content of tags like <comment> or <code-helper>, all plain text inside tag bodies is ignored and may be
freely used instead of XML comments.

NOTE: Using XML tags and/or attributes not defined in this document is not allowed.

Enum type definition

Global enum types are defined as follows:

<enum-type type-name='name' [base-type='int32_t']>
<enum-item [name='key1'] [value='0']/>
<enum-item [name='key2'] [value='1']/>
...

</enum-type>

Every enum has an integer base type, which defaults to int32_t if omitted.

Like in C++, enum items may either explicitly specify an integer value, or rely on auto-increment behavior.

As in most cases, the name attribute may be omitted if unknown; the code generator would produce a random identifier
to satisfy C++ language requirements.

7.8. DF data definitions (DF-structures) 569

DFHack Documentation, Release 50.11-r4

Enum item attributes

The XML syntax allows associating attributes with enum items, thus embedding lookup tables for use in C++ or lua
code.

Every attribute must be declared at the top level of the enum:

<enum-attr name='attr'
[type-name='primitive-or-enum']
[default-value='...']
[use-key-name='true/false']
[is-list='true/false']/>

The declaration allows specifying a numeric, or other enum type for the attribute, overriding the default const char*
string type.

An explicit default value may also be specified; otherwise the attribute defaults to NULL or 0. If use-key-name is
true, the corresponding enum-item’s name is used as the default value.

Alternatively, an attribute may be declared to be a list, instead of a scalar. In this case, the default is an empty list.

NOTE: Attribute name 'key' is reserved for a built-in string attribute representing the enum item key.

For every declared attribute, every enum-item tag may contain an attribute value definition:

<enum-item name='key'>
<item-attr name='attr' value='...'/>
...

</enum-item>

For list attributes, multiple item-attr entries may be used to define the list contents.

Bitfield type definition

Global bitfield types are defined as follows:

<bitfield-type type-name='name' [base-type='uint32_t']>
<flag-bit [name='bit1'] [count='1'] [type-name='enum']/>
<flag-bit [name='bit2'] [count='1'] [type-name='enum']/>
...

</bitfield-type>

Like enums, bitfields have an integer base type, which defaults to uint32_t. The total number of bits in the bitfield must
not exceed the base type size.

A bitfield item may be defined to occupy multiple bits via the count attribute. It also may have an enum type; due to
compiler limitations, the base-type of the enum must be exactly the same as the bitfield itself.

570 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structure type definition

Structures without virtual methods are defined as follows:

<struct-type type-name='name'
[is-union='true/false']
[inherits-from='struct_type']
[instance-vector='expr']
[key-field='identifier']>

...
fields
...

</struct-type>

The instance-vector attribute may be used to specify a global vector that canonically contains all instances of the
structure. Code generation uses it to produce a find static method. If key-field is specified, this method uses binary
search by the referred field; otherwise it just indexes the vector with its integer argument.

Common field properties

All fields support the following attributes:

name Specifies the identifier naming the field.

This attribute may be omitted, in which case the code generator produces a random identifier. As follows from
the word random, such identifiers aren’t stable, and shouldn’t be used to access the field.

init-value Specifies the value that should be assigned to the field by the constructor. By default the following values
are used:

• For enums: the first element of the enum.

• For signed integer fields with ref-target or refers-to: -1.

• For other numeric fields, pointers and bitfields: 0.

offset, size, alignment Specifies the offset, size and alignment in bytes.

WARNING: Although allowed for any field by the XML syntax, and supported by the lisp GUI tool, code
generation will fail with these attributes except in cases specifically shown below.

With the above caveat, size and alignment may also be used on the struct-type tag itself.

Primitive fields

Primitive fields can be classified as following:

1) Unmarked area:

<padding name='id' size='bytes' [alignment='1/2/4'] .../>

This tag defines an area of raw bytes with unknown contents.

2) Numbers:

<int32_t name='id'.../>

7.8. DF data definitions (DF-structures) 571

DFHack Documentation, Release 50.11-r4

Supported number types are: int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t,
uint64_t, s-float (single float), d-float (double float).

3) Boolean:

<bool name='id'.../>

4) String:

<static-string name='id' size='bytes'.../>
<ptr-string name='id'.../>
<stl-string name='id'.../>

These tags correspond to char[bytes], char*, and std::string.

4) File Stream:

<stl-fstream name='id'/>

This is not really a primitive type, but classified as such since it is treated as a predefined opaque object (a-la
padding).

Primitives support the following attributes:

refers-to='expr'

Specifies a GUI hyperlink to an object returned by an arbitrary expression.

The expression receives the value of the field as $, and the reference to the field as $$.

ref-target='type'

Specifies a hyperlink to an instance of type, identified by the value of the field. The instance is retrieved
via instance-vector and key-field, or a <code-helper name='find-instance'> in the target type def-
inition.

aux-value='expr'

Specifies an additional value for use in the find-instance code helper.

Unlike refers-to, the expression receives the reference to the field as $, and a reference to the containing
structure as $$; i.e. the arguments are shifted one step toward parent. This is because the value of the field
is already implicitly passed to find-instance.

The find-instance helper receives the field value as $, and aux-value as $$.

Substructure fields

Nested structures are defined via the compound tag:

<compound name='id' type-name='struct_type'/>

<compound [name='id'] [is-union='true/false'] [key-field='id']>
...
field
...

</compound>

As seen above, a nested structure may either use a global type defined elsewhere, or define an ad-hoc structure in-place.
In the in-place case, omitting name has a special meaning of defining an anonymous nested struct or union.

572 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Tagged unions

Union compounds and vectors of union compounds can additionally have union-tag-field and union-tag-attr
attributes.

union-tag-field sets the name of the field that holds the tag for the union. Union compounds must have tags that
are enumeration fields, while vectors of union compounds can have tags that are vectors of an enumeration type, or in
the case of a union with exactly 2 members, a bit vector.

union-tag-attr overrides the name used to find the union member. By default, the field with a name equal to the
enum key is chosen. When this attribute is set, the specified enum attr will be used instead.

Enum fields

Fields of enum types are defined as follows:

<enum name='id' type-name='enum_type' [base-type='int32_t']/>

<enum name='id' [base-type='int32_t']>
<enum-item name='key1'.../>
...

</enum>

Like with substructures, enums may be either referenced globals, or ad-hoc definitions.

In the former case, when base-type of the field and the enum differ, a special wrapper is added to coerce the size, or,
if impossible, the enum type is completely replaced with the base-type. The net effect is that the field always has the
expected size and alignment.

If no base-type is specified on the field, the one in the global type definition has complete precedence. This is not
recommended.

Nested bitfields

Ad-hoc bitfields are defined as follows:

<bitfield name='id' [base-type='uint32_t']>
<flag-bit name='key1'.../>
...

</bitfield>

In order to reference a global type, use <compound>.

Container fields

A number of tags fall under the ‘container’ abstraction. The common element is that the fields they define reference
objects of another type. This includes things like pointers, arrays or vectors.

7.8. DF data definitions (DF-structures) 573

DFHack Documentation, Release 50.11-r4

Abstract container

The basic syntactic property of a container is that it requires exactly one nested field tag in order to specify the contained
item:

<container>
<field .../>

</container>

NOTE: The container tag is used here as a placeholder for any real tag following the container syntax.

For convenience, the following automatic rewrite rules are applied:

1) The type-name attribute:

<container type-name='foo' .../>

is rewritten into:

<container ...>
<compound type-name='foo' .../>

</container>

or, if foo is a primitive type:

<container ...>
<foo .../>

</container>

2) The pointer-type attribute:

<container pointer-type='foo' .../>

is rewritten into:

<container ...>
<pointer type-name='foo' .../>

</container>

3) Multiple nested fields:

<container ...>
<field1 .../>
<field2 .../>

</container>

are aggregated together:

<container ...>
<compound ...>

<field1 .../>
<field2 .../>

</compound>
</container>

4) If no item is specified, padding is assumed:

574 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

<container>
<padding size='4'/>

</container>

NOTE: These rules are mutually exclusive, and it is an error to specify both of the attributes (unless it is
type-name='pointer'), or combine nested fields with any of them.

When the above rewrites are applied and result in creation of a new tag, the following attributes are copied to it from
the container tag, if applicable: key-field, refers-to, ref-target, aux-value. They otherwise have no effect
on the container itself.

This means that:

<container pointer-type='int32_t' ref-target='foo'/>

eventually rewrites to:

<container pointer-type='int32_t' ref-target='foo'>
<pointer type-name='int32_t' ref-target='foo'>

<int32_t ref-target='foo'/>
</pointer>

</container>

Abstract containers allow the following attributes:

has-bad-pointers='true'

Tells the GUI tool to ignore this field in some of its memory scans, because this container may contain
invalid pointers, which can confuse the analysis code.

Pointer fields

As seen above, the pointer tag is a subtype of abstract container.

If the pointer refers to an array of objects, instead of one instance, the is-array attribute should be used:

<pointer type-name=’foo’ is-array=’true’/>

Currently this attribute is ignored by C++ code generation, but the GUI tool properly displays such fields as arrays.

Abstract sequence

Containers that actually contain a sequence of objects support these additional attributes:

index-refers-to='expr'

Specifies a GUI hyperlink from any item in the container to the object returned by the expression.

The expression receives the index of the item in the container as $, and a reference to the container as $$.

index-enum='enum_type'

Associates an enum with the indices of the container. The GUI tries to use enum item names instead of
numbers when displaying the items, and lua may allow using strings as indices.

7.8. DF data definitions (DF-structures) 575

DFHack Documentation, Release 50.11-r4

Standard containers

<static-array name='id' count='123' .../>

Defines a simple C++ array of the specified length.

<stl-vector name='id'.../>

Defines an std::vector<item> field.

<stl-deque name='id'.../>

Defines an std::deque<item> field.

<stl-set name='id'.../>

Defines an std::set<item> field.

<stl-bit-vector name='id'.../>

Defines an std::vector<bool> field.

STL defines vector<bool> as a special type that actually contains bits. These XML definitions use a
separate tag for it; <stl-vector type-name='bool'/> is rendered into C++ as vector<char>.

DF-specific containers

These are defined in df-code.lisp:

<df-flagarray name='id' index-enum='enum'/>

Defines a BitArray<enum> field.

<df-static-flagarray name='id' index-enum='enum' count='numbytes'/>

Defines a StaticBitArray<numbytes,enum> field.

<df-array name='id' .../>

Defines a DfArray<item> field.

<df-linked-list name='id' type-name='foo_link'/>

Defines an ad-hoc DF-style linked list. In C++ actually equivalent to:

<compound type-name='foo_link'/>

but allows the GUI to display it as a list.

<df-linked-list-type type-name='foo_link' item-type='foo'/>

Defines a DF-style linked list node. This translates to:

<struct-type type-name='foo_link'>
<pointer name='item' type-name='foo'/>
<pointer name='prev' type-name='foo_link'/>
<pointer name='next' type-name='foo_link'/>

</struct-type>

with some extra code to make it easier to interact with.

<df-other-vectors-type type-name='foo_other' index-enum='foo_other_id' item-type='foo'/>

Defines a tuple of vectors with the same base type. Individual vectors act as if they were defined as:

576 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

<stl-vector name='FOO_KEY' pointer-type='foo'/>

where FOO_KEY is a key in the foo_other_id enum.

Class type definition

In the context of these XML definitions, class denotes types with virtual methods:

<class-type type-name='name'
[inherits-from='class_type']
[original-name='vtable_name']
...>

...
fields
...
<virtual-methods>

...
vmethods
...

</virtual-methods>
</class-type>

Classes are generally the same as <struct-type>, including support for instance-vector. Unlike <struct-type>
however, they don’t allow is-union='true'.

There may only be one table of virtual methods per class-type. In subclasses it should only contain items added to the
table of the superclass.

Virtual method definition

Virtual method definitions are placed within the <virtual-methods> section of a class type. No other tag may be
placed within that section, including comment.

A virtual destructor is defined as follows:

<vmethod is-destructor='true'/>

Ordinary virtual methods use the following syntax:

<vmethod [name='id'] [ret-type='type']>
[<ret-type .../>]
<field1.../>
<field2.../>
...

</vmethod>

The return type may be specified either as an attribute, or via a ret-type sub-tag. The subtag syntax follows the
abstract container model outlined above. The attribute is exactly equivalent to <ret-type type-name='type'/> as
subtag. If the return type is completely omitted, it is taken to be void.

Ordinary field definition tags within the vmethod tag are treated as method parameters.

If the name attribute is omitted, the vmethod is named randomly and made protected, so that calling it is impossible.
This is the intended way of providing placeholders for completely unknown slots in the vtable.

7.8. DF data definitions (DF-structures) 577

DFHack Documentation, Release 50.11-r4

Global object definition

Global objects are global pointers that are initialized from symbols.xml at runtime. Therefore, the tag itself is identical
in syntax to <pointer>, except that it doesn’t allow is-array:

<global-object name='id' type-name='...'/>

<global-object name='id'>
<field.../>

</global-object>

C++ generation places them in the df::global namespace.

The offset attribute of the global-object tag represents the absolute address. As noted above, it may only be used in
files intended for the GUI.

Symbol table definition

Symbol tables are defined in symbols.xml and loaded at runtime. They define locations of global objects and virtual
tables.

The definition syntax is as follows:

<symbol-table name='...' os-type='...'>
<md5-hash value='...'/>
<binary-timestamp value='0x...'/>
...

<global-address name='...' [value='0x...']/>
...

<vtable-address name='...' [value='0x...']/>
...

</symbol-table>

The name attribute specifies an unique name of the symbol table. os-type specifies the applicable OS type, and must
be one of windows, linux, darwin.

The <md5-hash> tag specifies the MD5 hash that is used to match the executable on Linux and OS/X. It will be ignored
if used in a windows symbol table. Likewise, <binary-timestamp> is valid only for matching EXE files. A symbol
table may contain multiple tags in order to match several executables; this is especially useful with MD5 hashes, which
change with patching.

Global object addresses are specified with <global-address> tags. Virtual method table addresses may be pre-
initialized with <vtable-address> tags.

It is allowed to specify addresses for objects and vtables that are otherwise not defined. Obviously, such values can
only be used by directly quering the VersionInfo object in dfhack.

578 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Lisp Integration

This XML file format was designed together with the cl-linux-debug Lisp tool, and has a number of aspects that
closely integrate with its internals.

For instance, when loaded by that tool, all XML tags are converted directly into instances of classes that exactly match
the name of the tag, and when the documentation above mentions expressions, that refers to Lisp expressions within
the context of that library.

Reference expressions

In order to facilitate compact representation for long chains of dereferences that are commonly required when dealing
with the data structures, cl-linux-debug defines a reader macro (i.e. basically a parser plugin) that adds a custom
syntax for them. This syntax is triggered by special characters $ and @.

Expressions written in that syntax expand into nested chains of calls to two generic functions named $ and @, which
implement correspondingly r-value and l-value dereference of their first argument using the second.

Dereference syntax

The reader macro understands the following syntactic patterns:

• @, $, $$, $$$, . . .

Lone @ and sequences of $ are parsed just as the ordinary lisp parser would. This allows referring to the $ and
@ functions, and using sequences of $ characters as implicit argument names.

• $foo

A case-sensitive identifier preceeded by the $ character is interned in the cl-linux-debug.field-names pack-
age as-is, and returned as the parsing result. The identifier may consist of letters, numbers, and - or _ characters.

The symbol is exported from its package and defined as a symbol macro expanding to '$foo, and thus behaves
as a case-sensitive keyword (which however can be used as a lexical variable name). All field & type names and
other identifiers in the XML definitions are loaded into memory as such symbols.

• $foo:bar

This expands into '($foo . $bar); such pairs of identifiers are used in some special contexts.

• $foo.bar, @foo.bar

These expressions expand to correspondingly ($ foo '$bar) and (@ foo '$bar), representing thus r-value
or l-value dereference of variable foo with literal key $bar.

The name foo may only contain characters listed above, but is otherwise separated and parsed with the regular
lisp parser.

• $foo.*, $foo[*], $foo.@, $foo[@], @foo.* . . .

These expand to ($ foo '*), ($ foo '@) etc, thus effectively being a special case of dereference via a literal
field name.

• $foo[expr], @foo[expr]

These expressions expand to correspondingly ($ foo expr) and (@ foo expr), and are useful for accessing
array elements.

7.8. DF data definitions (DF-structures) 579

DFHack Documentation, Release 50.11-r4

• $foo.xxx[yyy].zzz

When dereference clauses are chained, they expand into nested calls to $ and @, with the outermost depending
on the first character, and all the inner ones being @.

This example expands to: ($ (@ (@ foo '$xxx) yyy) '$zzz).

• @$$foo.bar, $$$foo.bar

When the expression contains multiple initial $ characters, all but the first one are prepended to the initial variable
name.

These examples expand to (@ $$foo '$bar) and ($ $$foo '$bar)

NOTE: Only the $ character may be used in this way; $@@foo.bar is invalid.

• $.foo, @$[bar], . . .

If the expression contains no initial identifier, the initial $ sequence is used as one instead (after replacing @ with
$ if necessary).

These examples expand to: ($ $ '$foo), (@ $$ bar).

NOTE: Unlike the previous syntax pattern, this one uses all of the initial $ and @ characters.

• $(func arg arg...).bar

If one initial $ or @ is immediately followed by parentheses, the contents of said parentheses are parsed as ordinary
lisp code and used instead of the initial variable.

The example expands to: ($ (func arg arg...) '$bar)

• @$(foo bar baz)

If an initial @ is followed by one or more $ characters and then parentheses, it is parsed as a lambda expression
(anonymous function) with one argument consisting of those $ characters.

This example expands to: (lambda ($) (foo bar baz))

NOTE: it is an error to use multiple initial $ characters without @ like this: $$$(...)...

Basic properties

As described above, dereference is actually implemented by two generic functions, @ and $, which implement l-value
and r-value dereference.

They are defined as such:

(defgeneric @ (obj key))
(defgeneric $ (obj key))
(defgeneric (setf $) (obj key))

Generally, l-value dereference returns an object that can be dereferenced further. R-value dereference with the same
arguments may return the same object as l-value, or a simple scalar value, depending on the context.

Perhaps oppositely to the used terms, only the r-value dereference function may be used as the syntactic target of
assignment; this is because you can’t actually change the (conceptual) address of an object, only its contents; and
l-value dereference returns an address. I.e. in C++ you can write *a = ..., but can’t do &a =

Any of the dereference functions may return a list to represent multiple possible values. Array objects often define (@
foo '*) to return all of the elements.

580 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

If either the obj or key argument of any of the functions is a list (including NIL as empty list), the functions loop over
the list, and return a concatenation of the resulting return value lists. This allows using $array.*.field to get a list
of all values of a field within array elements.

($ obj t) is defined as the natural value of an object; e.g. if obj is a reference to a numeric field, this will be its
value. By default it is equal to the object itself. ($ obj key) for any other key would fall back to ($ (@ obj key)
t) if no special handler for $ with that key and object was defined.

Reference objects

The cl-linux-debug library represents typed pointers to objects in memory as objects of the memory-object-ref
type.

Along with the expected address and type of the pointer, these objects also retain a history of dereferences that have led
to this particular pointer, and define virtual fields to access this information. This history is similar to what the Back
button in a browser uses.

All references by default have the following properties:

• @ref.value

By default returns ref itself. May be hidden by struct fields and index-enum keys.

• @ref[integer]

Returns a reference to address + size*int, i.e. offsets the pointer.

• @ref.*

Returns a list of contained collection elements. By default empty.

• @ref.@

Returns a list of subfields. By default empty.

• @ref._parent

Returns the previous reference in the “back” chain.

• @ref._global

Returns the nearest reference in the “back” chain that has a globally named type, i.e. one defined by a
struct-type, class-type etc, and not by any nested substructures. This may return the ref itself.

• @ref._upglobal

Exactly equivalent to @ref._parent._global.

• $ref._address

Returns the numeric address embedded in the ref.

• $ref._size

Returns the size of the object pointed to.

• $ref._key

Returns the key that was used to get this ref from the parent. This is not guaranteed to be precisely accurate, but
e.g. for array elements this will be the array index.

• $ref._type

For globally named types, returns their type name.

7.8. DF data definitions (DF-structures) 581

DFHack Documentation, Release 50.11-r4

Primitive types

Primitive types define the following methods:

• $ref[t]

The natural value of a primitive field is the scalar non-reference value it contains.

NOTE: When you write $struct.field, it will evaluate via ($ @struct.field t).

• @ref.refers-to, @ref.ref-target

If the field has the relevant attributes, they can be dereferenced to retrieve the target objects.

Enums

Enum fields return their value as symbols, and allow access to attributes:

• $ref[t]

Returns the symbol matching the value, unless there is none. May be assigned both as symbol or number.

• $ref.attribute

If the enum has an attribute with that name, retrieves its value for the current value of the field.

Pointers

• $ref[t], @ref[t], $ref._target, @ref._target

These all return the value of the pointer, i.e. a reference to the target object.

• ($ ref key) -> ($ (@ ref t) key)

• (@ ref key) -> (@ (@ ref t) key)

All dereferences not explicitly supported are delegated to the target object. This means that for most properties
pointers are completely transparent; notable exceptions are pointers to pointers, and pointers to primitive fields
where you have to use e.g. $struct.ptrfield.value.

Compounds

• @ref.field, @ref._fields.field

Returns a reference to the given field.

• @ref.*, @ref.@

Returns a list of references to all fields. Note that if the object is both an implicit compound and a sequence,
@ref.* will returns the sequence items as described below.

582 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Sequences

• @ref[int]

Returns a reference to the Nth item of the sequence.

• @ref[symbol]

If the sequence has an index-enum, its items can be accessed by symbolic names.

• @ref.*

Returns a list of all items of the sequence.

• @ref._items

Returns the items of the sequence as a special lazy object, intended to optimize some things in the GUI.

• @ref.index-refers-to[int]

If the sequence has the relevant attribute, returns the target for the given index.

• $ref.count

Returns the number of items in the sequence.

• $ref.has-items

Checks if the sequence has any items, and returns T or NIL.

Code helpers

The <code-helper> tag may be used to add lisp code fragments to the objects defined in the xml. The refers-to,
index-refers-to and ref-target tags are also converted to code helpers internally, and you can use e.g.
<code-helper name='refers-to'>...</code-helper> instead of the attribute if your expression is too long
for it.

There are two features that can only be implemented via explicit <code-helper> tags:

• <code-helper name='describe'> ... </code-helper>

This specifies a piece of code that is called to supply additional informational items for the rightmost column of
the table in the GUI tool. The code should return a string, or a list of strings.

As with refers-to, the code receives the value of the object as $, and the reference to the object in $$ (i.e. $
is equal to $$[t]).

The (describe-obj object) function can be used to call the same describe mechanism on another object,
e.g.:

<code-helper name='describe'> (describe-obj $.name) </code-helper>

• <code-helper name='find-instance'> ... </code-helper>

If the instance-vector and key-field attributes are not descriptive enough to specify how to find an instance
of the object by id, you can explicitly define this helper to be used by ref-target links elsewhere.

It receives the value of the ref-target bearing field as $, and its aux-value as $$.

Other than via ref-target, you can invoke this mechanism explicitly using the (find-instance class key
aux-key) function, even from a find-instance helper for another type:

7.8. DF data definitions (DF-structures) 583

DFHack Documentation, Release 50.11-r4

<code-helper name='find-instance'>$(find-instance $art_image_chunk $$).images[$]</
→˓code-helper>

This finds an instance of the art_image_chunk type using the aux-value $$, and then returns an element of its
images sub-array using the main value $.

Examples

• @global.*

The global variable ‘global’ contains a special compound that contains all known global objects. This expressions
retrieves a list of refs to all of them.

Using $global.* would return values for the primitive ones instead of refs, and is not that useful.

• $global.world.units.all[0].id

This expression is syntactically parsed into the following sequence:

tmp = global
tmp = @tmp.world ; the world global ref
tmp = @tmp.units ; the units field ref
tmp = @tmp.all ; the all vector ref
tmp = @tmp[0] ; the first unit object pointer ref
$tmp.id

The only non-trivial step here is the last one. The last value of tmp is a reference to a pointer, and as described
above, it delegates anything it does not directly understand to its target, adding an implicit step at runtime:

unit = @tmp._target
$unit.id

A unit object does not define $unit.id directly either, so the final step falls back to:

idref = @unit.id
($ idref t)

which retrieves a reference to the id field, and then evaluates its natural value.

The result is that the expression returns the id value of the first unit in the vector as would be naturally expected.

Using @global.world.units.all[0].id would have used @tmp.id as the last step, which would have
skipped the ($ idref t) call and returned a reference to the field.

• A simple index-refers-to example:

<stl-vector name='created_weapons' type-name='int32_t'
index-refers-to='$global.world.raws.itemdefs.weapons[$]'/>

This is used to define a vector with counts of created weapons.

When it is displayed in the GUI, the tool evaluates the index-refers-to expression for every vector element,
giving it the element index as $, and a reference to the vector itself as $$ (here unused).

The expression straightforwardly uses that index to access another global vector and return one of its elements.
It is then used by the GUI to add additional information to the info column.

• An example of refers-to and _parent:

584 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

<compound name='burrows'>
<stl-vector name='list' pointer-type='burrow'/>
<int32_t name='sel_index' refers-to='$$._parent.list[$]'/>

</compound>

This fragment of XML defines a compound with two fields, a vector and an int, which has a refers-to attribute.
When that field is displayed in the GUI, it evaluates the expression in the attribute, giving it the integer value as
$, and a reference to the integer field as $$.

The expression parses as:

tmp = $$; reference to the int32_t field
tmp = @tmp._parent
tmp = @tmp.list
$tmp[$]

Since the only way the GUI could get a reference to the field was to evaluate @ref-to-burrows.sel_index,
that previous reference is stored in its “back” list, and @tmp._parent retrieves it. After that everything is simple.

• An example of ref-target with aux-value:

<int32_t name='race' ref-target='creature_raw'/>
<int16_t name='caste' ref-target='caste_raw' aux-value='$$.race'/>

The race field just specifies a type as ref-target, so the reference simply evaluates the find-instance helper
of the creature_raw, passing it the race value as $.

In order to find the caste however, you need to first find a creature, which requires a race value. This value is
supplied via the aux-value attribute into the $$ argument to find-instance.

Since the value of the caste field will be passed through to the helper anyway, when evaluating aux-value the
$ argument is set to a reference to the holding field, and $$ is set to its _parent. This means that $$.race in
the context of aux-value is equivalent to $$._parent.race in the context of refers-to.

• A complex example of cross-references between arrays:

<struct-type type-name='caste_raw'>
<compound name='body_info'>

<stl-vector name='body_parts' pointer-type='body_part_raw'/>
</compound>
<compound name='bp_appearance'>

<stl-vector name='modifiers' pointer-type='bp_appearance_modifier'/>

<stl-vector name='modifier_idx' type-name='int32_t'
refers-to='$$._parent._parent.modifiers[$]'
index-refers-to='$$._parent.part_idx[$].refers-to'/>

<stl-vector name='part_idx' type-name='int16_t'
refers-to='$$._global.body_info.body_parts[$]'/>

<stl-vector name='layer_idx' type-name='int16_t'
refers-to='$$._parent._parent.part_idx[$$._key].refers-to.

→˓layers[$]'
index-refers-to='$$._parent.part_idx[$].refers-to'/>

</compound>
</struct-type>

In order to understand this example it is first necessary to understand that refers-to specified on a vector is
actually transplanted onto the implicitly constructed element tag:

7.8. DF data definitions (DF-structures) 585

DFHack Documentation, Release 50.11-r4

<stl-vector name='part_idx'>
<int16_t refers-to='$$._global.body_info.body_parts[$]'/>

</stl-vector>

Therefore, $$ is a reference to the <int16_t> field, $$._parent is a reference to the vector, $$._parent.
_parent is a reference to the bp_appearance compound, etc.

The $$._global... works as an abbreviation that applies _parent until it reaches a globally defined type,
which in this case is the current instance of the caste_raw struct.

NOTE: $$._global._global is the same as $$._global, i.e. repeated _global is a no-op. The latest version
supports _upglobal, which is equivalent to _parent._global.

Thus, the refers-to link on the part_idx vector evaluates to the element of the body_parts vector, indexed
by the value of the current part_idx vector item.

Likewise, the refers-to link on the modifier_idx vector goes back to the bp_appearance compound, and
descends into the modifiers vector, using the value of the current item.

The index-refers-to link on the same modifier_idx vector highlights the shared indexing relation between
the bottom vectors by linking to the part_idx vector via the current item index. Since this attribute is hosted by
the vector itself, $$ points at the vector, and only one _parent is needed to reach bp_appearance.

This link also demonstrates how the defined relations can be reused in other expressions by accessing the target of
the refers-to link inside part_idx. When the part_idx vector is accessed simply as $xxx.part_idx[foo],
it evaluates as:

tmp = @xxx.part_idx
tmp = @tmp[foo]
($ tmp t)

thus returning just an integer value. However, if an additional dereference step is added, it turns to:

tmp = @xxx.part_idx
tmp = @tmp[foo]
obj = @tmp.refers-to
($ obj t)

which follows the refers-to link and evaluates its target.

Finally, the layer_idx vector, in addition to specifying the same index-refers-to link as modifier_idx,
uses the link in part_idx to access other objects at its end:

refers-to='$$._parent._parent.part_idx[$$._key].refers-to.layers[$]'

Note how this link has to use two _parent steps again due to being attached to the element of the vector instead
of the vector itself. It also has to use the _key attribute of the vector element to retrieve the current index in the
vector, because here $ holds the element value.

586 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.8.2 Updating DF-structures for a new DF version

Contents

• General Process

• Running Dwarf Fortress

• Available Scripts

• STAGE 1. Linux compound globals

• STAGE 2. Old way to find Linux compound globals

• STAGE 3. Linux primitive globals

• STAGE 4. Primary windows compound globals

• STAGE 5. Secondary windows compound globals

• STAGE 6. Windows primitive globals

General Process

Download the new versions. The scripts expect the following directory layout:

~userhome/
Games/

DF/
df_linux/ - Current DF for linux
df_windows/ - Current DF for windows
df_osx/ - Current DF for osx

metasm/ - Checkout of the library for ruby scripts
from https://github.com/jjyg/metasm

df_misc/ - Checkout of the ruby scripts
from https://github.com/jjyg/df_misc

dfhack/ - DFHack checkout

• Use “new-release.pl v0.??.??” to automatically perform a number of steps. If you get a mismatch error from
match-ctors.pl, see “STAGE 1”.

• Start the linux DF version, and launch the tool.

• Execute (reset-state-annotation)

• Commit.

• Use the tool to verify that the layout of the compound globals on linux is correct, and update xml as necessary.
Check that unit seems reasonable, etc. Compare the changes in g_src between releases. Delete redundant entries
for some linux & osx globals in symbols.xml.

• Compile DFHack without plugins for windows and run devel/find-offsets to find globals there.

• With the windows version in wine, run (check-struct-sizes) to see if any objects changed their size. If nothing is
obviously wrong, use (check-struct-sizes :annotate? t) to mark correctly sized objects ALIGNED.

• Check the rest of the document for info on finding still missing globals.

7.8. DF data definitions (DF-structures) 587

DFHack Documentation, Release 50.11-r4

• Commit.

• Run make-csv.sh to update CSV files and verify vtable size and argument counts.

• Commit.

Running Dwarf Fortress

The lisp tool expects that the game is started in a mode where all allocated memory is automatically filled with a certain
byte value.

On linux this is achieved by simply starting the game like this:

MALLOC_PERTURB_=45 ./df

Windows requires applying a patch to a copy of the executable like this:

cp -f 'Dwarf Fortress.exe' 'Dwarf_Fortress_malloc.exe'
ruby -I ~/Games/DF/metasm ~/Games/DF/df_patchmalloc.rb 'Dwarf_Fortress_malloc.exe'

Available Scripts

new-release.pl

Takes the full v0.??.?? version number as one required parameter.

Uses md5sum for linux and winedump for windows to find out the new hash and PE timestamp.

Use the stamps to create new sections in symbols.xml Also paste them into make-csv inside start.lisp

Creates an empty v0.??.??.lst, and change thes open-annotations filename in start.lisp.

Wipes linux/df.globals.xml empty of all the global definitions.

Runs make-scans.sh to find out addresses of vtables and many linux/osx globals, and pastes them into symbols.xml

make-scans.sh

Runs ruby and perl scripts to extract data from the executables, and writes the output to txt files in subdirectories.

make-csv.sh

Uses the lisp tool and some scripts to produce csv files with offsets for linux and windows. These are useful for manual
lookup and some scripts.

588 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

start.sh

Starts the lisp tool. You may pass the process ID as a parameter to avoid the prompt.

make-keybindings.pl

Used by make-scans to extract the keybinding enum from g_src in form of df.keybindings.xml

match-ctors.pl

Used by make-scans to compare the extracted addresses of the compound linux/osx globals with a saved copy from a
previous version and thus determine their names.

match-vtables.pl

Used by make-csv.sh to produce a file listing the addresses of all virtual methods in a compact form. Relies on csv files
and data from make-scans.sh

STAGE 1. Linux compound globals

(done by new-release.pl normally)

Linux and OSX initalize and destruct their complex globals in a way that allows to determine their addresses by disas-
sembling a small section of the executable. This is currently done by ruby scripts called from new-release.pl; it is also
possible to do that via the lisp tool for linux.

The ruby scripts produce a raw dump of the global addresses as linux/ctors.txt. A perl script is then used to compare it
with linux/ctors-base.txt (which is manually edited and committed into the repository), and thus derive the names of the
globals by their order. The resulting data is written back to linux/ctors.txt, linux/df.globals.xml and linux/cglobals.txt
(which is inserted into symbols.xml).

If the size of a global changes too much, or a new one is added in the middle, this matching may fail. In this case
it is necessary to manually match and add the new names to ctors.txt and commit it as ctors-base.txt. After that, run
make-scans.sh to rerun the scripts, and paste linux/cglobals.txt into symbols.xml.

OSX behaves exactly the same as linux in this respect.

STAGE 2. Old way to find Linux compound globals

(now mostly obsolete, retained as fallback and for historical interest)

Globals gps, enabler, gview and init are in the export table for linking with libgraphics, so they are immediately available
in (browse @global.*).

Run (list-globals/linux), paste the results in linux/df.globals.xml, and immediately compare it to the old version from
source control. The order of the globals is quite stable, so if sizes look similar, they can be guessed immediately.

The .bss compound section should be done except for ‘announcements’.

Run (browse-dataseg). The first three -30000 are cursor. Following group of 6 are selection_rect. After that, at 16-
aligned addresses are control_mode and game_mode. Tab the game UI to the most common two-pane mode, scroll to
the end and find 0x30200. Within this dword ui_menu_width is byte 1, ui_area_map_width is byte 2.

7.8. DF data definitions (DF-structures) 589

DFHack Documentation, Release 50.11-r4

(reload), (browse @global.*), look at the most important globals for misalignment. If found, fix it and delete old tables
from symbols.xml.

STAGE 3. Linux primitive globals

Unpause the game for a moment to let various structures be initialized.

The fields can be found either by a straight memory search, or by looking in the area they are expected to be.

[A] The ‘cur_year’ area.

Located just before ui_building_assign_type.

1. cur_year / cur_year_tick

(find-changes); step with dot; Enter; step; +; step; +; step; +; done

look at values in bss, there will be cur_year_tick, and cur_year is 32 bytes before that.

2. process_jobs

Designate a building for construction. Look after process_dig for an enabled boolean.

3. process_dig

Step the game one step. Designate a tile for digging. Look after cur_year and before process_jobs.

Note: this order because designating sometimes sets process_jobs too.

4. job_next_id / ui_workshop_job_cursor

Find a workshop without jobs; (find-changes); add job; Enter; add job; +; add job; +; done Finds job_next_id
and ui_workshop_job_cursor, the distinction is obvious.

The ui_workshop_job_cursor is expected to be after cur_year_tick.

5. ui_workshop_in_add, ui_building_in_resize, ui_building_in_assign

Expected to be in the area after ui_workshop_job_cursor, in this order. Change the relevant state in game and
F5.

6. ui_building_item_cursor

Find a cluttered workshop, t; (find-changes); move cursor down; Enter; cursor down; +; cursor down; +; done

Expected to be right after ui_workshop_job_cursor.

7. current_weather

Subtract 0x1c from cur_year address. Obviously, a big hack.

It is best to use a save where the contents are non-zero and known to you.

590 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

[B] The ui_look_cursor area.

Located in the area of the 124 byte global before plotinfo.

1. ui_look_cursor

Like ui_building_item_cursor, but with a cluttered tile and k.

2. ui_selected_unit

Find a place with many nearby units; (find-changes); v; Enter; v; new; . . . ; when returned to origin, 0; 1; 2. . . ;
done

Expected to be before ui_look_cursor.

3. ui_unit_view_mode

Select unit, page Gen; (find-changes); Inv; Enter; Prf; +; Wnd; +; done

Expected to be after ui_selected_unit.

4. pause_state

(find-changes); toggle pause; Enter; toggle; 0; toggle; 1; etc; done

Expected to be in the area after ui_look_cursor.

[C] The window_x/y/z area.

Located right after buildreq.

1. window_x, window_y, window_z

Use k, move window view to upper left corner, then the cursor to bottom right as far as it can go without moving
the view.

(find-changes); Shift-RightDown; Enter; Shift-RightDown; + 10; Shift-RightDown; + 10; done

Finds cursor and two variables in bss. Z is just after them.

[D] Random positions.

1. announcements

Immediately follows d_init; starts 25 25 31 31 24 . . .

STAGE 4. Primary windows compound globals

After aligning globals on linux, run (make-csv) to produce offset tables.

7.8. DF data definitions (DF-structures) 591

DFHack Documentation, Release 50.11-r4

1. world

Set a nickname, search for it; the unit will have it at offset 0x1C. Then trace back to the unit vector, and subtract its
offset.

2. plotinfo

Open the ‘s’quad sidebar page. Navigate to a squad in world.squads.all, then backtrace and subtract the offset of
plotinfo.squads.list.

3. buildreq

Start creating a building, up to the point of material selection. Find the material item through world and backtrack
references until .bss.

4. game

Select a unit in ‘v’, open inventory page, backtrack from unit_inventory_item, subtract offset of unit.inv_items.

5. ui_look_list

Put a ‘k’ cursor over a unit, backtrack to a 0x10 bytes object with pointer at offset 0xC, then to the global vector.

6. adventure

In adventure mode, open the ‘c’ompanions menu, then backtrack from world.units.active[0] (i.e. the player) via adven-
ture.companions.unit

Alternatively, look before ui_look_list for “0, 15” coming from the string.

7. enabler

(find-changes), resize the window, enter; resize width by +1 char, +; repeat until few candidates left; then done, select
the renderer heap object and backtrack to enabler.renderer.

Alternatively, look before plotinfo for clocks changing every frame.

8. map_renderer

Put a ‘v’ cursor exactly above a unit; backtrack from the unit object.

Alternatively, look before adventure for the unit pointer list.

592 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

9. texture

Load the game with [GRAPHICS:YES] in init.txt, and example set. Then search for string “example/dwarves.bmp”
and backtrack.

Alternatively, look between buildreq and init.

STAGE 5. Secondary windows compound globals

These are too difficult to find by backtracking or search, so try looking in the expected area first:

1. timed_events

Look for a pointer vector around -0x54 before plotinfo.

2. ui_building_assign_*

2a. ui_building_assign_is_marked

Assign to zone, (find-changes), toggle 1st unit, enter; toggle 1st, 0; toggle 1st, 1; toggle 2nd, new; done

The vector is expected to be just before plotinfo.

2b. ui_building_assign_items

Expected to be immediately before ui_building_assign_is_marked.

2c. ui_building_assign_units

Start assigning units to a pasture, backtrack from one of the units.

The vector is expected to be immediately before world.

2d. ui_building_assign_type

The vector is expected to be 2nd vector immediately after ui_look_list.

3. gview

Immediately follows plotinfo.

4. Init files

4a. d_init

Follows world after a small gap (starts with flagarray).

4b. init

Follows buildreq after a small gap.

7.8. DF data definitions (DF-structures) 593

DFHack Documentation, Release 50.11-r4

5. gps

Look at around offset ui_area_map_width+0x470 for pointers.

6. created_item_*

6a. created_item_type

Expected to be at around -0x40 before world.

6b. created_item_subtype

The first vector immediately after ui_look_list.

6c. created_item_mattype

Immediately before game.

6d. created_item_matindex

Before plotinfo, after timed_events.

6e. created_item_count

Immediately before timed_events.

STAGE 6. Windows primitive globals

Like linux primitives, except the ordering is completely different.

This section only describes the ordering heuristics; for memory search instructions see linux primitive globals.

[A] formation_next_id

Followed by ui_building_item_cursor, cur_year.

[B] interaction_instance_next_id. . . hist_figure_next_id

Contains window_x, ui_workshop_in_add.

[C] machine_next_id

Followed by ui_look_cursor, window_y.

[D] crime_next_id

Followed by, in this order (but with some gaps):

• ui_workshop_job_cursor

• current_weather (immediately after ui_workshop_job_cursor)

• process_dig

• process_jobs

• ui_building_in_resize

• ui_building_in_assign

• pause_state

[E] Random positions.

1. cur_year_tick

594 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Look immediately before artifact_next_id.

2. window_z

Look before proj_next_id.

3. ui_selected_unit

Look just after squad_next_id.

4. ui_unit_view_mode

Look just before hist_event_collection_next_id.

5. announcements

Immediately follows d_init; starts 25 25 31 31 24 . . .

7.9 Memory research

There are a variety of tools that can be used to analyze DF memory - some are listed here. Note that some of these may
be old and unmaintained. If you aren’t sure what tool would be best for your purposes, feel free to ask for advice (on
IRC, Bay12, etc.).

Contents

• Cross-platform tools

– Ghidra

– IDA Freeware 7.0

– Hopper

– DFHack tools

∗ Plugins

∗ Scripts

∗ Sizecheck

∗ Legacy tools

• Linux-specific tools

– GDB

– Other analysis tools

– df-structures GUI

– EDB (Evan’s debugger)

• Windows-specific tools

7.9. Memory research 595

DFHack Documentation, Release 50.11-r4

7.9.1 Cross-platform tools

Ghidra

Ghidra is a cross-platform reverse-engineering framework (written in Java) available at https://ghidra-sre.org. It sup-
ports analyzing both 32-bit and 64-bit executables for all supported DF platforms. There are some custom DFHack
Ghidra scripts available in the df_misc repo (look for .java files).

IDA Freeware 7.0

Available from Hex-Rays. Supports analyzing both 32-bit and 64-bit executables for all supported DF platforms. Some
.idc scripts for IDA are available in the df_misc repo.

Hopper

Runs on macOS and some Linux distributions; available from https://www.hopperapp.com/. TWBT uses this to pro-
duce some patches.

DFHack tools

Plugins

There are a few development plugins useful for low-level memory research. They are not built by default, but can be
built by setting the BUILD_DEVEL CMake option. These include:

• check-structures-sanity, which performs sanity checks on the given DF object. Note that this will crash
in several cases, some intentional, so using this with GDB is recommended.

• memview, which produces a hex dump of a given memory range. It also highlights valid pointers, and can be
configured to work with Sizecheck to auto-detect object sizes.

• vectors, which can identify instances of std::vector in a given memory range.

Scripts

Several development tools can be useful for memory research. These include (but are not limited to):

• devel/dump-offsets

• devel/find-offsets

• devel/lsmem

• devel/sc (requires Sizecheck)

• devel/visualize-structure

• Generally, any script starting with devel/find

596 Chapter 7. DFHack development guide

https://ghidra-sre.org
https://github.com/DFHack/df_misc
https://www.hex-rays.com/products/ida/support/download_freeware/
https://github.com/DFHack/df_misc
https://www.hopperapp.com/
https://github.com/mifki/df-twbt/blob/master/PATCHES.md

DFHack Documentation, Release 50.11-r4

Sizecheck

Sizecheck is a custom tool that hooks into the memory allocator and inserts a header indicating the size of every object.
The corresponding logic to check for this header when freeing memory usually works, but is inherently not foolproof.
You should not count on DF being stable when using this.

DFHack’s implementation of sizecheck is currently only tested on Linux, although it probably also works on macOS. It
can be built with the BUILD_SIZECHECK CMake option, which produces a libsizecheck library installed in the hack
folder. On Linux, passing --sc as the first argument to the dfhack launcher script will load this library on startup. On
other platforms, or when passing a different argument to the launcher (such as for GDB), you will need to preload this
library manually, by setting PRELOAD_LIB on Linux (or LD_PRELOAD if editing the dfhack launcher script directly),
or by editing the dfhack launcher script and adding the library to DYLD_INSERT_LIBRARIES on macOS.

There is also an older sizecheck implementation by Mifki available on GitHub (b.cpp is the main sizecheck library,
and win_patch.cpp is used for Windows support). To use this with other DFHack tools, you will likely need to edit
the header’s magic number to match what is used in devel/sc (search for a hexadecimal constant starting with 0x).

Legacy tools

Some very old DFHack tools are available in the legacy branch on GitHub. No attempt is made to support these.

7.9.2 Linux-specific tools

GDB

GDB is technically cross-platform, but tends to work best on Linux, and DFHack currently only offers support for using
GDB on 64-bit Linux. To start with GDB, pass -g to the DFHack launcher script:

./dfhack -g

Some basic GDB commands:

• run: starts DF from the GDB prompt. Any arguments will be passed as command-line arguments to DF (e.g.
load-save may be useful).

• bt will produce a backtrace if DF crashes.

See the official GDB documentation for more details.

Other analysis tools

The dfhack launcher script on Linux has support for launching several other tools alongside DFHack, including Val-
grind (as well as Callgrind and Helgrind) and strace. See the script for the exact command-line option to specify. Note
that currently only one tool at a time is supported, and must be specified with the first argument to the script.

7.9. Memory research 597

https://github.com/mifki/df-sizecheck
https://github.com/dfhack/dfhack/tree/legacy/tools
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/documentation/

DFHack Documentation, Release 50.11-r4

df-structures GUI

This is a tool written by Angavrilov and available on GitHub. It only supports 32-bit DF. Some assistance may be
available on IRC.

EDB (Evan’s debugger)

Available on GitHub.

7.9.3 Windows-specific tools

Some people have used Cheat Engine for research in the past.

7.10 Patching the DF binary

Writing scripts and plugins for DFHack is not the only way to modify Dwarf Fortress. Before DFHack, it was common
for tools to manually patch the binary to change behaviour, and DFHack still contains tools to do this via the binpatch
command.

Warning: We recommend using a script or plugin instead of a raw patch if at all possible - that way your work
will work for many versions across multiple operating systems.

Contents

• Getting a patch

• Using a patch

– Patching at runtime

– Patching on disk

• Tools reliant on binpatches

– fix-armory

– gui/assign-rack

7.10.1 Getting a patch

There are no binary patches available for Dwarf Fortress versions after 0.34.11.

This system is kept for the chance that someone will find it useful, so some hints on how to write your own follow. This
will require disassembly and decent skill in memory research.

• The patches are expected to be encoded in text format used by IDA.

• See the patches folder in commit b0e1b51 for examples.

• Issue 546 is about the future of the binpatches, and may be useful reading.

If you want to write a patch, the armory patches discussed here and documented below would probably be the best
place to start.

598 Chapter 7. DFHack development guide

https://github.com/angavrilov/cl-linux-debug
https://github.com/eteran/edb-debugger
https://www.cheatengine.org/
https://github.com/DFHack/dfhack/tree/b0e1b51d2ac08dd8c914f6ec299c5b355525a9aa/patches/
https://github.com/DFHack/dfhack/issues/546

DFHack Documentation, Release 50.11-r4

7.10.2 Using a patch

There are two methods to apply a patch.

Patching at runtime

The binpatch script checks, applies or removes binary patches directly in memory at runtime:

binpatch [check|apply|remove] <patchname>

If the name of the patch has no extension or directory separators, the script uses hack/patches/<df-version>/
<name>.dif, thus auto-selecting the version appropriate for the currently loaded executable.

This is the preferred method; it’s easier to debug, does not cause persistent problems, and leaves file checksums alone.
As with many other commands, users can simply add it to dfhack*.init to reapply the patch every time DF is run.

Patching on disk

Warning: This method of patching is deprecated, and may be removed without notice. You should use the runtime
patching option above.

DFHack includes a small stand-alone utility for applying and removing binary patches from the game executable. Use
it from the regular operating system console:

binpatch check "Dwarf Fortress.exe" patch.dif Checks and prints if the patch is currently applied.

binpatch apply "Dwarf Fortress.exe" patch.dif Applies the patch, unless it is already applied or in con-
flict.

binpatch remove "Dwarf Fortress.exe" patch.dif Removes the patch, unless it is already removed.

If you use a permanent patch under OSX or Linux, you must update symbols.xml with the new checksum of the
executable. Find the relevant section, and add a new line:

<md5-hash value='????????????????????????????????'/>

In order to find the correct value of the hash, look into stderr.log; DFHack prints an error there if it does not recognize
the hash.

7.10.3 Tools reliant on binpatches

Some DFHack tools require the game to be patched to work. As no patches are currently available, the full description
of each is included here.

7.10. Patching the DF binary 599

DFHack Documentation, Release 50.11-r4

fix-armory

Enables a fix for storage of squad equipment in barracks.

Specifically, it prevents your haulers from moving squad equipment to stockpiles, and instead queues jobs to store it on
weapon racks, armor stands, and in containers.

Note: In order to actually be used, weapon racks have to be patched and manually assigned to a squad. See gui/assign-
rack.

Note that the buildings in the armory are used as follows:

• Weapon racks (when patched) are used to store any assigned weapons. Each rack belongs to a specific squad,
and can store up to 5 weapons.

• Armor stands belong to specific squad members and are used for armor and shields.

• Cabinets are used to store assigned clothing for a specific squad member. They are never used to store owned
clothing.

• Chests (boxes, etc) are used for a flask, backpack or quiver assigned to the squad member. Due to a probable
bug, food is dropped out of the backpack when it is stored.

Warning: Although armor stands, cabinets and chests properly belong only to one squad member, the owner of
the building used to create the barracks will randomly use any containers inside the room. Thus, it is recommended
to always create the armory from a weapon rack.

Contrary to the common misconception, all these uses are controlled by the Individual Equipment usage flag. The
Squad Equipment flag is actually intended for ammo, but the game does even less in that area than for armor and
weapons. This plugin implements the following rules almost from scratch:

• Combat ammo is stored in chests inside rooms with Squad Equipment enabled.

• If a chest is assigned to a squad member due to Individual Equipment also being set, it is only used for that
squad’s ammo; otherwise, any squads with Squad Equipment on the room will use all of the chests at random.

• Training ammo is stored in chests inside archery ranges designated from archery targets, and controlled by the
same Train flag as archery training itself. This is inspired by some defunct code for weapon racks.

There are some minor traces in the game code to suggest that the first of these rules is intended by Toady; the rest are
invented by this plugin.

gui/assign-rack

Bind to a key (the example config uses P), and activate when viewing a weapon rack in the q mode.

600 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

This script is part of a group of related fixes to make the armory storage work again. The existing issues are:

• Weapon racks have to each be assigned to a specific squad, like with beds/boxes/armor stands and individual
squad members, but nothing in the game does this. This issue is what this script addresses.

• Even if assigned by the script, the game will unassign the racks again without a binary patch. This patch is
called weaponrack-unassign, and has not been updated since 0.34.11. See Bug 1445 for more info.

• Haulers still take equipment stored in the armory away to the stockpiles, unless fix-armory is used.

The script interface simply lets you designate one of the squads that are assigned to the barracks/armory containing the
selected stand as the intended user. In order to aid in the choice, it shows the number of currently assigned racks for
every valid squad.

7.11 DFHack remote interface

DFHack provides a remote access interface that external tools can connect to and use to interact with DF. This is
implemented with Google protobuf messages exchanged over a TCP socket. Both the core and plugins can define
remotely-accessible methods, or RPC methods. The RPC methods currently available are not comprehensive, but can
be extended with plugins.

Contents

• Server configuration

• Developing with the remote API

– Examples

– Client libraries

• Protocol description

– Built-in messages

– Conversation flow

– Raw message types

∗ handshake request

∗ handshake reply

7.11. DFHack remote interface 601

https://www.bay12games.com/dwarves/mantisbt/view.php?id=1445
https://developers.google.com/protocol-buffers

DFHack Documentation, Release 50.11-r4

∗ header

∗ request

∗ text

∗ result

∗ failure

∗ quit

7.11.1 Server configuration

DFHack attempts to start a TCP server to listen for remote connections on startup. If this fails (due to the port being in
use, for example), an error message will be logged to stderr.log.

The server can be configured by setting options in dfhack-config/remote-server.json:

• allow_remote (default: false): if true, allows connections from hosts other than the local machine. This is
insecure and may allow arbitrary code execution on your machine, so it is disabled by default.

• port (default: 5000): the port that the remote server listens on. Overriding this will allow the server to work if
you have multiple instances of DF running, or if you have something else running on port 5000. Note that the
DFHACK_PORT environment variable takes precedence over this setting and may be more useful for overriding
the port temporarily.

7.11.2 Developing with the remote API

At a high level, the core and plugins define RPC methods, and external clients can call these methods. Each method is
assigned an ID internally, which clients use to call it. These method IDs can be obtained using the special BindMethod
method, which has an ID of 0.

Examples

The dfhack-run command uses the RPC interface to invoke DFHack commands (or Lua functions) externally.

Plugins that implement RPC methods include:

• rename

• RemoteFortressReader

• isoworldremote

Plugins that use the RPC API include:

• stonesense

Third-party tools that use the RPC API include:

• Armok Vision (Bay12 forums thread)

602 Chapter 7. DFHack development guide

https://github.com/RosaryMala/armok-vision
http://www.bay12forums.com/smf/index.php?topic=146473

DFHack Documentation, Release 50.11-r4

Client libraries

Some external libraries are available for interacting with the remote interface from other (non-C++) languages, includ-
ing:

• RemoteClientDF-Net for C#

• dfhackrpc for Go

• dfhack-remote for JavaScript

• dfhack-client-qt for C++ with Qt

• dfhack-client-python for Python (adapted from “Blendwarf”)

• dfhack-client-java for Java

• dfhack-remote for Rust

7.11.3 Protocol description

This is a low-level description of the RPC protocol, which may be useful when developing custom clients.

A WireShark dissector for this protocol is available in the df_misc repo.

Built-in messages

These messages have hardcoded IDs; all others must be obtained through BindMethod.

ID Method Input Output
0 BindMethod dfproto.CoreBindRequest dfproto.CoreBindReply
1 RunCommand dfproto.CoreRunCommandRequest dfproto.EmptyMessage

Conversation flow

• Client → Server: handshake request

• Server → Client: handshake reply

• Repeated 0 or more times:

– Client → Server: request

– Server → Client: text (0 or more times)

– Server → Client: result or failure

• Client → Server: quit

7.11. DFHack remote interface 603

https://github.com/RosaryMala/RemoteClientDF-Net
https://github.com/BenLubar/dfhackrpc
https://github.com/alexchandel/dfhack-remote
https://github.com/cvuchener/dfhack-client-qt
https://github.com/McArcady/dfhack-client-python
http://www.bay12forums.com/smf/index.php?topic=178089
https://github.com/McArcady/dfhack-client-java
https://docs.rs/dfhack-remote/latest/dfhack_remote/index.html
https://github.com/DFHack/df_misc/blob/master/wireshark_dfhack_rpc.lua

DFHack Documentation, Release 50.11-r4

Raw message types

• All numbers are little-endian

• All strings are ASCII

• A payload size of greater than 64MiB is an error

• See RemoteClient.h for definitions of constants starting with RPC

handshake request

Type Name Value
char[8] magic DFHack?\n
int32_t version 1

handshake reply

Type Name Value
char[8] magic DFHack!\n
int32_t version 1

header

Note: the two fields of this message are sometimes repurposed. Uses of this message are represented as header(x,
y), where x corresponds to the id field and y corresponds to size.

Type Name
int16_t id
int16_t (padding - unused)
int32_t size

request

Type Description
header header(id, size)
buffer Protobuf-encoded payload of the input message type of the method specified by id;

length of size bytes

604 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

text

Type Description
header header(RPC_REPLY_TEXT, size)
buffer Protobuf-encoded payload of type dfproto.CoreTextNotification; length of

size bytes

result

Type Description
header header(RPC_REPLY_RESULT, size)
buffer Protobuf-encoded payload of the output message type of the oldest incomplete method

call; when received, that method call is considered completed. Length of size bytes.

failure

Type Description
header header(RPC_REPLY_FAIL, command_result)
command_result return code of the command (a constant starting with CR_; see RemoteClient.h)

quit

Note: the server closes the connection after receiving this message.

Type Description
header header(RPC_REQUEST_QUIT, 0)

7.12 Development changelog

This file contains changes grouped by the release (stable or development) in which they first appeared. See Building
the changelogs for more information.

See Changelog for a list of changes grouped by stable releases.

Contents

• DFHack 50.11-r4

• DFHack 50.11-r3

• DFHack 50.11-r2

• DFHack 50.11-r1

• DFHack 50.10-r1

• DFHack 50.09-r4

7.12. Development changelog 605

DFHack Documentation, Release 50.11-r4

• DFHack 50.09-r3

• DFHack 50.09-r2

• DFHack 50.09-r1

• DFHack 50.08-r4

• DFHack 50.08-r3

• DFHack 50.08-r2

• DFHack 50.08-r1

• DFHack 50.07-r1

• DFHack 50.07-beta2

• DFHack 50.07-beta1

• DFHack 50.07-alpha3

• DFHack 50.07-alpha2

• DFHack 50.07-alpha1

• DFHack 50.05-alpha3.1

• DFHack 50.05-alpha3

• DFHack 50.05-alpha2

• DFHack 50.05-alpha1

• DFHack 0.47.05-r8

• DFHack 0.47.05-r7

• DFHack 0.47.05-r6

• DFHack 0.47.05-r5

• DFHack 0.47.05-r4

• DFHack 0.47.05-r3

• DFHack 0.47.05-r2

• DFHack 0.47.05-r1

• DFHack 0.47.05-beta1

• DFHack 0.47.04-r5

• DFHack 0.47.04-r4

• DFHack 0.47.04-r3

• DFHack 0.47.04-r2

• DFHack 0.47.04-r1

• DFHack 0.47.04-beta1

• DFHack 0.47.03-beta1

• DFHack 0.44.12-r3

• DFHack 0.44.12-r2

606 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• DFHack 0.44.12-r1

• DFHack 0.44.12-alpha1

• DFHack 0.44.11-beta2.1

• DFHack 0.44.11-beta2

• DFHack 0.44.11-beta1

• DFHack 0.44.11-alpha1

• DFHack 0.44.10-r2

• DFHack 0.44.10-r1

• DFHack 0.44.10-beta1

• DFHack 0.44.10-alpha1

• DFHack 0.44.09-r1

• DFHack 0.44.09-alpha1

• DFHack 0.44.08-alpha1

• DFHack 0.44.07-beta1

• DFHack 0.44.07-alpha1

• DFHack 0.44.05-r2

• DFHack 0.44.05-r1

• DFHack 0.44.05-alpha1

• DFHack 0.44.04-alpha1

• DFHack 0.44.03-beta1

• DFHack 0.44.03-alpha1

• DFHack 0.44.02-beta1

• DFHack 0.44.02-alpha1

7.12.1 DFHack 50.11-r4

New Tools

• build-now: (reinstated) instantly complete unsuspended buildings that are ready to be built

Fixes

• RemoteServer: don’t shut down the socket prematurely, allowing continuing connections from, for example,
dfhack-run

• buildingplan: fix choosing the wrong mechanism (or something that isn’t a mechanism) when linking a lever and
manually choosing a mechanism, but then canceling the selection

• combine: prevent stack sizes from growing beyond quantities that you would normally see in vanilla gameplay

• sort:

7.12. Development changelog 607

DFHack Documentation, Release 50.11-r4

– fix potential crash when exiting and re-entering a creatures subtab with a search active

– prevent keyboard keys from affecting the UI when search is active and multiple keys are hit at once

• tailor: fix corner case where existing stock was being ignored, leading to over-ordering

Misc Improvements

• buildingplan:

– save magma safe mechanisms for when magma safety is requested when linking levers and pressure
plates to targets

– when choosing mechanisms for linking levers/pressure plates, filter out unreachable mechanisms

• caravan: enable searching within containers in trade screen when in “trade bin with contents” mode

• sort: when searching on the Tasks tab, also search the names of the things the task is associated with, such as
the name of the stockpile that an item will be stored in

7.12.2 DFHack 50.11-r3

New Tools

• burrow: (reinstated) automatically expand burrows as you dig

• sync-windmills: synchronize or randomize movement of active windmills

• trackstop: (reimplemented) integrated overlay for changing track stop and roller settings after construction

New Features

• buildingplan: allow specific mechanisms to be selected when linking levers or pressure plates

• burrow: integrated 3d box fill and 2d/3d flood fill extensions for burrow painting mode

• fix/dead-units: gained ability to scrub dead units from burrow membership lists

• gui/design: show selected dimensions next to the mouse cursor when designating with vanilla tools, for example
when painting a burrow or designating digging

• prospector: can now give you an estimate of resources from the embark screen. hover the mouse over a potential
embark area and run prospector.

• quickfort: new burrow blueprint mode for designating or manipulating burrows

• sort: military and burrow membership filters for the burrow assignment screen

• unforbid: now ignores worn and tattered items by default (X/XX), use -X to bypass

608 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Fixes

• RemoteServer: continue to accept connections as long as the listening socket is valid instead of closing the socket
after the first disconnect

• buildingplan: overlay and filter editor gui now uses ctrl-d to delete the filter to avoid conflict with increasing the
filter’s minimum quality (shift-x)

• caravan: price of vermin swarms correctly adjusted down. a stack of 10000 bees is worth 10, not 10000

• emigration: fix clearing of work details assigned to units that leave the fort

• gui/unit-syndromes: show the syndrome names properly in the UI

• sort: when filtering out already-established temples in the location assignment screen, also filter out the “No
specific deity” option if a non-denominational temple has already been established

• stockpiles: hide configure and help buttons when the overlay panel is minimized

• tailor: fix crash on Linux where scanned unit is wearing damaged non-clothing (e.g. a crown)

Misc Improvements

• buildingplan:

– display how many items are available on the planner panel

– make it easier to build single-tile staircases of any shape (up, down, or up/down)

• Dreamfort: Inside+ and Clearcutting burrows now automatically created and managed

• sort:

– allow searching by profession on the squad assignment page

– add search for places screens

– add search for work animal assignment screen; allow filtering by miltary/squad/civilian/burrow

– on the squad assignment screen, make effectiveness and potential ratings use the same scale so effec-
tiveness is always less than or equal to potential for a given unit. this way you can also tell when units
are approaching their maximum potential

– new overlay on the animal assignment screen that shows how many work animals each visible unit
already has assigned to them

• warn-stranded: don’t warn for units that are temporarily on unwalkable tiles (e.g. as they pass under a waterfall)

Removed

• gui/control-panel:

– removed always-on system services from the System tab: buildingplan, confirm, logistics, and overlay.
The base services should not be turned off by the player. Individual confirmation prompts can be
managed via gui/confirm, and overlays (including those for buildingplan and logistics) are managed
on the control panel Overlays tab.

– removed autolabor from the Fort and Autostart tabs. The tool does not function correctly with the
new labor types, and is causing confusion. You can still enable autolabor from the commandline with
enable autolabor if you understand and accept its limitations.

7.12. Development changelog 609

DFHack Documentation, Release 50.11-r4

API

• Buildings::completebuild: used to link a newly created building into the world

• Burrows::setAssignedUnit: now properly handles inactive burrows

• Gui::getMousePos: now takes an optional allow_out_of_bounds parameter so coordinates can be returned
for mouse positions outside of the game map (i.e. in the blank space around the map)

• Gui::revealInDwarfmodeMap: gained highlight parameter to control setting the tile highlight on the zoom
target

• Maps::getWalkableGroup: get the walkability group of a tile

• Units::getReadableName: now returns the untranslated name

Lua

• dfhack.buildings.completebuild: expose new module API

• dfhack.gui.getMousePos: support new optional allow_out_of_bounds parameter

• dfhack.gui.revealInDwarfmodeMap: gained highlight parameter to control setting the tile highlight on
the zoom target

• dfhack.maps.getWalkableGroup: get the walkability group of a tile

• gui.FRAME_THIN: a panel frame suitable for floating tooltips

Structures

• burrow: add new graphics mode texture and color fields

• job_item_flags3: identify additional flags

Documentation

• Document the Lua API for the dfhack.world module

7.12.3 DFHack 50.11-r2

New Tools

• add-recipe: (reinstated) add reactions to your civ (e.g. for high boots if your civ didn’t start with the ability to
make high boots)

• burial: (reinstated) create tomb zones for unzoned coffins

• fix/corrupt-jobs: prevents crashes by automatically removing corrupted jobs

• preserve-tombs: keep tombs assigned to units when they die

• spectate: (reinstated) automatically follow dwarves, cycling among interesting ones

610 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

New Scripts

• warn-stranded: new repeatable maintenance script to check for stranded units, similar to warn-starving

New Features

• burial: new options to configure automatic burial and limit scope to the current z-level

• drain-aquifer:

– gained ability to drain just above or below a certain z-level

– new option to drain all layers except for the first N aquifer layers, in case you want some aquifer layers
but not too many

• gui/control-panel: drain-aquifer --top 2 added as an autostart option

• logistics: automelt now optionally supports melting masterworks; click on gear icon on stockpiles overlay frame

• sort:

– new search widgets for Info panel tabs, including all “Creatures” subtabs, all “Objects” subtabs,
“Tasks”, candidate assignment on the “Noble” subtab, and the “Work details” subtab under “Labor”

– new search and filter widgets for the “Interrogate” and “Convict” screens under “Justice”

– new search widgets for location selection screen (when you’re choosing what kind of guildhall or
temple to dedicate)

– new search widgets for burrow assignment screen and other unit assignment dialogs

– new search widgets for artifacts on the world/raid screen

– new search widgets for slab engraving menu; can filter for only units that need a slab to prevent rising
as a ghost

• stocks: hotkey for collapsing all categories on stocks screen

Fixes

• buildingplan:

– remove bars of ash, coal, and soap as valid building materials to match v50 rules

– fix incorrect required items being displayed sometimes when switching the planner overlay on and off

• dwarfvet: fix invalid job id assigned to Rest job, which could cause crashes on reload

• full-heal: fix removal of corpse after resurrection

• gui/sandbox: fix scrollbar moving double distance on click

• hide-tutorials: fix the embark tutorial prompt sometimes not being skipped

• sort: don’t count mercenaries as appointed officials in the squad assignment screen

• suspendmanager: fix errors when constructing near the map edge

• toggle-kbd-cursor: clear the cursor position when disabling, preventing the game from sometimes jumping the
viewport around when cursor keys are hit

• zone:

7.12. Development changelog 611

DFHack Documentation, Release 50.11-r4

– races without specific child or baby names will now get generic child/baby names instead of an empty
string

– don’t show animal assignment link for cages and restraints linked to dungeon zones (which aren’t
normally assignable)

Misc Improvements

• Help icons added to several complex overlays. clicking the icon runs gui/launcher with the help text in the help
area

• buildingplan:

– support filtering cages by whether they are occupied

– show how many items you need to make when planning buildings

• gui/gm-editor: for fields with primitive types, change from click to edit to click to select, double-click to edit.
this should help prevent accidental modifications to the data and make hotkeys easier to use (since you have to
click on a data item to use a hotkey on it)

• gui/overlay: filter overlays by current context so there are fewer on the screen at once and you can more easily
click on the one you want to reposition

• orders: recheck command now only resets orders that have conditions that can be rechecked

• overlay: allow overlay_onupdate_max_freq_seconds to be dynamically set to 0 for a burst of high-
frequency updates

• prioritize: refuse to automatically prioritize dig and smooth/carve job types since it can break the DF job sched-
uler; instead, print a suggestion that the player use specialized units and vanilla designation priorities

• quickfort: now allows constructions to be built on top of constructed floors and ramps, just like vanilla. however,
to allow blueprints to be safely reapplied to the same area, for example to fill in buildings whose constructions
were canceled due to lost items, floors will not be rebuilt on top of floors and ramps will not be rebuilt on top of
ramps

• sort: added help button for squad assignment search/filter/sort

• tailor: now adds to existing orders if possilbe instead of creating new ones

• zone: animals trained for war or hunting are now labeled as such in animal assignment screens

Removed

• FILTER_FULL_TEXT: moved from gui.widgets to utils; if your full text search preference is lost, please reset
it in gui/control-panel

API

• added Items::getCapacity, returns the capacity of an item as a container (reverse-engineered), needed for
combine

612 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Lua

• added dfhack.items.getCapacity to expose the new module API

• added GRAY color aliases for GREY colors

• utils.search_text: text search routine (generalized from internal widgets.FilteredList logic)

Structures

• add new globals: translate_name, buildingst_completebuild

• artifact_rumor_locationst: defined

• viewscreen_worldst: defined types for view_mode and artifacts_arl fields

• world_view_mode_type: defined

Documentation

• unavailable tools are no longer listed in the tag indices in the online docs

7.12.4 DFHack 50.11-r1

New Tools

• startdwarf : (reinstated) set number of starting dwarves

• tubefill: (reinstated) replenishes mined-out adamantine

New Features

• A new searchable, sortable, filterable dialog for selecting items for display on pedestals and display cases

• startdwarf : overlay scrollbar so you can scroll through your starting dwarves if they don’t all fit on the screen

Fixes

• EventManager: Unit death event no longer misfires on units leaving the map

• autolabor: ensure vanilla work details are reinstated when the fort or the plugin is unloaded

• suspendmanager: fixed a bug where floor grates, bars, bridges etc. wouldn’t be recognised as walkable, leading
to unnecessary suspensions in certain cases.

• dfhack.TranslateName(): fixed crash on certain invalid names, which affected warn-starving

7.12. Development changelog 613

DFHack Documentation, Release 50.11-r4

Misc Improvements

• EventManager:

– guard against potential iterator invalidation if one of the event listeners were to modify the global data
structure being iterated over

– for onBuildingCreatedDestroyed events, changed firing order of events so destroyed events come
before created events

• devel/inspect-screen: display total grid size for UI and map layers

• dig:

– designate only visible tiles by default, and use “auto” dig mode for following veins

– added options for designating only current z-level, this z-level and above, and this z-level and below

• hotkeys:

– make the DFHack logo brighten on hover in ascii mode to indicate that it is clickable

– use vertical bars instead of “!” symbols for the DFHack logo in ascii mode to make it easier to read

• suspendmanager: now suspends constructions that would cave-in immediately on completion

Lua

• mouse key events are now aligned with internal DF semantics: _MOUSE_L indicates that the left mouse button
has just been pressed and _MOUSE_L_DOWN indicates that the left mouse button is being held down. similarly for
_MOUSE_R and _MOUSE_M. 3rd party scripts may have to adjust.

Structures

• add new global: start_dwarf_count

7.12.5 DFHack 50.10-r1

Fixes

• ‘fix/general-strike: fix issue where too many seeds were getting planted in farm plots

• Linux launcher: allow Steam Overlay and game streaming to function

• autobutcher: don’t ignore semi-wild units when marking units for slaughter

Misc Improvements

• ‘sort’: Improve combat skill scale thresholds

614 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.6 DFHack 50.09-r4

New Features

• dig: new overlay for ASCII mode that visualizes designations for smoothing, engraving, carving tracks, and
carving fortifications

Fixes

• buildingplan: make the construction dimensions readout visible again

• gui/mod-manager: don’t continue to display overlay after the raws loading progress bar appears

• seedwatch: fix a crash when reading data saved by very very old versions of the plugin

Misc Improvements

• autofish: changed --raw argument format to allow explicit setting to on or off

• caravan: move goods to depot screen can now see/search/trade items inside of barrels and pots

• gui/launcher: show tagged tools in the autocomplete list when a tag name is typed

• sort:

– add sort option for training need on squad assignment screen

– filter mothers with infants, units with weak mental fortitude, and critically injured units on the squad
assignment screen

– display a rating relative to the current sort order next to the visible units on the squad assignment screen

API

• overlay: overlay widgets can now declare a version attribute. changing the version of a widget will reset its
settings to defaults. this is useful when changing the overlay layout and old saved positions will no longer be
valid.

Lua

• argparse.boolean: convert arguments to lua boolean values.

Structures

• Identified a number of previously anonymous virtual methods in itemst

7.12. Development changelog 615

DFHack Documentation, Release 50.11-r4

Documentation

• add instructions for downloading development builds to the Installing page

7.12.7 DFHack 50.09-r3

New Tools

• devel/scan-vtables: scan and dump likely vtable addresses (for memory research)

• hide-interface: hide the vanilla UI elements for clean screenshots or laid-back fortress observing

• hide-tutorials: hide the DF tutorial popups; enable in the System tab of gui/control-panel

• set-orientation: tinker with romantic inclinations (reinstated from back catalog of tools)

New Features

• buildingplan: one-click magma/fire safety filter for planned buildings

• exportlegends: new overlay that integrates with the vanilla “Export XML” button. Now you can generate both
the vanilla export and the extended data export with a single click!

• sort: search, sort, and filter for squad assignment screen

• zone: advanced unit assignment screens for cages, restraints, and pits/ponds

Fixes

• Core:

– reload scripts in mods when a world is unloaded and immediately loaded again

– fix text getting added to DFHack text entry widgets when Alt- or Ctrl- keys are hit

• autobutcher: fix ticks commandline option incorrectly rejecting positive integers as valid values

• buildingplan: ensure selected barrels and buckets are empty (or at least free of lye and milk) as per the require-
ments of the building

• caravan:

– corrected prices for cages that have units inside of them

– correct price adjustment values in trade agreement details screen

– apply both import and export trade agreement price adjustments to items being both bought or sold to
align with how vanilla DF calculates prices

– cancel any active TradeAtDepot jobs if all caravans are instructed to leave

• emigration:

– fix errors loading forts after dwarves assigned to work details or workshops have emigrated

– fix citizens sometimes “emigrating” to the fortress site

• fix/retrieve-units: fix retrieved units sometimes becoming duplicated on the map

• gui/launcher, gui/gm-editor: recover gracefully when the saved frame position is now offscreen

• gui/sandbox: correctly load equipment materials in modded games that categorize non-wood plants as wood

616 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• orders: prevent import/export overlay from appearing on the create workorder screen

• quickfort: cancel old dig jobs that point to a tile when a new designation is applied to the tile

• seedwatch: ignore unplantable tree seeds

• starvingdead: ensure sieges end properly when undead siegers starve

• suspendmanager:

– Fix the overlay enabling/disabling suspendmanager unexpectedly

– improve the detection on “T” and “+” shaped high walls

• tailor: remove crash caused by clothing items with an invalid maker_race

• dialogs.MessageBox: fix spacing around scrollable text

Misc Improvements

• Surround DFHack-specific UI elements with square brackets instead of red-yellow blocks for better readability

• autobutcher: don’t mark animals for butchering if they are already marked for some kind of training (war, hunt)

• caravan: optionally display items within bins in bring goods to depot screen

• createitem: support creating items inside of bags

• devel/lsmem: added support for filtering by memory addresses and filenames

• gui/design: change “auto commit” hotkey from c to Alt-c to avoid conflict with the default keybinding for
z-level down

• gui/gm-editor:

– hold down shift and right click to exit, regardless of how many substructures deep you are

– display in the title bar whether the editor window is scanning for live updates

• gui/liquids: support removing river sources by converting them into stone floors

• gui/quickfort: blueprint details screen can now be closed with Ctrl-D (the same hotkey used to open the details)

• hotkeys: don’t display DFHack logo in legends mode since it covers up important interface elements. the Ctrl-
Shift-C hotkey to bring up the menu and the mouseover hotspot still function, though.

• quickfort: linked stockpiles and workshops can now be specified by ID instead of only by name. this is mostly
useful when dynamically generating blueprints and applying them via the quickfort API

• sort: animals are now sortable by race on the assignment screens

• suspendmanager: display a different color for jobs suspended by suspendmanager

API

• RemoteFortressReader: add a force_reload option to the GetBlockList RPC API to return blocks regardless
of whether they have changed since the last request

• Gui: getAnyStockpile and getAnyCivzone (along with their getSelected variants) now work through
layers of ZScreens. This means that they will still return valid results even if a DFHack tool window is in the
foereground.

• Items::getValue(): remove caravan_buying parameter since the identity of the selling party doesn’t actu-
ally affect the item value

7.12. Development changelog 617

DFHack Documentation, Release 50.11-r4

• Units: new animal propery check functions isMarkedForTraining(unit), isMarkedForTaming(unit),
isMarkedForWarTraining(unit), and isMarkedForHuntTraining(unit)

Lua

• dfhack.gui: new getAnyCivZone and getAnyStockpile functions; also behavior of getSelectedCivZone
and getSelectedStockpile functions has changes as per the related API notes

• dfhack.items.getValue(): remove caravan_buying param as per C++ API change

• dfhack.screen.readTile(): now populates extended tile property fields (like top_of_text) in the returned
Pen object

• dfhack.units: new animal propery check functions isMarkedForTraining(unit),
isMarkedForTaming(unit), isMarkedForWarTraining(unit), and isMarkedForHuntTraining(unit)

• new(): improved error handling so that certain errors that were previously uncatchable (creating objects with
members with unknown vtables) are now catchable with pcall()

• widgets.BannerPanel: panel with distinctive border for marking DFHack UI elements on otherwise vanilla
screens

• widgets.Panel: new functions to override instead of setting corresponding properties (useful when subclassing
instead of just setting attributes): onDragBegin, onDragEnd, onResizeBegin, onResizeEnd

Structures

• Added global_table global and corresponding global_table_entry type

• help_context_type: fix typo in enum name: EMBARK_TUTORIAL_CHICE -> EMBARK_TUTORIAL_CHOICE

• plotinfo: name the fields related to tutorial popups

• viewscreen_legendsst: realign structure

• viewscreen_new_arenast: added (first appeared in 50.06)

7.12.8 DFHack 50.09-r2

New Plugins

• 3dveins: reinstated for v50, this plugin replaces vanilla DF’s blobby vein generation with veins that flow smoothly
and naturally between z-levels

• dig: new dig.asciiwarmdamp overlay that highlights warm and damp tiles when in ASCII mode. there is no
effect in graphics mode since the tiles are already highlighted there

• dwarfvet: reinstated and updated for v50’s new hospital mechanics; allow your animals to have their wounds
treated at hospitals

• zone: new searchable, sortable, filterable screen for assigning units to pastures

618 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

New Scripts

• caravan: new trade screen UI replacements for bringing goods to trade depot and trading

• fix/empty-wheelbarrows: new script to empty stuck rocks from all wheelbarrows on the map

Fixes

• Fix extra keys appearing in DFHack text boxes when shift (or any other modifier) is released before the other key
you were pressing

• gui/autodump: when “include items claimed by jobs” is on, actually cancel the job so the item can be teleported

• gui/create-item: when choosing a citizen to create the chosen items, avoid choosing a dead citizen

• gui/gm-unit: fix commandline processing when a unit id is specified

• logistics:

– don’t autotrain domestic animals brought by invaders (they’ll get attacked by friendly creatures as soon
as you let them out of their cage)

– don’t bring trade goods to depot if the only caravans present are tribute caravans

– fix potential crash when removing stockpiles or turning off stockpile features

• suspendmanager:

– take in account already built blocking buildings

– don’t consider tree branches as a suitable access path to a building

Misc Improvements

• Dreamfort: give noble suites double-thick walls and add apartment doors

• Suppress DF keyboard events when a DFHack keybinding is matched. This prevents, for example, a backtick
from appearing in a textbox as text when you launch gui/launcher from the backtick keybinding.

• autonick: add more variety to nicknames based on famous literary dwarves

• gui/unit-syndromes: make lists searchable

• logistics: bring an autotraded bin to the depot if any item inside is tradeable instead of marking all items within
the bin as untradeable if any individual item is untradeable

• quickfort: blueprint libraries are now moddable – add a blueprints/ directory to your mod and they’ll show
up in quickfort and gui/quickfort!

• stockpiles: include exotic pets in the “tameable” filter

• suspendmanager: display the suspension reason when viewing a suspended building

• widgets.EditField: DFHack edit fields now support cut/copy/paste with the system clipboard with Ctrl-
X/Ctrl-C/Ctrl-V

7.12. Development changelog 619

DFHack Documentation, Release 50.11-r4

API

• Items::markForTrade(), Items::isRequestedTradeGood(), Items::getValue: see Lua notes below

• Units::getUnitByNobleRole, Units::getUnitsByNobleRole: unit lookup API by role

Internals

• Price calculations fixed for many item types

Lua

• dfhack.items.getValue: gained optional caravan and caravan_buying parameters for prices that take
trader races and agreements into account

• dfhack.items.isRequestedTradeGood: discover whether an item is named in a trade agreement with an
active caravan

• dfhack.items.markForTrade: mark items for trade

• dfhack.units.getUnitByNobleRole, dfhack.units.getUnitsByNobleRole: unit lookup API by role

• widgets.TextButton: wraps a HotkeyLabel and decorates it to look more like a button

Structures

• build_req_choicest: realign structure and fix vmethods

• squad_orderst: fix vmethods

Documentation

• misery: rewrite the documentation to clarify the actual effects of the plugin

7.12.9 DFHack 50.09-r1

Misc Improvements

• caravan: new overlay for selecting all/none on trade request screen

• suspendmanager: don’t suspend constructions that are built over open space

Internals

• Core: update SDL interface from SDL1 to SDL2

620 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• tiletype_shape: changed RAMP_TOP and ENDLESS_PIT to not walkable to reflect how scripts actually
need these types to be treated

7.12.10 DFHack 50.08-r4

New Plugins

• logistics: automatically mark and route items or animals that come to monitored stockpiles. options are tog-
gleable on an overlay that comes up when you have a stockpile selected.

Fixes

• buildingplan: don’t include artifacts when max quality is masterful

• dig-now: clear item occupancy flags for channeled tiles that had items on them

• emigration: reassign home site for emigrating units so they don’t just come right back to the fort

• gui/create-item: allow blocks to be made out of wood when using the restrictive filters

• gui/liquids: ensure tile temperature is set correctly when painting water or magma

• gui/quickfort:

– allow traffic designations to be applied over buildings

– protect against meta blueprints recursing infinitely if they include themselves

• gui/sandbox: allow creatures that have separate caste-based graphics to be spawned (like ewes/rams)

• RemoteFortressReader: fix a crash with engravings with undefined images

• workorder: prevent autoMilkCreature from over-counting milkable animals, which was leading to cancella-
tion spam for the MilkCreature job

Misc Improvements

• Blueprint library:

– dreamfort: full rewrite and update for DF v50

– pump_stack: updated walkthrough and separated dig and channel steps so boulders can be cleared

– aquifer_tap: updated walkthrough

• autonick: additional nicknames based on burrowing animals, colours, gems, and minerals

• combine: reduce max different stacks in containers to 30 to prevent contaners from getting overfull

• dig-now: can now handle digging obsidian that has been formed from magma and water

• gui/autodump: add option to clear the trader flag from teleported items, allowing you to reclaim items dropped
by merchants

• gui/control-panel:

– add some popular startup configuration commands for autobutcher and autofarm

– add option for running fix/blood-del on new forts (enabled by default)

7.12. Development changelog 621

DFHack Documentation, Release 50.11-r4

• gui/quickfort:

– adapt “cursor lock” to mouse controls so it’s easier to see the full preview for multi-level blueprints
before you apply them

– only display post-blueprint messages once when repeating the blueprint up or down z-levels

• gui/sandbox: when creating citizens, give them names appropriate for their races

• orders:

– only display import/export/sort/clear panel on main orders screen

– refine order conditions for library orders to reduce cancellation spam

• prioritize: add wild animal management tasks and lever pulling to the default list of prioritized job types

• quickfort: significant rewrite for DF v50! now handles zones, locations, stockpile configuration, hauling routes,
and more

• stockpiles: added barrels, organic, artifacts, and masterworks stockpile presets

• suspendmanager:

– now suspends construction jobs on top of floor designations, protecting the designations from being
erased

– suspend blocking jobs when building high walls or filling corridors

• workorder: reduce existing orders for automatic shearing and milking jobs when animals are no longer available

Removed

• gui/automelt: replaced by an overlay panel that appears when you click on a stockpile

Structures

• abstract_building_libraryst: initialize unknown variables as DF does

• misc_trait_type: realign

Documentation

• Quickfort blueprint library: update Dreamfort screenshots and links, add aquifer_tap screenshot

7.12.11 DFHack 50.08-r3

Fixes

• Fix crash for some players when they launch DF outside of the Steam client

622 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.12 DFHack 50.08-r2

New Plugins

• add-spatter: (reinstated) allow mods to add poisons and magical effects to weapons

• changeitem: (reinstated) change item material, quality, and subtype

• createitem: (reinstated) create arbitrary items from the command line

• deramp: (reinstated) removes all ramps designated for removal from the map

• flows: (reinstated) counts map blocks with flowing liquids

• lair: (reinstated) mark the map as a monster lair (this avoids item scatter when the fortress is abandoned)

• luasocket: (reinstated) provides a Lua API for accessing network sockets

• work-now: (reinstated, renamed from workNow) prevent dwarves from wandering aimlessly with “No job” after
completing a task

New Scripts

• assign-minecarts: (reinstated) quickly assign minecarts to hauling routes

• diplomacy: view or alter diplomatic relationships

• exportlegends: (reinstated) export extended legends information for external browsing

• fix/stuck-instruments: fix instruments that are attached to invalid jobs, making them unusable. turn on automatic
fixing in gui/control-panel in the Maintenance tab.

• gui/autodump: point and click item teleportation and destruction interface (available only if armok tools are
shown)

• gui/mod-manager: automatically restore your list of active mods when generating new worlds

• gui/sandbox: creation interface for units, trees, and items (available only if armok tools are shown)

• light-aquifers-only: (reinstated) convert heavy aquifers to light

• modtools/create-item: (reinstated) commandline and API interface for creating items

• necronomicon: search fort for items containing the secrets of life and death

Fixes

• DFHack screen backgrounds now use appropriate tiles in DF Classic

• RemoteServer: fix crash on malformed json in dfhack-config/remote-server.json

• autolabor: work detail override warning now only appears on the work details screen

• deathcause: fix incorrect weapon sometimes being reported

• gui/create-item: allow armor to be made out of leather when using the restrictive filters

• gui/design: Fix building and stairs designation

• quickfort:

– properly allow dwarves to smooth, engrave, and carve beneath walkable tiles of buildings

7.12. Development changelog 623

DFHack Documentation, Release 50.11-r4

– fixed detection of tiles where machines are allowed (e.g. water wheels can be built on stairs if there is
a machine support nearby)

– fixed rotation of blueprints with carved track tiles

• RemoteFortressReader: ensured names are transmitted in UTF-8 instead of CP437

Misc Improvements

• Core: new commandline flag/environment var: pass --disable-dfhack on the Dwarf Fortress commandline
or specify DFHACK_DISABLE=1 in the environment to disable DFHack for the current session.

• Dreamfort: improve traffic patterns throughout the fortress

• Settings: recover gracefully when settings files become corrupted (e.g. by DF CTD)

• Window behavior:

– non-resizable windows now allow dragging by their frame edges by default

– if you have multiple DFHack tool windows open, scrolling the mouse wheel while over an unfocused
window will focus it and raise it to the top

• autodump: no longer checks for a keyboard cursor before executing, so autodump destroy (which doesn’t
require a cursor) can still function

• gui/autodump: fort-mode keybinding: Ctrl-H (when armok tools are enabled in gui/control-panel)

• gui/blueprint: recording of stockpile layouts and categories is now supported. note that detailed stockpile con-
figurations will not be saved (yet)

• gui/control-panel: new preference for whether filters in lists search for substrings in the middle of words (e.g. if
set to true, then “ee” will match “steel”)

• gui/create-item: ask for number of items to spawn by default

• gui/design: Improved performance for drawing shapes

• gui/gm-editor:

– when passing the --freeze option, further ensure that the game is frozen by halting all rendering
(other than for DFHack tool windows)

– Alt-A now enables auto-update mode, where you can watch values change live when the game is
unpaused

• gui/quickfort:

– blueprints that designate items for dumping/forbidding/etc. no longer show an error highlight for tiles
that have no items on them

– place (stockpile layout) mode is now supported. note that detailed stockpile configurations were part
of query mode and are not yet supported

– you can now generate manager orders for items required to complete bluerpints

• light-aquifers-only: now available as a fort Autostart option in gui/control-panel. note that it will only appear if
“armok” tools are configured to be shown on the Preferences tab.

• orders: update orders in library for prepared meals, bins, archer uniforms, and weapons

• overlay: add links to the quickstart guide and the control panel on the DF title screen

• stockpiles: allow filtering creatures by tameability

624 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Removed

• orders: library/military_include_artifact_materials library file removed since recent research indi-
cates that platinum blunt weapons and silver crossbows are not more effective than standard steel. the alternate
military orders file was also causing unneeded confusion.

Internals

• dfhack.internal: added memory analysis functions: msizeAddress, getHeapState,
heapTakeSnapshot, isAddressInHeap, isAddressActiveInHeap, isAddressUsedAfterFreeInHeap,
getAddressSizeInHeap, and getRootAddressOfHeapObject

Lua

• ensure_keys: walks a series of keys, creating new tables for any missing values

• gui: changed frame naming scheme to FRAME_X rather than X_FRAME, and added aliases for backwards compat-
ibility. (for example BOLD_FRAME is now called FRAME_BOLD)

• overlay.reload(): has been renamed to overlay.rescan() so as not to conflict with the global reload()
function. If you are developing an overlay, please take note of the new function name for reloading your overlay
during development.

Structures

• Removed steam_mod_manager and game_extra globals. Their contents have been merged back into game.

• abstract_building_contents: identify fields and flags related to location item counts

• arena_tree: identify fields related to tree creation

• arena_unit: identify fields related to unit creation

• mod_headerst: rename non_vanilla flag to vanilla to reflect its actual usage

• profession: renamed captions Cheese Maker to Cheesemaker, Bee Keeper to Beekeeper, and Bone
Setter to Bone Doctor

7.12.13 DFHack 50.08-r1

Fixes

• autoclothing: eliminate game lag when there are many inventory items in the fort

• buildingplan:

– fixed size limit calculations for rollers

– fixed items not being checked for accessibility in the filter and item selection dialogs

• deteriorate: ensure remains of enemy dwarves are properly deteriorated

• dig-now: properly detect and complete smoothing designations that have been converted into active jobs

• suspendmanager: Fix over-aggressive suspension of jobs that could still possibly be done (e.g. jobs that are
partially submerged in water)

7.12. Development changelog 625

DFHack Documentation, Release 50.11-r4

Misc Improvements

• buildingplan:

– planner panel is minimized by default and now remembers minimized state

– can now filter by gems (for gem windows) and yarn (for ropes in wells)

• combine: Now supports ammo, parts, powders, and seeds, and combines into containers

• deteriorate: add option to exclude useable parts from deterioration

• gui/control-panel:

– add preference option for hiding the terminal console on startup

– add preference option for hiding “armok” tools in command lists

• gui/gm-editor:

– press g to move the map to the currently selected item/unit/building

– press Ctrl-D to toggle read-only mode to protect from accidental changes; this state persists across
sessions

– new --freeze option for ensuring the game doesn’t change while you’re inspecting it

• gui/launcher: DFHack version now shown in the default help text

• gui/prerelease-warning: widgets are now clickable

• overlay: add the DFHack version string to the DF title screen

• Dwarf Therapist: add a warning to the Labors screen when Dwarf Therapist is active so players know that
changes they make to that screen will have no effect. If you’re starting a new embark and nobody seems to be
doing anything, check your Labors tab for this warning to see if Dwarf Therapist thinks it is in control (even if
it’s not running).

• toggle-kbd-cursor: add hotkey for toggling the keyboard cursor (Alt-K)

• version: add alias to display the DFHack help (including the version number) so something happens when
players try to run “version”

Removed

• title-version: replaced by an overlay widget

Lua

• gui.ZScreenModal: ZScreen subclass for modal dialogs

• widgets.CycleHotkeyLabel: exposed “key_sep” and “option_gap” attributes for improved stylistic control.

• widgets.RangeSlider: new mouse-controlled two-headed slider widget

626 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• convert mod_manager fields to pointers

7.12.14 DFHack 50.07-r1

New Plugins

• faststart: speeds up the “Loading. . . ” screen so the Main Menu appears faster

Fixes

• blueprint: interpret saplings, shrubs, and twigs as floors instead of walls

• caravan: fix trade good list sometimes disappearing when you collapse a bin

• combine: fix error processing stockpiles with boundaries that extend outside of the map

• gui/control-panel: the config UI for automelt is no longer offered when not in fortress mode

• gui/gm-editor: no longer nudges last open window when opening a new one

• hotkeys: hotkey hints on menu popup will no longer get their last character cut off by the scrollbar

• prospector: display both “raw” Z levels and “cooked” elevations

• stockpiles:

– fix crash when importing settings for gems from other worlds

– allow numbers in saved stockpile filenames

• warn-starving: no longer warns for dead units

• launchdf: launch Dwarf Fortress via the Steam client so Steam Workshop is functional

Misc Improvements

• Core: hide DFHack terminal console by default when running on Steam Deck

• Mods:

– scripts in mods that are only in the steam workshop directory are now accessible. this means that a
script-only mod that you never mark as “active” when generating a world will still receive automatic
updates and be usable from in-game

– scripts from only the most recent version of an installed mod are added to the script path

– give active mods a chance to reattach their load hooks when a world is reloaded

• buildingplan:

– items in the item selection dialog should now use the same item quality symbols as the base game

– hide planner overlay while the DF tutorial is active so that it can detect when you have placed the
carpenter’s workshop and bed and allow you to finish the tutorial

– can now filter by cloth and silk materials (for ropes)

– rearranged elements of planneroverlay interface

– rearranged elements of itemselection interface

7.12. Development changelog 627

DFHack Documentation, Release 50.11-r4

• gui/control-panel:

– bugfix services are now enabled by default

– add faststart to the system services

• gui/gm-editor:

– can now jump to material info objects from a mat_type reference with a mat_index using i

– the key column now auto-fits to the widest key

• prioritize: revise and simplify the default list of prioritized jobs – be sure to tell us if your forts are running
noticeably better (or worse!)

Lua

• added two new window borders: gui.BOLD_FRAME for accented elements and gui.INTERIOR_MEDIUM_FRAME
for a signature-less frame that’s thicker than the existing gui.INTERIOR_FRAME

Structures

• correct bit size of tree body data

• identified fields in deep_vein_hollow, glowing_barrier, and cursed_tomb map events

• identified divine_treasure and encased_horror map events

Documentation

• Installing DFHack: updated to include Steam installation instructions

7.12.15 DFHack 50.07-beta2

New Plugins

• getplants: reinstated: designate trees for chopping and shrubs for gathering according to type

• prospector: reinstated: get stone, ore, gem, and other tile property counts in fort mode.

New Scripts

• fix/general-strike: fix known causes of the general strike bug (contributed by Putnam)

• gui/civ-alert: configure and trigger civilian alerts

• gui/seedwatch: GUI config and status panel interface for seedwatch

628 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Fixes

• buildingplan:

– filters are now properly applied to planned stairs

– existing carved up/down stairs are now taken into account when determining which stair shape to
construct

– upright spike traps are now placed extended rather than retracted

– you can no longer designate constructions on tiles with magma or deep water, mirroring the vanilla
restrictions

– fixed material filters getting lost for planning buildings on save/reload

– respect building size limits (e.g. roads and bridges cannot be more than 31 tiles in any dimension)

• caravan: item list length now correct when expanding and collapsing containers

• prioritize: fixed all watched job type names showing as nil after a game load

• suspendmanager:

– does not suspend non-blocking jobs such as floor bars or bridges anymore

– fix occasional bad identification of buildingplan jobs

• tailor:

– properly discriminate between dyed and undyed cloth

– no longer default to using adamantine cloth for producing clothes

– take queued orders into account when calculating available materials

– skip units who can’t wear clothes

– identify more available items as available, solving issues with over-production

• warn-starving: no longer warns for enemy and neutral units

Misc Improvements

• Mods: scripts in mods are now automatically added to the DFHack script path. DFHack recognizes two directo-
ries in a mod’s folder: scripts_modinstalled/ and scripts_modactive/. scripts_modinstalled/
folders will always be added the script path, regardless of whether the mod is active in a world.
scripts_modactive/ folders will only be added to the script path when the mod is active in the current loaded
world.

• automelt: now allows metal chests to be melted (workaround for DF bug 2493 is no longer needed)

• buildingplan:

– filters and global settings are now ignored when manually choosing items for a building, allowing you
to make custom choices independently of the filters that would otherwise be used

– if suspendmanager is running, then planned buildings will be left suspended when their items are all
attached. suspendmanager will unsuspsend them for construction when it is safe to do so.

– add option for autoselecting the last manually chosen item (like automaterial used to do)

• combine:

– you can select a target stockpile in the UI instead of having to use the keyboard cursor

7.12. Development changelog 629

DFHack Documentation, Release 50.11-r4

– added --quiet option for no output when there are no changes

• confirm: adds confirmation for removing burrows via the repaint menu

• enable: can now interpret aliases defined with the alias command

• exterminate: add support for vaporize kill method for when you don’t want to leave a corpse

• gui/control-panel:

– Now detects overlays from scripts named with capital letters

– added combine all maintenance option for automatic combining of partial stacks in stockpiles

– added general-strike maintenance option for automatic fixing of (at least one cause of) the general
strike bug

• gui/cp437-table:

– now has larger key buttons and clickable backspace/submit/cancel buttons, making it fully usable on
the Steam Deck and other systems that don’t have an accessible keyboard

– dialog is now fully controllable with the mouse, including highlighting which key you are hovering
over and adding a clickable backspace button

• gui/design: Now supports placing constructions using ‘Building’ mode. Inner and Outer tile constructions are
configurable. Uses buildingplan filters set up with the regular buildingplan interface.

• orders:

– add minimize button to overlay panel so you can get it out of the way to read long statue descriptions
when choosing a subject in the details screen

– add option to delete exported files from the import dialog

• stockpiles:

– support applying stockpile configurations with fully enabled categories to stockpiles in worlds other
than the one where the configuration was exported from

– support partial application of a saved config based on dynamic filtering (e.g. disable all tallow in a
food stockpile, even tallow from world-specific generated creatures)

– additive and subtractive modes when applying a second stockpile configuration on top of a first

– write player-exported stockpile configurations to the dfhack-config/stockpiles folder. If you
have any stockpile configs in other directories, please move them to that folder.

– now includes a library of useful stockpile configs (see docs for details)

• stripcaged:

– added --skip-forbidden option for greater control over which items are marked for dumping

– items that are marked for dumping are now automatically unforbidden (unless --skip-forbidden is
set)

630 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Removed

• autounsuspend: replaced by suspendmanager

• gui/dig: renamed to gui/design

Lua

• widgets.CycleHotkeyLabel:

– options that are bare integers will no longer be interpreted as the pen color in addition to being the
label and value

– option labels and pens can now be functions that return a label or pen

• widgets.Label:

– tokens can now specify a htile property to indicate the tile that should be shown when the Label is
hovered over with the mouse

– click handlers no longer get the label itself as the first param to the click handler

Structures

• realigned furniture_type enum (added BAG)

• realigned stockpile_settings for new “corpses” vector

Documentation

• the untested tag has been renamed to unavailable to better reflect the status of the remaining unavaialable
tools. most of the simply “untested” tools have now been tested and marked as working. the remaining tools are
known to need development work before they are available again.

• DFHack modding guide: guide updated to include information for 3rd party script developers

7.12.16 DFHack 50.07-beta1

New Scripts

• gui/suspendmanager: graphical configuration interface for suspendmanager

• suspendmanager: automatic job suspension management (replaces autounsuspend)

• suspend: suspends building construction jobs

7.12. Development changelog 631

DFHack Documentation, Release 50.11-r4

Fixes

• buildingplan:

– items are now attached correctly to screw pumps and other multi-item buildings

– buildings with different material filters will no longer get “stuck” if one of the filters currently matches
no items

• gui/launcher: tab characters in command output now appear as a space instead of a code page 437 “blob”

• quicksave: now reliably triggers an autosave, even if one has been performed recently

• showmood properly count required number of bars and cloth when they aren’t the main item for the strange mood

Misc Improvements

• Quickfort blueprint library:

– library blueprints have moved from blueprints to hack/data/blueprints

– player-created blueprints should now go in the dfhack-config/blueprints folder. please move
your existing blueprints from blueprints to dfhack-config/blueprints. you don’t need to move
the library blueprints – those can be safely deleted from the old blueprints directory.

• blueprint: now writes blueprints to the dfhack-config/blueprints directory

• buildingplan:

– can now filter by clay materials

– remember choice per building type for whether the player wants to choose specific items

– you can now attach multiple weapons to spike traps

– can now filter by whether a slab is engraved

– add “minimize” button to temporarily get the planner overlay out of the way if you would rather use
the vanilla UI for placing the current building

– add buildingplan reset command for resetting all filters to defaults

– rename “Build” button to “Confirm” on the item selection dialog and change the hotkey from “B” to
“C”

• gui/gm-editor: can now open the selected stockpile if run without parameters

• quickfort: now reads player-created blueprints from dfhack-config/blueprints/ instead of the old
blueprints/ directory. Be sure to move over your personal blueprints to the new directory!

• showmood: clarify how many bars and/or cloth items are actually needed for the mood

Removed

• buildingplan: “heat safety” setting is temporarily removed while we investigate incorrect item matching

632 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• identified two fields related to saves/autosaves to facilitate quicksave implementation

7.12.17 DFHack 50.07-alpha3

Fixes

• dig-now: fixed multi-layer channel designations only channeling every second layer

• gui/create-item: fix generic corpsepiece spawning

• dfhack.job.isSuitableMaterial: now properly detects lack of fire and magma safety for vulnerable mate-
rials with high melting points

• widgets.HotkeyLabel: don’t trigger on click if the widget is disabled

Misc Improvements

• buildingplan: entirely new UI for building placement, item selection, and materials filtering!

• dig-now: added handling of dig designations that have been converted into active jobs

• gui/create-item: added ability to spawn ‘whole’ corpsepieces (every layer of a part)

• gui/dig:

– Allow placing an extra point (curve) while still placing the second main point

– Allow placing n-point shapes, shape rotation/mirroring

– Allow second bezier point, mirror-mode for freeform shapes, symmetry mode

Removed

• automaterial: all functionality has been merged into buildingplan

• gui.THIN_FRAME: replaced by gui.INTERIOR_FRAME

API

• Gui focus strings will no longer get the “dfhack/” prefix if the string “dfhack/” already exists in the focus string

• Maps::GetBiomeTypeRef renamed to Maps::getBiomeTypeRef for consistency

• Maps::GetBiomeType renamed to Maps::getBiomeType for consistency

• Military:

– New module for military functionality

– new makeSquad to create a squad

– changed getSquadName to take a squad identifier

– new updateRoomAssignments for assigning a squad to a barracks and archery range

7.12. Development changelog 633

DFHack Documentation, Release 50.11-r4

Lua

• dfhack.job.attachJobItem(): allows you to attach specific items to a job

• dfhack.screen.paintTile(): you can now explicitly clear the interface cursor from a map tile by passing 0
as the tile value

• gui.INTERIOR_FRAME: a panel frame style for use in highlighting off interior areas of a UI

• maps.getBiomeType: exposed preexisting function to Lua

• widgets.CycleHotkeyLabel: add label_below attribute for compact 2-line output

• widgets.FilteredList: search key matching is now case insensitive by default

• widgets.Label: token tile properties can now be functions that return a value

Structures

• history_eventst: Removed history_event_masterpiece_created_arch_designst and related enum
value

• plot_infost.``unk_8``: renamed to theft_intrigues. Fields unk_1 thru unk_8 renamed to target_item,
mastermind_hf, mastermind_plot_id, corruptor_hf, corruptor, corruptee_hf, corruptee, and
theft_agreement. unk_1 renamed to item_known_pos.

• specific_ref_type: Removed BUILDING_PARTY, PETINFO_PET, and PETINFO_OWNER enum values to fix
alignment.

7.12.18 DFHack 50.07-alpha2

New Scripts

• combine: combines stacks of food and plant items.

Fixes

• autobutcher: implemented work-around for Dwarf Fortress not setting nicknames properly, so that nicknames
created in the in-game interface are detected & protect animals from being butchered properly. Note that nick-
names for unnamed units are not currently saved by dwarf fortress - use enable fix/protect-nicks to fix
any nicknames created/removed within dwarf fortress so they can be saved/reloaded when you reload the game.

• autochop: generate default names for burrows with no assigned names

• autodump: changed behaviour to only change dump and forbid flags if an item is successfully dumped.

• channel-safely: fix an out of bounds error regarding the REPORT event listener receiving (presumably) stale id’s

• confirm: fix fps drop when enabled

• devel/query: can now properly index vectors in the –table argument

• forbid: fix detection of unreachable items for items in containers

• gui/blueprint: correctly use setting presets passed on the commandline

• gui/quickfort: correctly use settings presets passed on the commandline

• makeown: fixes errors caused by using makeown on an invader

634 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• nestboxes: fixed bug causing nestboxes themselves to be forbidden, which prevented citizens from using them to
lay eggs. Now only eggs are forbidden.

• seedwatch: fix saving and loading of seed stock targets

• tailor: block making clothing sized for toads; make replacement clothing orders use the size of the wearer, not
the size of the garment

• troubleshoot-item: fix printing of job details for chosen item

• unforbid: fix detection of unreachable items for items in containers

• Buildings::StockpileIterator: fix check for stockpile items on block boundary.

Misc Improvements

• DFHack tool windows that capture mouse clicks (and therefore prevent you from clicking on the “pause” button)
now unconditionally pause the game when they open (but you can still unpause with the keyboard if you want
to). Examples of this behavior: gui/quickfort, gui/blueprint, gui/liquids

• Stopped mouse clicks from affecting the map when a click on a DFHack screen dismisses the window

• autobutcher: logs activity to the console terminal instead of making disruptive in-game announcements

• caravan: add trade screen overlay that assists with seleting groups of items and collapsing groups in the UI

• confirm: configuration data is now persisted globally.

• devel/query: will now search for jobs at the map coordinate highlighted, if no explicit job is highlighted and there
is a map tile highlighted

• devel/visualize-structure: now automatically inspects the contents of most pointer fields, rather than inspecting
the pointers themselves

• gui/gm-editor: will now inspect a selected building itself if the building has no current jobs

• showmood: now shows the number of items needed for cloth and bars in addition to the technically correct but
always confusing “total dimension” (150 per bar or 10,000 per cloth)

• tailor: add support for adamantine cloth (off by default); improve logging

• troubleshoot-item:

– output as bullet point list with indenting, with item description and ID at top

– reports on items that are hidden, artifacts, in containers, and held by a unit

– reports on the contents of containers with counts for each contained item type

Removed

• combine-drinks: replaced by combine

• combine-plants: replaced by combine

7.12. Development changelog 635

DFHack Documentation, Release 50.11-r4

API

• Units module: added new predicates for isGeldable(), isMarkedForGelding(), and isPet()

• Gui::any_civzone_hotkey, Gui::getAnyCivZone, Gui::getSelectedCivZone: new functions to oper-
ate on the new zone system

Lua

• dfhack.gui.getSelectedCivZone: returns the Zone that the user has selected currently

• widgets.FilteredList: Added edit_on_change optional parameter to allow a custom callback on filter edit
change.

• widgets.TabBar: new library widget (migrated from control-panel.lua)

Structures

• corrected alignment in world.status

• identify item vmethod 213 (applies a thread improvements to appropriate items based on an RNG)

• identify two anons in difficultyst

• identify various data types related to job completion/cancellation

• split gamest into gamest and gamest_extra to accommodate steam-specific data in gamest.mod_manager

• activity_info: unit_actor, unit_noble, and place converted from pointers to integer references.

• dipscript_popup: meeting_holder converted from unit pointer into two unit refs meeting_holder_actor
and meeting_holder_noble.

• plotinfost.``equipment``: Converted items_unmanifested, items_unassigned, and items_assigned
vectors from pointers to item refs

7.12.19 DFHack 50.07-alpha1

New Scripts

• gui/design: digging and construction designation tool with shapes and patterns

• makeown: makes the selected unit a citizen of your fortress

Fixes

• Fix persisted data not being written on manual save

• Fix right click sometimes closing both a DFHack window and a vanilla panel

• Fixed issue with scrollable lists having some data off-screen if they were scrolled before being made visible

• autochop: fixed bug related to lua stack smashing behavior in returned stockpile configs

• automelt: fixed bug related to lua stack smashing behavior in returned stockpile configs

• channel-safely: fixed bug resulting in marker mode never being set for any designation

• fix/protect-nicks: now works by setting the historical figure nickname

636 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• gui/dig: Fix for ‘continuing’ auto-stair designation. Avoid nil index issue for tile_type

• gui/liquids: fixed issues with unit pathing after adding/removing liquids

• gui/unit-syndromes: allow the window widgets to be interacted with

• nestboxes:

– now cancels any in-progress hauling jobs when it protects a fertile egg

– now scans for eggs more frequently and cancels any in-progress hauling jobs when it protects a fertile
egg

• Units::isFortControlled: Account for agitated wildlife

Misc Improvements

• replaced DFHack logo used for the hover hotspot with a crisper image

• autobutcher:

– changed defaults from 5 females / 1 male to 4 females / 2 males so a single unfortunate accident doesn’t
leave players without a mating pair

– now immediately loads races available at game start into the watchlist

• autodump:

– reinstate autodump-destroy-item, hotkey: Ctrl-K

– new hotkey for autodump-destroy-here: Ctrl-H

• automelt: is now more resistent to vanilla savegame corruption

• cleaners: new hotkey for cleaners: Ctrl-C

• dig: new hotkeys for vein designation on z-level (Ctrl-V) and vein designation across z-levels (Ctrl-Shift-V)

• gui/dig : Added ‘Line’ shape that also can draw curves, added draggable center handle

• gui/gm-editor:

– now supports multiple independent data inspection windows

– now prints out contents of coordinate vars instead of just the type

• hotkeys: DFHack logo is now hidden on screens where it covers important information when in the default
position (e.g. when choosing an embark site)

• misery: now persists state with the fort

• orders: recipe for silver crossbows removed from library/military as it is not a vanilla recipe, but is available
in library/military_include_artifact_materials

• rejuvenate: now takes an –age parameter to choose a desired age.

• stonesense: added an INVERT_MOUSE_Z option to invert the mouse wheel direction

7.12. Development changelog 637

DFHack Documentation, Release 50.11-r4

Lua

• overlay: overlay widgets can now specify focus paths for the viewscreens they attach to so they only appear in
specific contexts. see DFHack overlay dev guide for details.

• widgets.CycleHotkeyLabel: Added key_back optional parameter to cycle backwards.

• widgets.FilteredList: Added case_sensitive optional paramter to determine if filtering is case sensitive.

• widgets.HotkeyLabel:

– Added setLabel method to allow easily updating the label text without mangling the keyboard short-
cut.

– Added setOnActivate method to allow easily updating the on_activate callback.

Structures

• added missing tiletypes and corrected a few old ones based on a list supplied by Toady

7.12.20 DFHack 50.05-alpha3.1

Fixes

• gui/launcher: no longer resets to the Help tab on every keystroke

• seedwatch: fix parameter parsing when setting targets

7.12.21 DFHack 50.05-alpha3

New Plugins

• autoslab: automatically create work orders to engrave slabs for ghostly dwarves

New Scripts

• autofish: auto-manage fishing labors to control your stock of fish

• fix/civil-war: removes negative relations with own government

• fix/protect-nicks: restore nicknames when DF loses them

• forbid: forbid and list forbidden items on the map

• gui/autofish: GUI config and status panel interface for autofish

• gui/automelt: GUI config and status panel interface for automelt

• gui/control-panel: quick access to DFHack configuration

• gui/unit-syndromes: browser for syndrome information

638 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Fixes

• allow launcher tools to launch themselves without hanging the game

• DF screens can no longer get “stuck” on transitions when DFHack tool windows are visible. Instead, those DF
screens are force-paused while DFHack windows are visible so the player can close them first and not corrupt
the screen sequence. The “PAUSE FORCED” indicator will appear on these DFHack windows to indicate what
is happening.

• fix issues with clicks “passing through” some DFHack window elements to the screen below

• autochop: fixed a crash when processing trees with corrupt data structures (e.g. when a trunk tile fails to fall
when the rest of the tree is chopped down)

• autoclothing: fixed a crash that can happen when units are holding invalid items.

• build-now: now correctly avoids adjusting non-empty tiles above constructions that it builds

• catsplosion: now only affects live, active units

• getplants: trees are now designated correctly

• orders:

– fix orders in library/basic that create bags

– library/military now sticks to vanilla rules and does not add orders for normally-mood-only platinum
weapons. A new library orders file library/military_include_artifact_materials is now
offered as an alternate library/military set of orders that still includes the platinum weapons.

• quickfort: allow floor bars, floor grates, and hatches to be placed over all stair types like vanilla allows

Misc Improvements

• DFHack windows can now be “defocused” by clicking somewhere not over the tool window. This has the same
effect as pinning previously did, but without the extra clicking.

• New borders for DFHack tool windows – tell us what you think!

• Windows now display “PAUSE FORCED” on the lower border if the tool is forcing the game to pause

• autoclothing: merged the two separate reports into the same command.

• automelt: stockpile configuration can now be set from the commandline

• ban-cooking:

– ban announcements are now hidden by default; use new option --verbose to show them.

– report number of items banned.

• build-now: now handles dirt roads and initializes farm plots properly

• channel-safely: new monitoring for cave-in prevention

• devel/click-monitor: report on middle mouse button actions

• getplants: ID values will now be accepted regardless of case

• gui/autochop: hide uninteresting burrows by default

• gui/blueprint: allow map movement with the keyboard while the UI is open

• gui/control-panel:

– you can now configure whether DFHack tool windows should pause the game by default

7.12. Development changelog 639

DFHack Documentation, Release 50.11-r4

– new global hotkey for quick access: Ctrl-Shift-E

• gui/create-item:

– support spawning corpse pieces (e.g. shells) under “body part”

– added search and filter capabilities to the selection lists

– added whole corpse spawning alongside corpsepieces. (under “corpse”)

• gui/launcher:

– sped up initialization time for faster window appearance

– make command output scrollback separate from the help text so players can continue to see the output
of the previous command as they type the next one

– allow double spacebar to pause/unpause the game, even while typing a command

– clarify what is being shown in the autocomplete list (all commands, autocompletion of partially typed
command, or commands related to typed command)

– support running commands directly from the autocomplete list via double-clicking

• gui/liquids: interface overhaul, also now allows spawning river sources, setting/adding/removing liquid levels,
and cleaning water from being salty or stagnant

• gui/overlay: now focuses on repositioning overlay widgets; enabling, disabling, and getting help for overlay
widgets has moved to the new gui/control-panel

• gui/quickcmd:

– now has its own global keybinding for your convenience: Ctrl-Shift-A

– now acts like a regular window instead of a modal dialog

• gui/quickfort: don’t close the window when applying a blueprint so players can apply the same blueprint multiple
times more easily

• hotkeys: clicking on the DFHack logo no longer closes the popup menu

• locate-ore: now only searches revealed tiles by default

• modtools/spawn-liquid: sets tile temperature to stable levels when spawning water or magma

• nestboxes: now saves enabled state in your savegame

• orders: orders plugin functionality is now accessible via an overlay widget when the manager orders screen is
open

• prioritize:

– pushing minecarts is now included in the default priortization list

– now automatically starts boosting the default list of job types when enabled

• quickfort: planned buildings are now properly attached to any pertinent overlapping zones

• seedwatch: now persists enabled state in the savegame, automatically loads useful defaults, and respects reacha-
bility when counting available seeds

• unforbid: avoids unforbidding unreachable and underwater items by default

640 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Removed

• autohauler: no plans to port to v50, as it just doesn’t make sense with the new work detail system

• show-unit-syndromes: replaced by gui/unit-syndromes; html export is no longer supported

API

• overlay: overlay widgets can now specify a default enabled state if they are not already set in the player’s overlay
config file

• Buildings::containsTile(): no longer takes a room parameter since that’s not how rooms work anymore.
If the building has extents, the extents will be checked. otherwise, the result just depends on whether the tile is
within the building’s bounding box.

• Lua::Push: now supports std::unordered_map

• Screen::Pen: now accepts top_of_text and bottom_of_text properties to support offset text in graphics
mode

• Units::getCitizens(): gets a list of citizens, which otherwise you’d have to iterate over all units the world
to discover

Lua

• helpdb:

– new function: helpdb.refresh() to force a refresh of the database. Call if you are a developer
adding new scripts, loading new plugins, or changing help text during play

– changed from auto-refreshing every 60 seconds to only refreshing on explicit call to helpdb.
refresh(). docs very rarely change during a play session, and the automatic database refreshes
were slowing down the startup of gui/launcher and anything else that displays help text.

• tiletypes: now has a Lua API! tiletypes_setTile

• dfhack.units.getCitizens(): gets a list of citizens

• gui.ZScreen: new attribute: defocusable for controlling whether a window loses keyboard focus when the
map is clicked

• widgets.Label:

– label.scroll() now understands home and end keywords for scrolling to the top or bottom

– token tile properties can now be either pens or numeric texture ids

• widgets.List: new callbacks for double click and shift double click

7.12. Development changelog 641

DFHack Documentation, Release 50.11-r4

Structures

• add “hospital” language name category

• corrected misalignment in unitst (affecting occupation and adjective)

• identified fields for squads and other military structures

• identified some anons in unitst related to textures (thanks, putnam)

• identify a table of daily events scheduled to take place inthe current year

• realigned and fleshed out entity_site_link (again, thanks, putnam)

• remove some no-longer-valid reputation types

• building_design: corrected misalignments

• creature_raw_graphics: corrected misalignments

• item.setSharpness(): more info about params

• occupation_type: add enum values for new occupations related to hospitals

Documentation

• Quickstart guide has been updated with info on new window behavior and how to use the control panel

• Compilation: instructions added for cross-compiling DFHack for Windows from a Linux Docker builder

7.12.22 DFHack 50.05-alpha2

Fixes

• autofarm: don’t duplicate status line entries for crops with no current supply

• build-now: don’t error on constructions that do not have an item attached

• gui/gm-editor: fix errors displayed while viewing help screen

• orders: allow the orders library to be listed and imported properly (if you previously copied the orders library
into your dfhack-config/orders directory to work around this bug, you can remove those files now)

• tailor: now respects the setting of the “used dyed clothing” standing order toggle

Removed

• create-items: replaced by gui/create-item --multi

642 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• corrected misalignment in historical_entity

• identified two old and one new language name groups

• partially identified squad-related structures in plotinfo and corrected position of civ_alert_idx (does not
affect alignment)

7.12.23 DFHack 50.05-alpha1

New Scripts

• allneeds: list all unmet needs sorted by how many dwarves suffer from them.

• devel/tile-browser: page through available textures and see their texture ids

• gui/autochop: configuration frontend and status monitor for the autochop plugin

Fixes

• make-legendary: “MilitaryUnarmed” option now functional

• widgets.WrappedLabel: no longer resets scroll position when window is moved or resized

Misc Improvements

• Scrollable widgets now react to mouse wheel events when the mouse is over the widget

• the dfhack-config/scripts/ folder is now searched for scripts by default

• autounsuspend: now saves its state with your fort

• devel/inspect-screen: updated for new rendering semantics and can now also inspect map textures

• emigration: now saves its state with your fort

• exterminate: added drown method. magma and drown methods will now clean up liquids automatically.

• gui/cp437-table: converted to a movable, mouse-enabled window

• gui/gm-editor: converted to a movable, resizable, mouse-enabled window

• gui/gm-unit: converted to a movable, resizable, mouse-enabled window

• gui/launcher:

– now supports a smaller, minimal mode. click the toggle in the launcher UI or start in minimal mode
via the Ctrl-Shift-P keybinding

– can now be dragged from anywhere on the window body

– now remembers its size and position between invocations

• gui/quickcmd:

– converted to a movable, resizable, mouse-enabled window

– commands are now stored globally so you don’t have to recreate commands for every fort

• hotkeys: overlay hotspot widget now shows the DFHack logo in graphics mode and “DFHack” in text mode

7.12. Development changelog 643

DFHack Documentation, Release 50.11-r4

• prioritize: now saves its state with your fort

• Script paths: removed “raw” directories from default script paths. now the default locations to search for scripts
are dfhack-config/scripts, save/*/scripts, and hack/scripts

• unsuspend:

– overlay now displays different letters for different suspend states so they can be differentiated in graph-
ics mode (P=planning, x=suspended, X=repeatedly suspended)

– overlay now shows a marker all the time when in graphics mode. ascii mode still only shows when
paused so that you can see what’s underneath.

• init.d: directories have moved from the raw subfolder (which no longer exists) to the root of the main DF
folder or a savegame folder

Removed

• Ruby is no longer a supported DFHack scripting language

• fix-job-postings from the workflow plugin is now obsolete since affected savegames can no longer be loaded

API

• Gui::getDFViewscreen: returns the topmost underlying DF viewscreen

• Gui::getDwarfmodeDims: now only returns map viewport dimensions; menu dimensions are obsolete

• Screen::Pen: now accepts keep_lower and write_to_lower properties to support foreground and back-
ground textures in graphics mode

Lua

• Removed os.execute() and io.popen() built-in functions

• overlay: OverlayWidget now inherits from Panel instead of Widget to get all the frame and mouse integration
goodies

• dfhack.gui.getDFViewscreen(): returns the topmost underlying DF viewscreen

• gui.CLEAR_PEN: now clears the background and foreground and writes to the background (before it would
always write to the foreground)

• gui.KEEP_LOWER_PEN: a general use pen that writes associated tiles to the foreground while keeping the existing
background

• gui.View:

– visible and active can now be functions that return a boolean

– new function view:getMouseFramePos() for detecting whether the mouse is within (or over) the
exterior frame of a view

• gui.ZScreen: Screen subclass that implements window raising, multi-viewscreen input handling, and
viewscreen event pass-through so the underlying map can be interacted with and dragged around while DFHack
screens are visible

• widgets.CycleHotkeyLabel:

– now supports rendering option labels in the color of your choice

644 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– new functions setOption() and getOptionPen()

• widgets.Label: tiles can now have an associated width

• widgets.Panel: new attributes to control window dragging and resizing with mouse or keyboard

• widgets.ToggleHotkeyLabel: now renders the On option in green text

• widgets.Window: Panel subclass with attributes preset for top-level windows

Structures

• Renamed globals to match DF:

– ui: renamed to plotinfo

– ui_advmode: renamed to adventure

– ui_build_selector: renamed to buildreq

– ui_sidebar_menus: renamed to game

• building_civzonest: identify two variables, dir_x and dir_y, that handle archery range direction.

Documentation

• added DFHack architecture diagrams to the dev intro

• added DFHack Quickstart guide

• devel/hello-world: updated to be a better example from which to start new gui scripts

• DFHack overlay dev guide: added troubleshooting tips and common development workflows

7.12.24 DFHack 0.47.05-r8

New Plugins

• channel-safely: auto-manage channel designations to keep dwarves safe

• overlay: plugin is transformed from a single line of text that runs gui/launcher on click to a fully-featured overlay
injection framework. It now houses a popup menu for keybindings relevant to the current DF screen, all the
widgets previously provided by dwarfmonitor (e.g. the current date and number of happy/unhappy dwarves),
the overlay that highlights suspended buildings when you pause, and others. See DFHack overlay dev guide for
details.

New Scripts

• gui/overlay: configuration interface for the DFHack overlays and overlay widgets. includes a click-and-drag
interface for repositioning widgets!

7.12. Development changelog 645

DFHack Documentation, Release 50.11-r4

Fixes

• Core: ensure foo.init always runs before foo.*.init (e.g. dfhack.init should always run before dfhack.
something.init)

• autofarm: flush output so status text is visible immediately after running the command

• autolabor, autohauler: properly handle jobs 241, 242, and 243

• automaterial:

– fix the cursor jumping up a z level when clicking quickly after box select

– fix rendering errors with box boundary markers

• buildingplan: fix crash when canceling out of placement mode for a building with planning mode enabled and
subsequently attempting to place a building that does not have planning mode enabled and that has no pertinent
materials available

• dwarf-op: fixed error when matching dwarves by name

• gui/create-item: prevent materials list filter from intercepting sublist hotkeys

• gui/gm-unit: fixed behavior of + and - to adjust skill values instead of populating the search field

• hotkeys: correctly detect hotkeys bound to number keys, F11, and F12

• labormanager: associate quern construction with the correct labor

• mousequery: fix the cursor jumping up z levels sometimes when using TWBT

• tiletypes: no longer resets dig priority to the default when updating other properties of a tile

• warn-stealers:

– register callback with correct event name so that units entering the map are detected

– announce thieving creatures that spawn already revealed

– cache unit IDs instead of unit objects to avoid referencing stale pointers

• workorder: fix interpretation of json-specified orders that set the item_type field

• EventManager:

– fix a segmentation fault with the REPORT event

– fix the JOB_STARTED event only sending events to the first handler listed instead of all registered
handlers

Misc Improvements

• UX:

– List widgets now have mouse-interactive scrollbars

– You can now hold down the mouse button on a scrollbar to make it scroll multiple times.

– You can now drag the scrollbar up and down to scroll to a specific spot

• autolabor, autohauler: refactored to use DFHack’s messaging system for info/debug/trace messages

• blueprint:

– new --smooth option for recording all smoothed floors and walls instead of just the ones that require
smoothing for later carving

646 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– record built constructions in blueprints

– record stockpile/building/zone names in blueprints

– record room sizes in blueprints

– generate meta blueprints to reduce the number of blueprints you have to apply

– support splitting the output file into phases grouped by when they can be applied

– when splitting output files, number them so they sort into the order you should apply them in

• dig: new -z option for digtype to restrict designations to the current z-level and down

• dwarfmonitor: widgets have been ported to the overlay framework and can be enabled and configured via the
gui/overlay UI

• gui/blueprint: support new blueprint phases and options

• gui/cp437-table: new global keybinding for the clickable on-screen keyboard for players with keyboard layouts
that prevent them from using certain keys: Ctrl-Shift-K

• gui/create-item: restrict materials to those normally allowed by the game by default, introduce new
--unrestricted option for full freedom in choosing materials

• gui/launcher: show help for commands that start with ‘:’ (like :lua)

• gui/quantum: add option to allow corpses and refuse in your quantum stockpile

• hotkeys:

– hotkey screen has been transformed into an interactive overlay widget that you can bring up by
moving the mouse cursor over the hotspot (in the upper left corner of the screen by default). En-
able/disable/reposition the hotspot in the gui/overlay UI. Even if the hotspot is disabled, the menu can
be brought up at any time with the Ctrl-Shift-C hotkey.

– now supports printing active hotkeys to the console with hotkeys list

• ls:

– indent tag listings and wrap them in the rightmost column for better readability

– new --exclude option for hiding matched scripts from the output. this can be especially useful for
modders who don’t want their mod scripts to be included in ls output.

• modtools/create-unit: better unit naming, more argument checks, assign nemesis save data for units without
civilization so they can be properly saved when offloaded

• orders: replace shell craft orders in the standard orders list you get with orders import library/basic with
orders for shell leggings. They have a slightly higher trade price. Also, “shleggings” is just hilarious.

• Quickfort blueprint library: improved layout of marksdwarf barracks in the example Dreamfort blueprints

• spectate:

– new auto-unpause option for auto-dismissal of announcement pause events (e.g. sieges).

– new auto-disengage option for auto-disengagement of plugin through player interaction whilst un-
paused.

– new tick-threshold option for specifying the maximum time to follow the same dwarf

– new animals option for sometimes following animals

– new hostiles option for sometimes following hostiles

– new visiting option for sometimes following visiting merchants, diplomats or plain visitors

7.12. Development changelog 647

DFHack Documentation, Release 50.11-r4

– added persistent configuration of the plugin settings

• unsuspend: new overlay for displaying status of suspended buildings (functionality migrated from removed re-
sume plugin)

Removed

• gui/create-item: removed --restricted option. it is now the default behavior

• resume: functionality (including suspended building overlay) has moved to unsuspend

API

• Constructions module: added insert() to insert constructions into the game’s sorted list.

• MiscUtils: added the following string transformation functions (refactored from uicommon.h):
int_to_string, ltrim, rtrim, and trim; added string_to_int

• Units module:

– added new predicates for:

– isUnitInBox()

– isAnimal()

– isVisiting() any visiting unit (diplomat, merchant, visitor)

– isVisitor() ie. not merchants or diplomats

– isInvader()

– isDemon() returns true for unique/regular demons

– isTitan()

– isMegabeast()

– isGreatDanger() returns true if unit is a demon, titan, or megabeast

– isSemiMegabeast()

– isNightCreature()

– isDanger() returns true if is a ‘GreatDanger’, semi-megabeast, night creature, undead, or invader

– modified predicates:

– isUndead() now optionally ignores vampires instead of always ignoring vampires

– isCitizen() now optionally ignores insane citizens instead of always ignoring insane citizens

– new action timer API for speeding up of slowing down units

• Gui::anywhere_hotkey: for plugin commands bound to keybindings that can be invoked on any screen

• Gui::autoDFAnnouncement, Gui::pauseRecenter: added functionality reverse-engineered from announce-
ment code

• Gui::revealInDwarfmodeMap: Now enforce valid view bounds when pos invalid, add variant accepting x, y,
z

• Lua::Push(): now handles maps with otherwise supported keys and values

• Lua::PushInterfaceKeys(): transforms viewscreen feed() keys into something that can be interpreted by
lua-based widgets

648 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Internals

• Constructions module: findAtTile now uses a binary search intead of a linear search

• MSVC warning level upped to /W3, and /WX added to make warnings cause compilations to fail.

Lua

• Lua mouse events now conform to documented behavior in DFHack Lua API Reference – _MOUSE_L_DOWN will
be sent exactly once per mouse click and _MOUSE_L will be sent repeatedly as long as the button is held down.
Similarly for right mouse button events.

• dfhack.constructions.findAtTile(): exposed preexisting function to Lua.

• dfhack.constructions.insert(): exposed new function to Lua.

• gui.Screen.show(): now returns self as a convenience

• gui.View.getMousePos() now takes an optional ViewRect parameter in case the caller wants to get the mouse
pos relative to a rect that is not the frame_body (such as the frame_rect that includes the frame itself)

• widgets.EditField: now allows other widgets to process characters that the on_char callback rejects.

• widgets.FilteredList: now provides a useful default search key for list items made up of text tokens instead
of plain text

• widgets.HotkeyLabel: now ignores mouse clicks when on_activate is not defined

• widgets.List:

– new getIdxUnderMouse() function for detecting the list index under the active mouse cursor. this
allows for “selection follows mouse” behavior

– shift-clicking now triggers the submit2 attribute function if it is defined

• widgets.Panel: new frame_style and frame_title attributes for drawing frames around groups of widgets

• widgets.ResizingPanel: now accounts for frame inset when calculating frame size

• widgets.Scrollbar: new scrollbar widget that can be paired with an associated scrollable widget. Integrated
with widgets.Label and widgets.List.

Structures

• general_refst: type virtual union member for ITEM_GENERAL

• historical_figure_info.T_reputation.unk_2c: identify year + year_ticks

• itemst: identify two vmethods related to adding thread improvements to items made of cloth, and label several
previously unknown return types

• proj_magicst: correct structure fields (to match 40d)

• unit_action_type_group: added enum and tagged unit_action_type entries with its groups for DFHack’s
new action timer API.

• world: identify type of a vector (still not known what it’s for, but it’s definitely an item vector)

7.12. Development changelog 649

DFHack Documentation, Release 50.11-r4

Documentation

• DFHack overlay dev guide: documentation and guide for injecting functionality into DF viewscreens from Lua
scripts and creating interactive overlay widgets

• dfhack.gui.revealInDwarfmodeMap: document center bool for Lua API

7.12.25 DFHack 0.47.05-r7

New Plugins

• autobutcher: split off from zone into its own plugin. Note that to enable, the command has changed from
autobutcher start to enable autobutcher.

• autonestbox: split off from zone into its own plugin. Note that to enable, the command has changed from
autonestbox start to enable autonestbox.

• overlay: display a “DFHack” button in the lower left corner that you can click to start the new GUI command
launcher. The dwarfmonitor weather display had to be moved to make room for the button. If you are seeing the
weather indicator rendered over the overlay button, please remove the dfhack-config/dwarfmonitor.json
file to fix the weather indicator display offset.

New Scripts

• gui/kitchen-info: adds more info to the Kitchen screen

• gui/launcher: in-game command launcher with autocomplete, history, and context-sensitive help

• gui/workorder-details: adjusts work orders’ input item, material, traits

• max-wave: dynamically limit the next immigration wave, can be set to repeat

• pop-control: persistent per fortress population cap, hermit, and max-wave management

• warn-stealers: warn when creatures that may steal your food, drinks, or items become visible

New Internal Commands

• tags: new built-in command to list the tool category tags and their definitions. tags associated with each tool are
visible in the tool help and in the output of ls.

Fixes

• autochop: designate largest trees for chopping first, instead of the smallest

• devel/query: fixed error when –tile is specified

• dig-now: Fix direction of smoothed walls when adjacent to a door or floodgate

• dwarf-op: fixed error when applying the Miner job to dwarves

• emigration: fix emigrant logic so unhappy dwarves leave as designed

• gui/gm-unit: allow + and - to adjust skill values as intended instead of letting the filter intercept the characters

• gui/unit-info-viewer: fix logic for displaying undead creature names

• gui/workflow: restore functionality to the add/remove/order hotkeys on the workflow status screen

650 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• modtools/moddable-gods: fixed an error when assigning spheres

• quickfort: Dreamfort blueprint set: declare the hospital zone before building the coffer; otherwise DF fails to
stock the hospital with materials

• view-item-info: fixed a couple errors when viewing items without materials

• dfhack.buildings.findCivzonesAt: no longer return duplicate civzones after loading a save with existing
civzones

• dfhack.run_script: ensure the arguments passed to scripts are always strings. This allows other scripts to
call run_script with numeric args and it won’t break parameter parsing.

• job.removeJob(): ensure jobs are removed from the world list when they are canceled

Misc Improvements

• History files: dfhack.history, tiletypes.history, lua.history, and liquids.history have moved to
the dfhack-config directory. If you’d like to keep the contents of your current history files, please move them
to dfhack-config.

• Init scripts: dfhack.init and other init scripts have moved to dfhack-config/init/. If you have customized
your dfhack.init file and want to keep your changes, please move the part that you have customized to the
new location at dfhack-config/init/dfhack.init. If you do not have changes that you want to keep, do
not copy anything, and the new defaults will be used automatically.

• UX:

– You can now move the cursor around in DFHack text fields in gui/ scripts (e.g. gui/blueprint,
gui/quickfort, or gui/gm-editor). You can move the cursor by clicking where you want it to go with
the mouse or using the Left/Right arrow keys. Ctrl+Left/Right will move one word at a time, and
Alt+Left/Right will move to the beginning/end of the text.

– You can now click on the hotkey hint text in many gui/ script windows to activate the hotkey, like a but-
ton. Not all scripts have been updated to use the clickable widget yet, but you can try it in gui/blueprint
or gui/quickfort.

– Label widget scroll icons are replaced with scrollbars that represent the percentage of text on the screen
and move with the position of the visible text, just like web browser scrollbars.

• devel/query:

– inform the user when a query has been truncated due to --maxlength being hit.

– increased default maxlength value from 257 to 2048

• do-job-now: new global keybinding for boosting the priority of the jobs associated with the selected build-
ing/work order/unit/item etc.: Alt-N

• dwarf-op: replaces [a b c] option lists with a,b,c option lists

• gui/gm-unit: don’t clear the list filter when you adjust a skill value

• gui/quickfort:

– better formatting for the generated manager orders report

– you can now click on the map to move the blueprint anchor point to that tile instead of having to use
the cursor movement keys

– display an error message when the blueprints directory cannot be found

• gui/workorder-details: new keybinding on the workorder details screen: D

7.12. Development changelog 651

DFHack Documentation, Release 50.11-r4

• keybinding: support backquote (`) as a hotkey (and assign the hotkey to the new gui/launcher interface)

• ls: can now filter tools by substring or tag. note that dev scripts are hidden by default. pass the --dev option to
show them.

• manipulator:

– add a library of useful default professions

– move professions configuration from professions/ to dfhack-config/professions/ to keep it
together with other dfhack configuration. If you have saved professions that you would like to keep,
please manually move them to the new folder.

• orders: added useful library of manager orders. see them with orders list and import them with, for example,
orders import library/basic

• prioritize: new defaults keyword to prioritize the list of jobs that the community agrees should generally be
prioritized. Run prioritize -a defaults to try it out in your fort!

• prospector: add new --show option to give the player control over which report sections are shown. e.g.
prospect all --show ores will just show information on ores.

• quickfort:

– Dreamfort blueprint set improvements: set traffic designations to encourage dwarves to eat cooked
food instead of raw ingredients

– library blueprints are now included by default in quickfort list output. Use the new --useronly
(or just -u) option to filter out library bluerpints.

– better error message when the blueprints directory cannot be found

• seedwatch: seedwatch all now adds all plants with seeds to the watchlist, not just the “basic” crops.

• materials.ItemTraitsDialog: added a default on_select-handler which toggles the traits.

Removed

• fix/build-location: The corresponding DF bug (5991) was fixed in DF 0.40.05

• fix/diplomats: DF bug 3295 fixed in 0.40.05

• fix/fat-dwarves: DF bug 5971 fixed in 0.40.05

• fix/feeding-timers: DF bug 2606 is fixed in 0.40.12

• fix/merchants: DF bug that prevents humans from making trade agreements has been fixed

• gui/assign-rack: No longer useful in current DF versions

• gui/hack-wish: Replaced by gui/create-item

• gui/no-dfhack-init: No longer useful since players don’t have to create their own dfhack.init files anymore

652 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

API

• Removed “egg” (“eggy”) hook support (Linux only). The only remaining method of hooking into DF is by
interposing SDL calls, which has been the method used by all binary releases of DFHack.

• Removed Engravings module (C++-only). Access world.engravings directly instead.

• Removed Notes module (C++-only). Access ui.waypoints.points directly instead.

• Removed Windows module (C++-only) - unused.

• Constructions module (C++-only): removed t_construction, isValid(), getCount(),
getConstruction(), and copyConstruction(). Access world.constructions directly instead.

• Gui::getSelectedItem(), Gui::getAnyItem(): added support for the artifacts screen

• Units::teleport(): now sets unit.idle_area to discourage units from walking back to their original lo-
cation (or teleporting back, if using fastdwarf)

Lua

• Added dfhack.screen.hideGuard(): exposes the C++ Screen::Hide to Lua

• History: added dfhack.getCommandHistory(history_id, history_filename) and dfhack.
addCommandToHistory(history_id, history_filename, command) so gui scripts can access a
commandline history without requiring a terminal.

• helpdb: database and query interface for DFHack tool help text

• tile-material: fix the order of declarations. The GetTileMat function now returns the material as intended
(always returned nil before). Also changed the license info, with permission of the original author.

• utils.df_expr_to_ref(): fixed some errors that could occur when navigating tables

• widgets.CycleHotkeyLabel: clicking on the widget will now cycle the options and trigger on_change().
This also applies to the ToggleHotkeyLabel subclass.

• widgets.EditField:

– new onsubmit2 callback attribute is called when the user hits Shift-Enter.

– new function: setCursor(position) sets the input cursor.

– new attribute: ignore_keys lets you ignore specified characters if you want to use them as hotkeys

• widgets.FilteredList: new attribute: edit_ignore_keys gets passed to the filter EditField as
ignore_keys

• widgets.HotkeyLabel: clicking on the widget will now call on_activate().

• widgets.Label: scroll function now interprets the keywords +page, -page, +halfpage, and -halfpage
in addition to simple positive and negative numbers.

7.12. Development changelog 653

DFHack Documentation, Release 50.11-r4

Structures

• Eliminate all “anon_X” names from structure fields

• army: change squads vector type to world_site_inhabitant, identify
min_smell_trigger``+``max_odor_level``+``max_low_light_vision``+``sense_creature_classes

• cave_column_rectangle: identify coordinates

• cave_column: identify Z coordinates

• embark_profile: identify reclaim fields, add missing pet_count vector

• entity_population: identify layer_id

• feature: identify “shiftCoords” vmethod, irritation_level and irritation_attacks fields

• flow_guide: identify “shiftCoords” vmethod

• general_refst: name parameters on getLocation and setLocation vmethods

• general_ref_locationst: name member fields

• historical_entity: confirm hostility_level and siege_tier

• item: identify method notifyCreatedMasterwork that is called when a masterwork is created.

• language_name_type: identify ElfTree and SymbolArtifice thru SymbolFood

• misc_trait_type: update auto-decrement markers, remove obsolete references

• timed_event: identify layer_id

• ui_advmode: identify several fields as containing coordinates

• ui_build_selector: identify cur_walk_tag and min_weight_races``+``max_weight_races

• ui: identify actual contents of unk5b88 field, identify infiltrator references

• unitst: identify histeventcol_id field inside status2

• viewscreen_barterst: name member fields

• viewscreen_tradegoodsst: rename trade_reply OffendedAnimal``+``OffendedAnimalAlt to
OffendedBoth``+``OffendedAnimal

• world_site_inhabitant: rename outcast_id and founder_outcast_entity_id, identify
interaction_id and interaction_effect_idx

Documentation

• Added DFHack modding guide

• Group DFHack tools by tag so similar tools are grouped and easy to find

• Update all DFHack tool documentation (300+ pages) with standard syntax formatting, usage examples, and
overall clarified text.

654 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.26 DFHack 0.47.05-r6

New Scripts

• assign-minecarts: automatically assign minecarts to hauling routes that don’t have one

• deteriorate: combines, replaces, and extends previous deteriorateclothes, deterioratecorpses, and deteriorate-
food scripts.

• gui/petitions: shows petitions. now you can see which guildhall/temple you agreed to build!

• gui/quantum: point-and-click tool for creating quantum stockpiles

• gui/quickfort: shows blueprint previews on the live map so you can apply them interactively

• modtools/fire-rate: allows modders to adjust the rate of fire for ranged attacks

Fixes

• build-now: walls built above other walls can now be deconstructed like regularly-built walls

• eventful:

– fix eventful.registerReaction to correctly pass call_native argument thus allowing canceling
vanilla item creation. Updated related documentation.

– renamed NEW_UNIT_ACTIVE event to UNIT_NEW_ACTIVE to match the EventManager event
name

– fixed UNIT_NEW_ACTIVE event firing too often

• gui/dfstatus: no longer count items owned by traders

• gui/unit-info-viewer: fix calculation/labeling of unit size

• job.removeJob(): fixes regression in DFHack 0.47.05-r5 where items/buildings associated with the job were
not getting disassociated when the job is removed. Now build-now can build buildings and gui/mass-remove can
cancel building deconstruction again

• widgets.CycleHotkeyLabel: allow initial option values to be specified as an index instead of an option value

Misc Improvements

• build-now: buildings that were just designated with buildingplan are now built immediately (as long as there are
items available to build the buildings with) instead of being skipped until buildingplan gets around to doing its
regular scan

• caravan: new unload command, fixes endless unloading at the depot by reconnecting merchant pack animals
that were disconnected from their owners

• confirm:

– added a confirmation dialog for removing manager orders

– allow players to pause the confirmation dialog until they exit the current screen

• deteriorate: new now command immediately deteriorates items of the specified types

• New Fort Autostart Commands:

– refine food preparation orders so meal types are chosen intelligently according to the amount of meals
that exist and the number of aviailable items to cook with

7.12. Development changelog 655

DFHack Documentation, Release 50.11-r4

– reduce required stock of dye for “Dye cloth” orders

– fix material conditions for making jugs and pots

– make wooden jugs by default to differentiate them from other stone tools. this allows players to more
easily select jugs out with a properly-configured stockpile (i.e. the new woodentools alias)

• list-agreements: now displays translated guild names, worshipped deities, petition age, and race-appropriate
professions (e.g. “Craftsdwarf” instead of “Craftsman”)

• Quickfort blueprint creation guide:

– new aliases: forbidsearch, permitsearch, and togglesearch use the search plugin to alter the
settings for a filtered list of item types when configuring stockpiles

– new aliases: stonetools and woodentools. the jugs alias is deprecated. please use stonetools
instead, which is the same as the old jugs alias.

– new aliases: usablehair, permitusablehair, and forbidusablehair alter settings for the types
of hair/wool that can be made into cloth: sheep, llama, alpaca, and troll. The craftrefuse aliases
have been altered to use this alias as well.

– new aliases: forbidthread, permitthread, forbidadamantinethread,
permitadamantinethread, forbidcloth, permitcloth, forbidadamantinecloth, and
permitadamantinecloth give you more control how adamantine-derived items are stored

• quickfort:

– Dreamfort blueprint set improvements: automatically create tavern, library, and temple locations (re-
stricted to residents only by default), automatically associate the rented rooms with the tavern

– Dreamfort blueprint set improvements: new design for the services level, including were-bitten hos-
pital recovery rooms and an appropriately-themed interrogation room next to the jail! Also fits better
in a 1x1 embark for minimalist players.

• workorder: a manager is no longer required for orders to be created (matching bevavior in the game itself)

Removed

• deteriorateclothes: please use deteriorate --types=clothes instead

• deterioratecorpses: please use deteriorate --types=corpses instead

• deterioratefood: please use deteriorate --types=food instead

• devel/unforbidall: please use unforbid instead. You can silence the output with unforbid all --quiet

API

• word_wrap: argument bool collapse_whitespace converted to enum word_wrap_whitespace_mode
mode, with valid modes WSMODE_KEEP_ALL, WSMODE_COLLAPSE_ALL, and WSMODE_TRIM_LEADING.

656 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Lua

• gui.View: all View subclasses (including all Widgets) can now acquire keyboard focus with the new
View:setFocus() function. See docs for details.

• materials.ItemTraitsDialog: new dialog to edit item traits (where “item” is part of a job or work order or
similar). The list of traits is the same as in vanilla work order conditions “t change traits”.

• widgets.EditField:

– the key_sep string is now configurable

– can now display an optional string label in addition to the activation key

– views that have an EditField subview no longer need to manually manage the EditField activation
state and input routing. This is now handled automatically by the new gui.View keyboard focus
subsystem.

• widgets.HotkeyLabel: the key_sep string is now configurable

Structures

• art_image_elementst: identify vmethod markDiscovered and second parameter for getName2

• art_image_propertyst: identify parameters for getName

• building_handler: fix vmethod get_machine_hookup_list parameters

• vermin: identify category field as new enum

• world.unk_26a9a8: rename to allow_announcements

7.12.27 DFHack 0.47.05-r5

New Plugins

• spectate: “spectator mode” – automatically follows dwarves doing things in your fort

New Scripts

• devel/eventful-client: useful for testing eventful events

New Tweaks

• tweak: partial-items displays percentage remaining for partially-consumed items such as hospital cloth

7.12. Development changelog 657

DFHack Documentation, Release 50.11-r4

Fixes

• autofarm: removed restriction on only planting “discovered” plants

• cxxrandom: fixed exception when calling bool_distribution

• devel/query:

– fixed a problem printing parents when the starting path had lua pattern special characters in it

– fixed a crash when trying to iterate over linked lists

• gui/advfort: encrust and stud jobs no longer consume reagents without actually improving the target item

• luasocket: return correct status code when closing socket connections so clients can know when to retry

• quickfort: contructions and bridges are now properly placed over natural ramps

• setfps: keep internal ratio of processing FPS to graphics FPS in sync when updating FPS

Misc Improvements

• autochop:

– only designate the amount of trees required to reach max_logs

– preferably designate larger trees over smaller ones

• autonick:

– now displays help instead of modifying dwarf nicknames when run without parameters. use autonick
all to rename all dwarves.

– added --quiet and --help options

• blueprint:

– track phase renamed to carve

– carved fortifications and (optionally) engravings are now captured in generated blueprints

• cursecheck: new option, --ids prints creature and race IDs of the cursed creature

• debug:

– DFHack log messages now have configurable headers (e.g. timestamp, origin plugin name, etc.) via
the debugfilter command of the debug plugin

– script execution log messages (e.g. “Loading script: dfhack_extras.init” can now be controlled
with the debugfilter command. To hide the messages, add this line to your dfhack.init file:
debugfilter set Warning core script

• New Fort Autostart Commands:

– add mugs to basic manager orders

– onMapLoad_dreamfort.init remove “cheaty” commands and new tweaks that are now in the default
dfhack.init-example file

• dig-now: handle fortification carving

• Events from EventManager:

– add new event type JOB_STARTED, triggered when a job first gains a worker

– add new event type UNIT_NEW_ACTIVE, triggered when a new unit appears on the active list

658 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• gui/blueprint: support new blueprint options and phases

• gui/create-item: Added “(chain)” annotation text for armours with the [CHAIN_METAL_TEXT] flag set

• manipulator: tweak colors to make the cursor easier to locate

• quickfort:

– support transformations for blueprints that use expansion syntax

– adjust direction affinity when transforming buildings (e.g. bridges that open to the north now open to
the south when rotated 180 degrees)

– automatically adjust cursor movements on the map screen in #query and #config modes when the
blueprint is transformed. e.g. {Up} will be played back as {Right} when the blueprint is rotated
clockwise and the direction key would move the map cursor

– new blueprint mode: #config; for playing back key sequences that don’t involve the map cursor (like
configuring hotkeys, changing standing orders, or modifying military uniforms)

– API function apply_blueprint can now take data parameters that are simple strings instead of
coordinate maps. This allows easier application of blueprints that are just one cell.

• stocks: allow search terms to match the full item label, even when the label is truncated for length

• tweak: stable-cursor now keeps the cursor stable even when the viewport moves a small amount

• dfhack.init-example: recently-added tweaks added to example dfhack.init file

API

• add functions reverse-engineered from ambushing unit code: Units::isHidden(),
Units::isFortControlled(), Units::getOuterContainerRef(), Items::getOuterContainerRef()

• Job::removeJob(): use the job cancel vmethod graciously provided by The Toady One in place of a synthetic
method derived from reverse engineering

Lua

• custom-raw-tokens: library for accessing tokens added to raws by mods

• dfhack.units: Lua wrappers for functions reverse-engineered from ambushing unit code: isHidden(unit),
isFortControlled(unit), getOuterContainerRef(unit), getOuterContainerRef(item)

• dialogs: show* functions now return a reference to the created dialog

• dwarfmode.enterSidebarMode(): passing df.ui_sidebar_mode.DesignateMine now always results in
you entering DesignateMine mode and not DesignateChopTrees, even when you looking at the surface
(where the default designation mode is DesignateChopTrees)

• dwarfmode.MenuOverlay:

– if sidebar_mode attribute is set, automatically manage entering a specific sidebar mode on show and
restoring the previous sidebar mode on dismiss

– new class function renderMapOverlay to assist with painting tiles over the visible map

• ensure_key: new global function for retrieving or dynamically creating Lua table mappings

• safe_index: now properly handles lua sparse tables that are indexed by numbers

• string: new function escape_pattern() escapes regex special characters within a string

• widgets:

7.12. Development changelog 659

DFHack Documentation, Release 50.11-r4

– unset values in frame_inset table default to 0

– FilteredList class now allows all punctuation to be typed into the filter and can match search keys
that start with punctuation

– minimum height of ListBox dialog is now calculated correctly when there are no items in the list (e.g.
when a filter doesn’t match anything)

– if autoarrange_subviews is set, Panels will now automatically lay out widgets vertically accord-
ing to their current height. This allows you to have widgets dynamically change height or become
visible/hidden and you don’t have to worry about recalculating frame layouts

– new class ResizingPanel (subclass of Panel) automatically recalculates its own frame height based
on the size, position, and visibility of its subviews

– new class HotkeyLabel (subclass of Label) that displays and reacts to hotkeys

– new class CycleHotkeyLabel (subclass of Label) allows users to cycle through a list of options by
pressing a hotkey

– new class ToggleHotkeyLabel (subclass of CycleHotkeyLabel) toggles between On and Off states

– new class WrappedLabel (subclass of Label) provides autowrapping of text

– new class TooltipLabel (subclass of WrappedLabel) provides tooltip-like behavior

Structures

• adventure_optionst: add missing getUnitContainer vmethod

• historical_figure.T_skills: add account_balance field

• job: add improvement field (union with hist_figure_id and race)

• report_init.flags: rename sparring flag to hostile_combat

• viewscreen_loadgamest: add missing LoadingImageSets and LoadingDivinationSets enum values to
cur_step field

Documentation

• add more examples to the plugin example skeleton files so they are more informative for a newbie

• update download link and installation instructions for Visual C++ 2015 build tools on Windows

• update information regarding obtaining a compatible Windows build environment

• confirm: correct the command name in the plugin help text

• cxxrandom: added usage examples

• String class extensions: document DFHack string extensions (startswith(), endswith(), split(), trim(),
wrap(), and escape_pattern())

• Quickfort blueprint creation guide: added screenshots to the Dreamfort case study and overall clarified text

• Client libraries: add new Rust client library

• Lua API.rst: added isHidden(unit), isFortControlled(unit), getOuterContainerRef(unit),
getOuterContainerRef(item)

660 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.28 DFHack 0.47.05-r4

Fixes

• blueprint:

– fixed passing incorrect parameters to gui/blueprint when you run blueprint gui with optional
params

– key sequences for constructed walls and down stairs are now correct

• exportlegends: fix issue where birth year was outputted as birth seconds

• quickfort:

– produce a useful error message instead of a code error when a bad query blueprint key sequence leaves
the game in a mode that does not have an active cursor

– restore functionality to the --verbose commandline flag

– don’t designate tiles for digging if they are within the bounds of a planned or constructed building

– allow grates, bars, and hatches to be built on flat floor (like DF itself allows)

– allow tracks to be built on hard, natural rock ramps

– allow dig priority to be properly set for track designations

– fix incorrect directions for tracks that extend south or east from a track segment pair specified with
expansion syntax (e.g. T(4x4))

– fix parsing of multi-part extended zone configs (e.g. when you set custom supply limits for hospital
zones AND set custom flags for a pond)

– fix error when attempting to set a custom limit for plaster powder in a hospital zone

• tailor: fixed some inconsistencies (and possible crashes) when parsing certain subcommands, e.g. tailor help

• tiletypes, tiletypes: fix crash when running from an unsuspended core context

Misc Improvements

• Core: DFHack now prints the name of the init script it is running to the console and stderr

• automaterial: ensure construction tiles are laid down in order when using buildingplan to plan the constructions

• blueprint:

– all blueprint phases are now written to a single file, using quickfort multi-blueprint file syntax. to get
the old behavior of each phase in its own file, pass the --splitby=phase parameter to blueprint

– you can now specify the position where the cursor should be when the blueprint is played back with
quickfort by passing the --playback-start parameter

– generated blueprints now have labels so quickfort can address them by name

– all building types are now supported

– multi-type stockpiles are now supported

– non-rectangular stockpiles and buildings are now supported

– blueprints are no longer generated for phases that have nothing to do (unless those phases are explicitly
enabled on the commandline or gui)

7.12. Development changelog 661

DFHack Documentation, Release 50.11-r4

– new “track” phase that discovers and records carved tracks

– new “zone” phase that discovers and records activity zones, including custom configuration for ponds,
gathering, and hospitals

• dig-now: no longer leaves behind a designated tile when a tile was designated beneath a tile designated for
channeling

• gui/blueprint:

– support the new --splitby and --format options for blueprint

– hide help text when the screen is too short to display it

• orders: added list subcommand to show existing exported orders

• Quickfort blueprint library: added light aquifer tap and pump stack blueprints (with step-by-step usage guides)
to the quickfort blueprint library

• quickfort:

– Dreamfort blueprint set improvements: added iron and flux stock level indicators on the industry level
and a prisoner processing quantum stockpile in the surface barracks. also added help text for how to
manage sieges and how to manage prisoners after a siege.

– add quickfort.apply_blueprint() API function that can be called directly by other scripts

– by default, don’t designate tiles for digging that have masterwork engravings on them. quality level to
preserve is configurable with the new --preserve-engravings param

– implement single-tile track aliases so engraved tracks can be specified tile-by-tile just like constructed
tracks

– allow blueprints to jump up or down multiple z-levels with a single command (e.g. #>5 goes down 5
levels)

– blueprints can now be repeated up and down a specified number of z-levels via repeat markers in
meta blueprints or the --repeat commandline option

– blueprints can now be rotated, flipped, and shifted via transform and shift markers in meta
blueprints or the corresponding commandline options

• quickfort, New Fort Autostart Commands: Dreamfort blueprint set improvements based on playtesting and feed-
back. includes updated profession definitions.

Removed

• digfort: please use quickfort instead

• fortplan: please use quickfort instead

API

• Buildings::findCivzonesAt(): lookups now complete in constant time instead of linearly scanning through
all civzones in the game

662 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Lua

• argparse.processArgsGetopt(): you can now have long form parameters that are not an alias for a short
form parameter. For example, you can now have a parameter like --longparam without needing to have an
equivalent one-letter -l param.

• dwarfmode.enterSidebarMode(): df.ui_sidebar_mode.DesignateMine is now a suported target sidebar
mode

Structures

• historical_figure_info.spheres: give spheres vector a usable name

• unit.enemy: fix definition of enemy_status_slot and add combat_side_id

7.12.29 DFHack 0.47.05-r3

New Plugins

• dig-now: instantly completes dig designations (including smoothing and carving tracks)

New Scripts

• autonick: gives dwarves unique nicknames

• build-now: instantly completes planned building constructions

• do-job-now: makes a job involving current selection high priority

• prioritize: automatically boosts the priority of current and/or future jobs of specified types, such as hauling food,
tanning hides, or pulling levers

• reveal-adv-map: exposes/hides all world map tiles in adventure mode

Fixes

• Core: alt keydown state is now cleared when DF loses and regains focus, ensuring the alt modifier state is not
stuck on for systems that don’t send standard keyup events in response to alt-tab window manager events

• Lua: memscan.field_offset(): fixed an issue causing devel/export-dt-ini to crash sometimes, especially on
Windows

• autofarm: autofarm will now count plant growths as well as plants toward its thresholds

• autogems: no longer assigns gem cutting jobs to workshops with gem cutting prohibited in the workshop profile

• devel/export-dt-ini: fixed incorrect vtable address on Windows

• quickfort:

– allow machines (e.g. screw pumps) to be built on ramps just like DF allows

– fix error message when the requested label is not found in the blueprint file

7.12. Development changelog 663

DFHack Documentation, Release 50.11-r4

Misc Improvements

• assign-beliefs, assign-facets: now update needs of units that were changed

• buildingplan: now displays which items are attached and which items are still missing for planned buildings

• devel/query:

– updated script to v3.2 (i.e. major rewrite for maintainability/readability)

– merged options -query and -querykeys into -search

– merged options -depth and -keydepth into -maxdepth

– replaced option -safer with -excludetypes and -excludekinds

– improved how tile data is dealt with identification, iteration, and searching

– added option -findvalue

– added option -showpaths to print full data paths instead of nested fields

– added option -nopointers to disable printing values with memory addresses

– added option -alignto to set the value column’s alignment

– added options -oneline and alias -1 to avoid using two lines for fields with metadata

– added support for matching multiple patterns

– added support for selecting the highlighted job, plant, building, and map block data

– added support for selecting a Lua script (e.g. Data tables)

– added support for selecting a Json file (e.g. dwarf_profiles.json)

– removed options -listall, -listfields, and -listkeys - these are now simply default behaviour

– -table now accepts the same abbreviations (global names, unit, screen, etc.) as lua and gui/gm-
editor

• Data tables: integrated devel/query to show the table definitions when requested with -list

• geld: fixed -help option

• gui/gm-editor: made search case-insensitive

• orders:

– support importing and exporting reaction-specific item conditions, like “lye-containing” for soap pro-
duction orders

– new sort command. sorts orders according to their repeat frequency. this prevents daily orders from
blocking other orders for simlar items from ever getting completed.

• quickfort:

– Dreamfort blueprint set improvements: extensive revision based on playtesting and feedback. in-
cludes updated onMapLoad_dreamfort.init settings file, enhanced automation orders, and pre-
made profession definitions. see full changelog at https://github.com/DFHack/dfhack/pull/1921 and
https://github.com/DFHack/dfhack/pull/1925

– accept multiple commands, list numbers, and/or blueprint lables on a single commandline

• tailor: allow user to specify which materials to be used, and in what order

• tiletypes, tiletypes: add --cursor and --quiet options to support non-interactive use cases

• unretire-anyone: replaced the ‘undead’ descriptor with ‘reanimated’ to make it more mod-friendly

664 Chapter 7. DFHack development guide

https://github.com/DFHack/dfhack/pull/1921
https://github.com/DFHack/dfhack/pull/1925

DFHack Documentation, Release 50.11-r4

• warn-starving: added an option to only check sane dwarves

API

• The Items module moveTo* and remove functions now handle projectiles

Internals

• Install tests in the scripts repo into hack/scripts/test/scripts when the CMake variable BUILD_TESTS is defined

Lua

• new global function: safe_pairs(iterable[, iterator_fn]) will iterate over the iterable (a table or
iterable userdata) with the iterator_fn (pairs if not otherwise specified) if iteration is possible. If iteration is
not possible or would throw an error, for example if nil is passed as the iterable, the iteration is just silently
skipped.

Structures

• cursed_tomb: new struct type

• job_item: identified several fields

• ocean_wave_maker: new struct type

• worldgen_parms: moved to new struct type

Documentation

• New Fort Autostart Commands: documentation for all of Dreamfort’s supporting files (useful for all forts, not
just Dreamfort!)

• Quickfort blueprint library: updated dreamfort documentation and added screenshots

7.12.30 DFHack 0.47.05-r2

New Scripts

• clear-webs: removes all webs on the map and/or frees any webbed creatures

• devel/block-borders: overlay that displays map block borders

• devel/luacov: generate code test coverage reports for script development. Define the
DFHACK_ENABLE_LUACOV=1 environment variable to start gathering coverage metrics.

• fix/drop-webs: causes floating webs to fall to the ground

• gui/blueprint: interactive frontend for the blueprint plugin (with mouse support!)

• gui/mass-remove: mass removal/suspension tool for buildings and constructions

• reveal-hidden-sites: exposes all undiscovered sites

• set-timeskip-duration: changes the duration of the “Updating World” process preceding the start of a new game,
enabling you to jump in earlier or later than usual

7.12. Development changelog 665

DFHack Documentation, Release 50.11-r4

Fixes

• Fixed an issue preventing some external scripts from creating zones and other abstract buildings (see note about
room definitions under “Internals”)

• Fixed an issue where scrollable text in Lua-based screens could prevent other widgets from scrolling

• bodyswap:

– stopped prior party members from tagging along after bodyswapping and reloading the map

– made companions of bodyswapping targets get added to the adventurer party - they can now be viewed
using the in-game party system

• buildingplan:

– fixed an issue where planned constructions designated with DF’s sizing keys (umkh) would sometimes
be larger than requested

– fixed an issue preventing other plugins like automaterial from planning constructions if the “enable
all” buildingplan setting was turned on

– made navigation keys work properly in the materials selection screen when alternate keybindings are
used

• color-schemes: fixed an error in the register subcommand when the DF path contains certain punctuation
characters

• command-prompt: fixed issues where overlays created by running certain commands (e.g. gui/liquids,
gui/teleport) would not update the parent screen correctly

• dwarfvet: fixed a crash that could occur with hospitals overlapping with other buildings in certain ways

• embark-assistant: fixed faulty early exit in first search attempt when searching for waterfalls

• gui/advfort: fixed an issue where starting a workshop job while not standing at the center of the workshop required
advancing time manually

• gui/unit-info-viewer: fixed size description displaying unrelated values instead of size

• orders: fixed crash when importing orders with malformed IDs

• quickfort:

– comments in blueprint cells no longer prevent the rest of the row from being read. A cell with a single
‘#’ marker in it, though, will still stop the parser from reading further in the row.

– fixed an off-by-one line number accounting in blueprints with implicit #dig modelines

– changed to properly detect and report an error on sub-alias params with no values instead of just failing
to apply the alias later (if you really want an empty value, use {Empty} instead)

– improved handling of non-rectangular and non-solid extent-based structures (like fancy-shaped stock-
piles and farm plots)

– fixed conversion of numbers to DF keycodes in #query blueprints

– fixed various errors with cropping across the map edge

– properly reset config to default values in quickfort reset even if if the dfhack-config/
quickfort/quickfort.txt config file doesn’t mention all config vars. Also now works even if
the config file doesn’t exist.

• stonesense: fixed a crash that could occur when ctrl+scrolling or closing the Stonesense window

• quickfortress.csv blueprint: fixed refuse stockpile config and prevented stockpiles from covering stairways

666 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Misc Improvements

• Added adjectives to item selection dialogs, used in tools like gui/create-item - this makes it possible to differen-
tiate between different types of high/low boots, shields, etc. (some of which are procedurally generated)

• blueprint:

– made depth and name parameters optional. depth now defaults to 1 (current level only) and name
defaults to “blueprint”

– depth can now be negative, which will result in the blueprints being written from the highest z-level
to the lowest. Before, blueprints were always written from the lowest z-level to the highest.

– added the --cursor option to set the starting coordinate for the generated blueprints. A game cursor
is no longer necessary if this option is used.

• devel/annc-monitor: added report enable|disable subcommand to filter combat reports

• embark-assistant: slightly improved performance of surveying and improved code a little

• gui/advfort: added workshop name to workshop UI

• quickfort:

– the Dreamfort blueprint set can now be comfortably built in a 1x1 embark

– added the --cursor option for running a blueprint at specific coordinates instead of starting at the
game cursor position

– added more helpful error messages for invalid modeline markers

– added support for extra space characters in blueprints

– added a warning when an invalid alias is encountered instead of silently ignoring it

– made more quiet when the --quiet parameter is specified

• setfps: improved error handling

• stonesense: sped up startup time

• tweak hide-priority: changed so that priorities stay hidden (or visible) when exiting and re-entering the designa-
tions menu

• unretire-anyone: the historical figure selection list now includes the SYN_NAME (necromancer, vampire, etc) of
figures where applicable

API

• Added dfhack.maps.getPlantAtTile(x, y, z) and dfhack.maps.getPlantAtTile(pos), and up-
dated dfhack.gui.getSelectedPlant() to use it

• Added dfhack.units.teleport(unit, pos)

7.12. Development changelog 667

DFHack Documentation, Release 50.11-r4

Internals

• Room definitions and extents are now created for abstract buildings so callers don’t have to initialize the room
structure themselves

• The DFHack test harness is now much easier to use for iterative development. Configuration can now be specified
on the commandline, there are more test filter options, and the test harness can now easily rerun tests that have
been run before.

• The test/main command to invoke the test harness has been renamed to just test

• Unit tests can now use delay_until(predicate_fn, timeout_frames) to delay until a condition is met

• Unit tests must now match any output expected to be printed via dfhack.printerr()

• Unit tests now support fortress mode (allowing tests that require a fortress map to be loaded) - note that these
tests are skipped by continuous integration for now, pending a suitable test fortress

Lua

• new library: argparse is a collection of commandline argument processing functions

• new string utility functions:

– string:wrap(width) wraps a string at space-separated word boundaries

– string:trim() removes whitespace characters from the beginning and end of the string

– string:split(delimiter, plain) splits a string with the given delimiter and returns a table of
substrings. if plain is specified and set to true, delimiter is interpreted as a literal string instead
of as a pattern (the default)

• new utility function: utils.normalizePath(): normalizes directory slashes across platoforms to / and coa-
leses adjacent directory separators

• reveal: now exposes unhideFlood(pos) functionality to Lua

• xlsxreader: added Lua class wrappers for the xlsxreader plugin API

• argparse.processArgsGetopt() (previously utils.processArgsGetopt()):

– now returns negative numbers (e.g. -10) in the list of positional parameters instead of treating it as an
option string equivalent to -1 -0

– now properly handles -- like GNU getopt as a marker to treat all further parameters as non-options

– now detects when required arguments to long-form options are missing

• gui.dwarfmode: new function: enterSidebarMode(sidebar_mode, max_esc) which uses keypresses to
get into the specified sidebar mode from whatever the current screen is

• gui.Painter: fixed error when calling viewport() method

668 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• Identified remaining rhythm beat enum values

• ui_advmode.interactions: identified some fields related to party members

• ui_advmode_menu: identified several enum items

• ui_advmode:

– identified several fields

– renamed wait to rest_mode and changed to an enum with correct values

• viewscreen_legendsst.cur_page: added missing Books enum item, which fixes some other values

Documentation

• Added more client library implementations to the remote interface docs

7.12.31 DFHack 0.47.05-r1

Fixes

• confirm: stopped exposing alternate names when convicting units

• prospector: improved pre embark rough estimates, particularly for small clusters

Misc Improvements

• autohauler: allowed the Alchemist labor to be enabled in manipulator and other labor screens so it can be used
for its intended purpose of flagging that no hauling labors should be assigned to a dwarf. Before, the only way
to set the flag was to use an external program like Dwarf Therapist.

• embark-assistant: slightly improved performance of surveying

• gui/no-dfhack-init: clarified how to dismiss dialog that displays when no dfhack.init file is found

• quickfort:

– Dreamfort blueprint set improvements: significant refinements across the entire blueprint set. Dream-
fort is now much faster, much more efficient, and much easier to use. The checklist now includes a
mini-walkthrough for quick reference. The spreadsheet now also includes embark profile suggestions

– added aliases for configuring masterwork and artifact core quality for all stockpile categories that have
them; made it possible to take from multiple stockpiles in the quantumstop alias

– an active cursor is no longer required for running #notes blueprints (like the dreamfort walkthrough)

– you can now be in any mode with an active cursor when running #query blueprints (before you could
only be in a few “approved” modes, like look, query, or place)

– refined #query blueprint sanity checks: cursor should still be on target tile at end of configuration,
and it’s ok for the screen ID to change if you are destroying (or canceling destruction of) a building

– now reports how many work orders were added when generating manager orders from blueprints in
the gui dialog

– added --dry-run option to process blueprints but not change any game state

7.12. Development changelog 669

http://www.bay12forums.com/smf/index.php?topic=176889.msg8239017#msg8239017
https://docs.google.com/spreadsheets/d/13PVZ2h3Mm3x_G1OXQvwKd7oIR2lK4A1Ahf6Om1kFigw/edit#gid=1459509569
https://docs.google.com/spreadsheets/d/13PVZ2h3Mm3x_G1OXQvwKd7oIR2lK4A1Ahf6Om1kFigw/edit#gid=149144025

DFHack Documentation, Release 50.11-r4

– you can now specify the number of desired barrels, bins, and wheelbarrows for individual stockpiles
when placing them

– quickfort orders on a #place blueprint will now enqueue manager orders for barrels, bins, or
wheelbarrows that are explicitly set in the blueprint.

– you can now add alias definitions directly to your blueprint files instead of having to put them in a
separate aliases.txt file. makes sharing blueprints with custom alias definitions much easier.

Structures

• Identified scattered enum values (some rhythm beats, a couple of corruption unit thoughts, and a few language
name categories)

• viewscreen_loadgamest: renamed cur_step enumeration to match style of
viewscreen_adopt_regionst and viewscreen_savegamest

• viewscreen_savegamest: identified cur_step enumeration

Documentation

• digfort: added deprecation warnings - digfort has been replaced by quickfort

• fortplan: added deprecation warnings - fortplan has been replaced by quickfort

7.12.32 DFHack 0.47.05-beta1

Fixes

• embark-assistant: fixed bug in soil depth determination for ocean tiles

• orders: don’t crash when importing orders with malformed JSON

• quickfort: raw numeric Dig priorities (e.g. 3, which is a valid shorthand for d3) now works when used in .xlsx
blueprints

Misc Improvements

• quickfort: new commandline options for setting the initial state of the gui dialog. for example: quickfort gui
-l dreamfort notes will start the dialog filtered for the dreamfort walkthrough blueprints

Structures

• Dropped support for 0.47.03-0.47.04

670 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.33 DFHack 0.47.04-r5

New Scripts

• gui/quickfort: fast access to the quickfort interactive dialog

• workorder-recheck: resets the selected work order to the Checking state

Fixes

• embark-assistant:

– fixed order of factors when calculating min temperature

– improved performance of surveying

• quickfort:

– fixed eventual crashes when creating zones

– fixed library aliases for tallow and iron, copper, and steel weapons

– zones are now created in the active state by default

– solve rare crash when changing UI modes

• search: fixed crash when searching the k sidebar and navigating to another tile with certain keys, like < or >

• seedwatch: fixed an issue where the plugin would disable itself on map load

• stockflow: fixed j character being intercepted when naming stockpiles

• stockpiles: no longer outputs hotkey help text beneath stockflow hotkey help text

Misc Improvements

• Lua label widgets (used in all standard message boxes) are now scrollable with Up/Down/PgUp/PgDn keys

• autofarm: now fallows farms if all plants have reached the desired count

• buildingplan:

– added ability to set global settings from the console, e.g. buildingplan set boulders false

– added “enable all” option for buildingplan (so you don’t have to enable all building types individu-
ally). This setting is not persisted (just like quickfort_mode is not persisted), but it can be set from
onMapLoad.init

– modified Planning Mode status in the UI to show whether the plugin is in quickfort mode, “enable
all” mode, or whether just the building type is enabled.

• quickfort:

– Dreamfort blueprint set improvements: added a streamlined checklist for all required dreamfort com-
mands and gave names to stockpiles, levers, bridges, and zones

– added aliases for bronze weapons and armor

– added alias for tradeable crafts

– new blueprint mode: #ignore, useful for scratch space or personal notes

– implement {Empty} keycode for use in quickfort aliases; useful for defining blank-by-default alias
values

7.12. Development changelog 671

DFHack Documentation, Release 50.11-r4

– more flexible commandline parsing allowing for more natural parameter ordering (e.g. where you
used to have to write quickfort list dreamfort -l you can now write quickfort list -l
dreamfort)

– print out blueprint names that a #meta blueprint is applying so it’s easier to understand what meta
blueprints are doing

– whitespace is now allowed between a marker name and the opening parenthesis in blueprint modelines.
for example, #dig start (5; 5) is now valid (you used to be required to write #dig start(5;
5))

Lua

• dfhack.run_command(): changed to interface directly with the console when possible, which allows interactive
commands and commands that detect the console encoding to work properly

• processArgsGetopt() added to utils.lua, providing a callback interface for parameter parsing and getopt-like
flexibility for parameter ordering and combination (see docs in library/lua/utils.lua and library/lua/
3rdparty/alt_getopt.lua for details).

Structures

• job: identified order_id field

Documentation

• Added documentation for Lua’s dfhack.run_command() and variants

7.12.34 DFHack 0.47.04-r4

New Scripts

• fix/corrupt-equipment: fixes some military equipment-related corruption issues that can cause DF crashes

Fixes

• Fixed an issue on some Linux systems where DFHack installed through a package manager would attempt to
write files to a non-writable folder (notably when running exportlegends or gui/autogems)

• adaptation: fixed handling of units with no cave adaptation suffered yet

• assign-goals: fixed error preventing new goals from being created

• assign-preferences: fixed handling of preferences for flour

• buildingplan:

– fixed an issue preventing artifacts from being matched when the maximum item quality is set to
artifacts

– stopped erroneously matching items to buildings while the game is paused

– fixed a crash when pressing 0 while having a noble room selected

• deathcause: fixed an error when inspecting certain corpses

672 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• dwarfmonitor: fixed a crash when opening the prefs screen if units have vague preferences

• dwarfvet: fixed a crash that could occur when discharging patients

• embark-assistant:

– fixed an issue causing incursion resource matching (e.g. sand/clay) to skip some tiles if those resources
were provided only through incursions

– corrected river size determination by performing it at the MLT level rather than the world tile level

• quickfort:

– fixed handling of modifier keys (e.g. {Ctrl} or {Alt}) in query blueprints

– fixed misconfiguration of nest boxes, hives, and slabs that were preventing them from being built from
build blueprints

– fixed valid placement detection for floor hatches, floor grates, and floor bars (they were erroneously
being rejected from open spaces and staircase tops)

– fixed query blueprint statistics being added to the wrong metric when both a query and a zone blueprint
are run by the same meta blueprint

– added missing blueprint labels in gui dialog list

– fixed occupancy settings for extent-based structures so that stockpiles can be placed within other stock-
piles (e.g. in a checkerboard or bullseye pattern)

• search: fixed an issue where search options might not display if screens were destroyed and recreated program-
matically (e.g. with quickfort)

• unsuspend: now leaves buildingplan-managed buildings alone and doesn’t unsuspend underwater tasks

• workflow: fixed an error when creating constraints on “mill plants” jobs and some other plant-related jobs

• zone: fixed an issue causing the enumnick subcommand to run when attempting to run assign, unassign, or
slaughter

Misc Improvements

• buildingplan:

– added support for all buildings, furniture, and constructions (except for instruments)

– added support for respecting building job_item filters when matching items, so you can set your own
programmatic filters for buildings before submitting them to buildingplan

– changed default filter setting for max quality from artifact to masterwork

– changed min quality adjustment hotkeys from ‘qw’ to ‘QW’ to avoid conflict with existing hotkeys for
setting roller speed - also changed max quality adjustment hotkeys from ‘QW’ to ‘AS’ to make room
for the min quality hotkey changes

– added a new global settings page accessible via the G hotkey when on any building build screen;
Quickfort Mode toggle for legacy Python Quickfort has been moved to this page

– added new global settings for whether generic building materials should match blocks, boulders, logs,
and/or bars - defaults are everything but bars

• devel/export-dt-ini: updated for Dwarf Therapist 41.2.0

• embark-assistant: split the lair types displayed on the local map into mound, burrow, and lair

• gui/advfort: added support for linking to hatches and pressure plates with mechanisms

7.12. Development changelog 673

DFHack Documentation, Release 50.11-r4

• modtools/add-syndrome: added support for specifying syndrome IDs instead of names

• probe: added more output for designations and tile occupancy

• quickfort:

– The Dreamfort sample blueprints now have complete walkthroughs for each fort level and importable
orders that automate basic fort stock management

– added more blueprints to the blueprints library: several bedroom layouts, the Saracen Crypts, and the
complete fortress example from Python Quickfort: TheQuickFortress

– query blueprint aliases can now accept parameters for dynamic expansion - see dfhack-
config/quickfort/aliases.txt for details

– alias names can now include dashes and underscores (in addition to letters and numbers)

– improved speed of first call to quickfort list significantly, especially for large blueprint libraries

– added query_unsafe setting to disable query blueprint error checking - useful for query blueprints
that send unusual key sequences

– added support for bookcases, display cases, and offering places (altars)

– added configuration support for zone pit/pond, gather, and hospital sub-menus in zone blueprints

– removed buildings_use_blocks setting and replaced it with more flexible functionality in build-
ingplan

– added support for creating uninitialized stockpiles with c

API

• buildingplan: added Lua interface API

• Buildings::setSize(): changed to reuse existing extents when possible

• dfhack.job.isSuitableMaterial(): added an item type parameter so the non_economic flag can be prop-
erly handled (it was being matched for all item types instead of just boulders)

Lua

• utils.addressof(): fixed for raw userdata

Structures

• building_extents_type: new enum, used for building_extents.extents

• world_mountain_peak: new struct (was previously inline) - used in world_data.mountain_peaks

674 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Documentation

• Quickfort blueprint creation guide: alias syntax and alias standard library documentation for quickfort blueprints

• Quickfort blueprint library: overview of the quickfort blueprint library

7.12.35 DFHack 0.47.04-r3

New Plugins

• xlsxreader: provides an API for Lua scripts to read Excel spreadsheets

New Scripts

• quickfort: DFHack-native implementation of quickfort with many new features and integrations - see the Quick-
fort blueprint creation guide for details

• timestream: controls the speed of the calendar and creatures

• uniform-unstick: prompts units to reevaluate their uniform, by removing/dropping potentially conflicting worn
items

Fixes

• ban-cooking: fixed an error in several subcommands

• buildingplan: fixed handling of buildings that require buckets

• getplants: fixed a crash that could occur on some maps

• search: fixed an issue causing item counts on the trade screen to display inconsistently when searching

• stockpiles:

– fixed a crash when loading food stockpiles

– fixed an error when saving furniture stockpiles

Misc Improvements

• createitem:

– added support for plant growths (fruit, berries, leaves, etc.)

– added an inspect subcommand to print the item and material tokens of existing items, which can be
used to create additional matching items

• embark-assistant: added support for searching for taller waterfalls (up to 50 z-levels tall)

• search: added support for searching for names containing non-ASCII characters using their ASCII equivalents

• stocks: added support for searching for items containing non-ASCII characters using their ASCII equivalents

• unretire-anyone: made undead creature names appear in the historical figure list

• zone:

– added an enumnick subcommand to assign enumerated nicknames (e.g “Hen 1”, “Hen 2”. . .)

– added slaughter indication to uinfo output

7.12. Development changelog 675

DFHack Documentation, Release 50.11-r4

API

• Added DFHack::to_search_normalized() (Lua: dfhack.toSearchNormalized()) to convert non-ASCII
alphabetic characters to their ASCII equivalents

Structures

• history_event_masterpiece_createdst: fixed alignment, including subclasses, and identified
skill_at_time

• item_body_component: fixed some alignment issues and identified some fields (also applies to subclasses like
item_corpsest)

• stockpile_settings: removed furniture.sand_bags (no longer present)

Documentation

• Fixed syntax highlighting of most code blocks to use the appropriate language (or no language) instead of Python

7.12.36 DFHack 0.47.04-r2

New Scripts

• animal-control: helps manage the butchery and gelding of animals

• devel/kill-hf : kills a historical figure

• geld: gelds or ungelds animals

• list-agreements: lists all guildhall and temple agreements

• list-waves: displays migration wave information for citizens/units

• ungeld: ungelds animals (wrapper around geld)

New Tweaks

• tweak do-job-now: adds a job priority toggle to the jobs list

• tweak reaction-gloves: adds an option to make reactions produce gloves in sets with correct handedness

Fixes

• Fixed a segfault when attempting to start a headless session with a graphical PRINT_MODE setting

• Fixed an issue with the macOS launcher failing to un-quarantine some files

• Fixed Units::isEggLayer, Units::isGrazer, Units::isMilkable, Units::isTrainableHunting,
Units::isTrainableWar, and Units::isTamable ignoring the unit’s caste

• Linux: fixed dfhack.getDFPath() (Lua) and Process::getPath() (C++) to always return the DF root path,
even if the working directory has changed

• digfort:

– fixed y-line tracking when .csv files contain lines with only commas

676 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– fixed an issue causing blueprints touching the southern or eastern edges of the map to be rejected
(northern and western edges were already allowed). This allows blueprints that span the entire embark
area.

• embark-assistant: fixed a couple of incursion handling bugs.

• embark-skills: fixed an issue with structures causing the points option to do nothing

• exportlegends:

– fixed an issue where two different <reason> tags could be included in a <historical_event>

– stopped including some tags with -1 values which don’t provide useful information

• getplants: fixed issues causing plants to be collected even if they have no growths (or unripe growths)

• gui/advfort: fixed “operate pump” job

• gui/load-screen: fixed an issue causing longer timezones to be cut off

• labormanager:

– fixed handling of new jobs in 0.47

– fixed an issue preventing custom furnaces from being built

• modtools/moddable-gods:

– fixed an error when creating the historical figure

– removed unused -domain and -description arguments

– made -depictedAs argument work

• names:

– fixed an error preventing the script from working

– fixed an issue causing renamed units to display their old name in legends mode and some other places

• pref-adjust: fixed some compatibility issues and a potential crash

• RemoteFortressReader:

– fixed a couple crashes that could result from decoding invalid enum items
(site_realization_building_type and improvement_type)

– fixed an issue that could cause block coordinates to be incorrect

• rendermax: fixed a hang that could occur when enabling some renderers, notably on Linux

• stonesense:

– fixed a crash when launching Stonesense

– fixed some issues that could cause the splash screen to hang

7.12. Development changelog 677

DFHack Documentation, Release 50.11-r4

Misc Improvements

• Linux/macOS: Added console keybindings for deleting words (Alt+Backspace and Alt+d in most terminals)

• add-recipe:

– added tool recipes (minecarts, wheelbarrows, stepladders, etc.)

– added a command explanation or error message when entering an invalid command

• armoks-blessing: added adjustments to values and needs

• blueprint:

– now writes blueprints to the blueprints/ subfolder instead of the df root folder

– now automatically creates folder trees when organizing blueprints into subfolders (e.g. blueprint 30
30 1 rooms/dining dig will create the file blueprints/rooms/dining-dig.csv); previously
it would fail if the blueprints/rooms/ directory didn’t already exist

• confirm: added a confirmation dialog for convicting dwarves of crimes

• devel/query: added many new query options

• digfort:

– handled double quotes (”) at the start of a string, allowing .csv files exported from spreadsheets to work
without manual modification

– documented that removing ramps, cutting trees, and gathering plants are indeed supported

– added a force option to truncate blueprints if the full blueprint would extend off the edge of the map

• dwarf-op:

– added ability to select dwarves based on migration wave

– added ability to protect dwarves based on symbols in their custom professions

• exportlegends:

– changed some flags to be represented by self-closing tags instead of true/false strings (e.g.
<is_volcano/>) - note that this may require changes to other XML-parsing utilities

– changed some enum values from numbers to their string representations

– added ability to save all files to a subfolder, named after the region folder and date by default

• gui/advfort: added support for specifying the entity used to determine available resources

• gui/gm-editor: added support for automatically following ref-targets when pressing the i key

• manipulator: added a new column option to display units’ goals

• modtools/moddable-gods: added support for neuter gender

• pref-adjust:

– added support for adjusting just the selected dwarf

– added a new goth profile

• remove-stress: added a -value argument to enable setting stress level directly

• workorder: changed default frequency from “Daily” to “OneTime”

678 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

API

• Added Filesystem::mkdir_recursive

• Extended Filesystem::listdir_recursive to optionally make returned filenames relative to the start direc-
tory

• Units: added goal-related functions: getGoalType(), getGoalName(), isGoalAchieved()

Internals

• Added support for splitting scripts into multiple files in the scripts/internal folder without polluting the
output of ls

Lua

• Added a ref_target field to primitive field references, corresponding to the ref-target XML attribute

• Made dfhack.units.getRaceNameById(), dfhack.units.getRaceBabyNameById(), and dfhack.
units.getRaceChildNameById() available to Lua

Ruby

• Updated item_find and building_find to use centralized logic that works on more screens

Structures

• Added a new <df-other-vectors-type>, which allows world.*.other collections of vectors to use the
correct subtypes for items

• creature_raw: renamed gender to sex to match the field in unit, which is more frequently used

• crime: identified witnesses, which contains the data held by the old field named reports

• intrigue: new type (split out from historical_figure_relationships)

• items_other_id: removed BAD, and by extension, world.items.other.BAD, which was overlapping with
world.items.bad

• job_type: added job types new to 0.47

• plant_raw: material_defs now contains arrays rather than loose fields

• pronoun_type: new enum (previously documented in field comments)

• setup_character_info: fixed a couple alignment issues (needed by embark-skills)

• ui_advmode_menu: identified some new enum items

7.12. Development changelog 679

DFHack Documentation, Release 50.11-r4

Documentation

• Added some new dev-facing pages, including dedicated pages about the remote API, memory research, and
documentation

• Expanded the installation guide

• Made a couple theme adjustments

7.12.37 DFHack 0.47.04-r1

Fixes

• Fixed a crash in find() for some types when no world is loaded

• Fixed translation of certain types of in-game names

• autogems: fixed an issue with binned gems being ignored in linked stockpiles

• catsplosion: fixed error when handling races with only one caste (e.g. harpies)

• exportlegends: fixed error when exporting maps

• spawnunit: fixed an error when forwarding some arguments but not a location to modtools/create-unit

• stocks: fixed display of book titles

• tweak embark-profile-name: fixed handling of the native shift+space key

Misc Improvements

• exportlegends:

– made interaction export more robust and human-readable

– removed empty <item_subtype> and <claims> tags

• getplants: added switches for designations for farming seeds and for max number designated per plant

• manipulator: added intrigue to displayed skills

• modtools/create-unit:

– added -equip option to equip created units

– added -skills option to give skills to units

– added -profession and -customProfession options to adjust unit professions

• search: added support for the fortress mode justice screen

• dfhack.init-example: enabled autodump

680 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

API

• Added Items::getBookTitle to get titles of books. Catches titles buried in improvements, unlike getDescrip-
tion.

Lua

• pairs() now returns available class methods for DF types

Structures

• Added globals: cur_rain, cur_rain_counter, cur_snow, cur_snow_counter, weathertimer,
jobvalue, jobvalue_setter, interactitem, interactinvslot, handleannounce, preserveannounce,
updatelightstate

• agreement_details_data_plot_sabotage: new struct type, along with related
agreement_details_type.PlotSabotage

• architectural_element: new enum

• battlefield: new struct type

• breed: new struct type

• creature_handler: identified vmethods

• crime: removed fields of reports that are no longer present

• dance_form: identified most fields

• history_event_context: identified fields

• identity_type: new enum

• identity: renamed civ to entity_id, identified type

• image_set: new struct type

• interrogation_report: new struct type

• itemdef_flags: new enum, with GENERATED flag

• justification: new enum

• lever_target_type: identified LeverMechanism and TargetMechanism values

• musical_form: identified fields, including some renames. Also identified fields in scale and rhythm

• region_weather: new struct type

• squad_order_cause_trouble_for_entityst: identified fields

• unit_thought_type: added several new thought types

• viewscreen_workquota_detailsst: identified fields

7.12. Development changelog 681

DFHack Documentation, Release 50.11-r4

7.12.38 DFHack 0.47.04-beta1

New Scripts

• color-schemes: manages color schemes

• devel/print-event: prints the description of an event by ID or index

• gui/color-schemes: an in-game interface for color-schemes

• light-aquifers-only: changes heavy aquifers to light aquifers

• on-new-fortress: runs DFHack commands only in a new fortress

• once-per-save: runs DFHack commands unless already run in the current save

• resurrect-adv: brings your adventurer back to life

• reveal-hidden-units: exposes all sneaking units

• workorder: allows queuing manager jobs; smart about shear and milk creature jobs

Fixes

• Fixed a crash when starting DFHack in headless mode with no terminal

• devel/visualize-structure: fixed padding detection for globals

• exportlegends:

– added UTF-8 encoding and XML escaping for more fields

– added checking for unhandled structures to avoid generating invalid XML

– fixed missing fields in history_event_assume_identityst export

• full-heal:

– when resurrected by specifying a corpse, units now appear at the location of the corpse rather than
their location of death

– resurrected units now have their tile occupancy set (and are placed in the prone position to facilitate
this)

Misc Improvements

• Added “bit” suffix to downloads (e.g. 64-bit)

• Tests:

– moved from DF folder to hack/scripts folder, and disabled installation by default

– made test runner script more flexible

• devel/export-dt-ini: updated some field names for DT for 0.47

• devel/visualize-structure: added human-readable lengths to containers

• dfhack-run: added color output support

• embark-assistant:

– updated embark aquifer info to show all aquifer kinds present

– added neighbor display, including kobolds (SKULKING) and necro tower count

682 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– updated aquifer search criteria to handle the new variation

– added search criteria for embark initial tree cover

– added search criteria for necro tower count, neighbor civ count, and specific neighbors. Should handle
additional entities, but not tested

• exportlegends:

– added evilness and force IDs to regions

– added profession and weapon info to relevant entities

– added support for many new history events in 0.47

– added historical event relationships and supplementary data

• full-heal:

– made resurrection produce a historical event viewable in Legends mode

– made error messages more explanatory

• install-info: added DFHack build ID to report

• modtools/create-item: added -matchingGloves and -matchingShoes arguments

• modtools/create-unit:

– added -duration argument to make the unit vanish after some time

– added -locationRange argument to allow spawning in a random position within a defined area

– added -locationType argument to specify the type of location to spawn in

• unretire-anyone: added -dead argument to revive and enable selection of a dead historical figure to use as an
adventurer in adv mode

Internals

• Added separate changelogs in the scripts and df-structures repos

• Improved support for tagged unions, allowing tools to access union fields more safely

• Moved reversing scripts to df_misc repo

Structures

• Added an XML schema for validating df-structures syntax

• Added divination_set_next_id and image_set_next_id globals

• activity_entry_type: new enum type

• adventure_optionst: identified many vmethods

• agreement_details: identified most fields of most sub-structs

• artifact_claim: identified several fields

• artifact_record: identified several fields

• caste_raw_flags: renamed and identified many flags to match information from Toady

• creature_raw_flags: renamed and identified many flags to match information from Toady

7.12. Development changelog 683

DFHack Documentation, Release 50.11-r4

• crime_type: new enum type

• dfhack_room_quality_level: added enum attributes for names of rooms of each quality

• entity_site_link_type: new enum type

• export_map_type: new enum type

• historical_entity.flags: identified several flags

• historical_entity.relations: renamed from unknown1b and identified several fields

• historical_figure.vague_relationships: identified

• historical_figure_info.known_info: renamed from secret, identified some fields

• historical_figure: renamed unit_id2 to nemesis_id

• history_event_circumstance_info: new struct type (and changed several history_event subclasses to
use this)

• history_event_reason_info: new struct type (and changed several history_event subclasses to use this)

• honors_type: identified several fields

• interaction_effect_create_itemst: new struct type

• interaction_effect_summon_unitst: new struct type

• item: identified several vmethods

• layer_type: new enum type

• plant.damage_flags: added is_dead

• plot_role_type: new enum type

• plot_strategy_type: new enum type

• relationship_event_supplement: new struct type

• relationship_event: new struct type

• specific_ref: moved union data to data field

• ui_look_list: moved union fields to data and renamed to match type enum

• ui_sidebar_menus.location: added new profession-related fields, renamed and fixed types of deity-related
fields

• ui_sidebar_mode: added ZonesLocationInfo

• unit_action: rearranged as tagged union with new sub-types; existing code should be compatible

• vague_relationship_type: new enum type

• vermin_flags: identified is_roaming_colony

• viewscreen_justicest: identified interrogation-related fields

• world_data.field_battles: identified and named several fields

684 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.39 DFHack 0.47.03-beta1

New Scripts

• devel/sc: checks size of structures

• devel/visualize-structure: displays the raw memory of a structure

Fixes

• adv-max-skills: fixed for 0.47

• deep-embark:

– prevented running in non-fortress modes

– ensured that only the newest wagon is deconstructed

• full-heal:

– fixed issues with removing corpses

– fixed resurrection for non-historical figures

• modtools/create-unit: added handling for arena tame setting

• teleport: fixed setting new tile occupancy

Misc Improvements

• deep-embark:

– improved support for using directly from the DFHack console

– added a -clear option to cancel

• exportlegends:

– added identity information

– added creature raw names and flags

• gui/prerelease-warning: updated links and information about nightly builds

• modtools/syndrome-trigger: enabled simultaneous use of -synclass and -syndrome

• repeat: added -list option

Structures

• Dropped support for 0.44.12-0.47.02

• abstract_building_type: added types (and subclasses) new to 0.47

• agreement_details_type: added enum

• agreement_details: added struct type (and many associated data types)

• agreement_party: added struct type

• announcement_type: added types new to 0.47

• artifact_claim_type: added enum

7.12. Development changelog 685

DFHack Documentation, Release 50.11-r4

• artifact_claim: added struct type

• breath_attack_type: added SHARP_ROCK

• building_offering_placest: new class

• building_type: added OfferingPlace

• caste_raw_flags: renamed many items to match DF names

• creature_interaction_effect: added subclasses new to 0.47

• creature_raw_flags:

– identified several more items

– renamed many items to match DF names

• d_init: added settings new to 0.47

• entity_name_type: added MERCHANT_COMPANY, CRAFT_GUILD

• entity_position_responsibility: added values new to 0.47

• fortress_type: added enum

• general_ref_type: added UNIT_INTERROGATEE

• ghost_type: added None value

• goal_type: added goals types new to 0.47

• histfig_site_link: added subclasses new to 0.47

• history_event_collection: added subtypes new to 0.47

• history_event_context: added lots of new fields

• history_event_reason:

– added captions for all items

– added items new to 0.47

• history_event_type: added types for events new to 0.47, as well as corresponding history_event sub-
classes (too many to list here)

• honors_type: added struct type

• interaction_effect: added subtypes new to 0.47

• interaction_source_experimentst: added class type

• interaction_source_usage_hint: added values new to 0.47

• interface_key: added items for keys new to 0.47

• job_skill: added INTRIGUE, RIDING

• lair_type: added enum

• monument_type: added enum

• next_global_id: added enum

• poetic_form_action: added Beseech

• setup_character_info: expanded significantly in 0.47

• text_system: added layout for struct

686 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• tile_occupancy: added varied_heavy_aquifer

• tool_uses: added items: PLACE_OFFERING, DIVINATION, GAMES_OF_CHANCE

• viewscreen_counterintelligencest: new class (only layout identified so far)

7.12.40 DFHack 0.44.12-r3

New Plugins

• autoclothing: automatically manage clothing work orders

• autofarm: replaces the previous Ruby script of the same name, with some fixes

• map-render: allows programmatically rendering sections of the map that are off-screen

• tailor: automatically manages keeping your dorfs clothed

New Scripts

• assign-attributes: changes the attributes of a unit

• assign-beliefs: changes the beliefs of a unit

• assign-facets: changes the facets (traits) of a unit

• assign-goals: changes the goals of a unit

• assign-preferences: changes the preferences of a unit

• assign-profile: sets a dwarf’s characteristics according to a predefined profile

• assign-skills: changes the skills of a unit

• combat-harden: sets a unit’s combat-hardened value to a given percent

• deep-embark: allows embarking underground

• devel/find-twbt: finds a TWBT-related offset needed by the new map-render plugin

• dwarf-op: optimizes dwarves for fort-mode work; makes managing labors easier

• forget-dead-body: removes emotions associated with seeing a dead body

• gui/create-tree: creates a tree at the selected tile

• linger: takes over your killer in adventure mode

• modtools/create-tree: creates a tree

• modtools/pref-edit: add, remove, or edit the preferences of a unit

• modtools/set-belief : changes the beliefs (values) of units

• modtools/set-need: sets and edits unit needs

• modtools/set-personality: changes the personality of units

• modtools/spawn-liquid: spawns water or lava at the specified coordinates

• set-orientation: edits a unit’s orientation

• unretire-anyone: turns any historical figure into a playable adventurer

7.12. Development changelog 687

DFHack Documentation, Release 50.11-r4

Fixes

• Fixed a crash in the macOS/Linux console when the prompt was wider than the screen width

• Fixed inconsistent results from Units::isGay for asexual units

• Fixed some cases where Lua filtered lists would not properly intercept keys, potentially triggering other actions
on the same screen

• autofarm:

– fixed biome detection to properly determine crop assignments on surface farms

– reimplemented as a C++ plugin to make proper biome detection possible

• bodyswap: fixed companion list not being updated often enough

• cxxrandom: removed some extraneous debug information

• digfort: now accounts for z-level changes when calculating maximum y dimension

• embark-assistant:

– fixed bug causing crash on worlds without generated metals (as well as pruning vectors as originally
intended).

– fixed bug causing mineral matching to fail to cut off at the magma sea, reporting presence of things
that aren’t (like DF does currently).

– fixed bug causing half of the river tiles not to be recognized.

– added logic to detect some river tiles DF doesn’t generate data for (but are definitely present).

• eventful: fixed invalid building ID in some building events

• exportlegends: now escapes special characters in names properly

• getplants: fixed designation of plants out of season (note that picked plants are still designated incorrectly)

• gui/autogems: fixed error when no world is loaded

• gui/companion-order:

– fixed error when resetting group leaders

– leave now properly removes companion links

• gui/create-item: fixed module support - can now be used from other scripts

• gui/stamper:

– stopped “invert” from resetting the designation type

– switched to using DF’s designation keybindings instead of custom bindings

– fixed some typos and text overlapping

• modtools/create-unit:

– fixed an error associating historical entities with units

– stopped recalculating health to avoid newly-created citizens triggering a “recover wounded” job

– fixed units created in arena mode having blank names

– fixed units created in arena mode having the wrong race and/or interaction effects applied after creating
units manually in-game

– stopped units from spawning with extra items or skills previously selected in the arena

688 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– stopped setting some unneeded flags that could result in glowing creature tiles

– set units created in adventure mode to have no family, instead of being related to the first creature in
the world

• modtools/reaction-product-trigger:

– fixed an error dealing with reactions in adventure mode

– blocked \\BUILDING_ID for adventure mode reactions

– fixed -clear to work without passing other unneeded arguments

• modtools/reaction-trigger:

– fixed a bug when determining whether a command was run

– fixed handling of -resetPolicy

• mousequery: fixed calculation of map dimensions, which was sometimes preventing scrolling the map with the
mouse when TWBT was enabled

• RemoteFortressReader: fixed a crash when a unit’s path has a length of 0

• stonesense: fixed crash due to wagons and other soul-less creatures

• tame: now sets the civ ID of tamed animals (fixes compatibility with autobutcher)

• title-folder: silenced error when PRINT_MODE is set to TEXT

Misc Improvements

• Added a note to dfhack-run when called with no arguments (which is usually unintentional)

• On macOS, the launcher now attempts to un-quarantine the rest of DFHack

• bodyswap: added arena mode support

• combine-drinks: added more default output, similar to combine-plants

• createitem: added a list of valid castes to the “invalid caste” error message, for convenience

• devel/export-dt-ini: added more size information needed by newer Dwarf Therapist versions

• dwarfmonitor: enabled widgets to access other scripts and plugins by switching to the core Lua context

• embark-assistant:

– added an in-game option to activate on the embark screen

– changed waterfall detection to look for level drop rather than just presence

– changed matching to take incursions, i.e. parts of other biomes, into consideration when evaluating
tiles. This allows for e.g. finding multiple biomes on single tile embarks.

– changed overlay display to show when incursion surveying is incomplete

– changed overlay display to show evil weather

– added optional parameter “fileresult” for crude external harness automated match support

– improved focus movement logic to go to only required world tiles, increasing speed of subsequent
searches considerably

• exportlegends: added rivers to custom XML export

• exterminate: added support for a special enemy caste

7.12. Development changelog 689

DFHack Documentation, Release 50.11-r4

• gui/gm-unit:

– added support for editing:

– added attribute editor

– added orientation editor

– added editor for bodies and body parts

– added color editor

– added belief editor

– added personality editor

• modtools/create-item: documented already-existing -quality option

• modtools/create-unit:

– added the ability to specify \\LOCAL for the fort group entity

– now enables the default labours for adult units with CAN_LEARN.

– now sets historical figure orientation.

– improved speed of creating multiple units at once

– made the script usable as a module (from other scripts)

• modtools/reaction-trigger:

– added -ignoreWorker: ignores the worker when selecting the targets

– changed the default behavior to skip inactive/dead units; added -dontSkipInactive to include crea-
tures that are inactive

– added -range: controls how far elligible targets can be from the workshop

– syndromes now are applied before commands are run, not after

– if both a command and a syndrome are given, the command only runs if the syndrome could be applied

• mousequery: made it more clear when features are enabled

• RemoteFortressReader:

– added a basic framework for controlling and reading the menus in DF (currently only supports the
building menu)

– added support for reading item raws

– added a check for whether or not the game is currently saving or loading, for utilities to check if it’s
safe to read from DF

– added unit facing direction estimate and position within tiles

– added unit age

– added unit wounds

– added tree information

– added check for units’ current jobs when calculating the direction they are facing

690 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

API

• Added new plugin_load_data and plugin_save_data events for plugins to load/save persistent data

• Added Maps::GetBiomeType and Maps::GetBiomeTypeByRef to infer biome types properly

• Added Units::getPhysicalDescription (note that this depends on the
unit_get_physical_description offset, which is not yet available for all DF builds)

Internals

• Added new Persistence module

• Cut down on internal DFHack dependencies to improve build times

• Improved concurrency in event and server handlers

• Persistent data is now stored in JSON files instead of historical figures - existing data will be migrated when
saving

• stonesense: fixed some OpenGL build issues on Linux

Lua

• Exposed gui.dwarfmode.get_movement_delta and gui.dwarfmode.get_hotkey_target

• dfhack.run_command now returns the command’s return code

Ruby

• Made unit_ishostile consistently return a boolean

Structures

• Added unit_get_physical_description function offset on some platforms

• Added/identified types:

– assume_identity_mode

– musical_form_purpose

– musical_form_style

– musical_form_pitch_style

– musical_form_feature

– musical_form_vocals

– musical_form_melodies

– musical_form_interval

– unit_emotion_memory

• need_type: fixed PrayOrMeditate typo

• personality_facet_type, value_type: added NONE values

• twbt_render_map: added for 64-bit 0.44.12 (for map-render)

7.12. Development changelog 691

DFHack Documentation, Release 50.11-r4

7.12.41 DFHack 0.44.12-r2

New Plugins

• debug: manages runtime debug print category filtering

• nestboxes: automatically scan for and forbid fertile eggs incubating in a nestbox

New Scripts

• devel/query: searches for field names in DF objects

• extinguish: puts out fires

• tame: sets tamed/trained status of animals

Fixes

• building-hacks: fixed error when dealing with custom animation tables

• devel/test-perlin: fixed Lua error (math.pow())

• embark-assistant: fixed crash when entering finder with a 16x16 embark selected, and added 16 to dimension
choices

• embark-skills: fixed missing skill_points_remaining field

• full-heal:

– stopped wagon resurrection

– fixed a minor issue with post-resurrection hostility

• gui/companion-order:

– fixed issues with printing coordinates

– fixed issues with move command

– fixed cheat commands (and removed “Power up”, which was broken)

• gui/gm-editor: fixed reinterpret cast (r)

• gui/pathable: fixed error when sidebar is hidden with Tab

• labormanager:

– stopped assigning labors to ineligible dwarves, pets, etc.

– stopped assigning invalid labors

– added support for crafting jobs that use pearl

– fixed issues causing cleaning jobs to not be assigned

– added support for disabling management of specific labors

• prospector: (also affected embark-tools) - fixed a crash when prospecting an unusable site (ocean, mountains,
etc.) with a large default embark size in d_init.txt (e.g. 16x16)

• siege-engine: fixed a few Lua errors (math.pow(), unit.relationship_ids)

• tweak: fixed hotkey-clear

692 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Misc Improvements

• armoks-blessing: improved documentation to list all available arguments

• devel/export-dt-ini:

– added viewscreen offsets for DT 40.1.2

– added item base flags offset

– added needs offsets

• embark-assistant:

– added match indicator display on the right (“World”) map

– changed ‘c’ancel to abort find if it’s under way and clear results if not, allowing use of partial surveys.

– added Coal as a search criterion, as well as a coal indication as current embark selection info.

• full-heal:

– added -all, -all_civ and -all_citizens arguments

– added module support

– now removes historical figure death dates and ghost data

• growcrops: added all argument to grow all crops

• gui/load-screen: improved documentation

• labormanager: now takes nature value into account when assigning jobs

• open-legends: added warning about risk of save corruption and improved related documentation

• points: added support when in viewscreen_setupdwarfgamest and improved error messages

• siren: removed break handling (relevant misc_trait_type was no longer used - see “Structures” section)

API

• New debug features related to debug plugin:

– Classes (C++ only): Signal<Signature, type_tag>, DebugCategory, DebugManager

– Macros: TRACE, DEBUG, INFO, WARN, ERR, DBG_DECLARE, DBG_EXTERN

Internals

• Added a usable unit test framework for basic tests, and a few basic tests

• Added CMakeSettings.json with intellisense support

• Changed plugins/CMakeLists.custom.txt to be ignored by git and created (if needed) at build time instead

• Core: various thread safety and memory management improvements

• Fixed CMake build dependencies for generated header files

• Fixed custom CMAKE_CXX_FLAGS not being passed to plugins

• Linux/macOS: changed recommended build backend from Make to Ninja (Make builds will be significantly
slower now)

7.12. Development changelog 693

DFHack Documentation, Release 50.11-r4

Lua

• utils: new OrderedTable class

Structures

• Win32: added missing vtables for viewscreen_storesst and squad_order_rescue_hfst

• activity_event_performancest: renamed poem as written_content_id

• body_part_status: identified gelded

• dance_form: named musical_form_id and musical_written_content_id

• incident_sub6_performance.participants: named performance_event and role_index

• incident_sub6_performance:

– made performance_event an enum

– named poetic_form_id, musical_form_id, and dance_form_id

• misc_trait_type: removed LikesOutdoors, Hardened, TimeSinceBreak, OnBreak (all unused by DF)

• musical_form_instruments: named minimum_required and maximum_permitted

• musical_form: named voices field

• plant_tree_info: identified extent_east, etc.

• plant_tree_tile: gave connection bits more meaningful names (e.g. connection_east instead of
thick_branches_1)

• poetic_form: identified many fields and related enum/bitfield types

• setup_character_info: identified skill_points_remaining (for embark-skills)

• ui.main: identified fortress_site

• ui.squads: identified kill_rect_targets_scroll

• ui: fixed alignment of main and squads (fixes tweak hotkey-clear and DF-AI)

• unit_action.attack:

– identified attack_skill

– added lightly_tap and spar_report flags

• unit_flags3: identified marked_for_gelding

• unit_personality: identified stress_drain, stress_boost, likes_outdoors, combat_hardened

• unit_storage_status: newly identified type, stores noble holdings information (used in
viewscreen_layer_noblelistst)

• unit_thought_type: added new expulsion thoughts from 0.44.12

• viewscreen_layer_arena_creaturest: identified item- and name-related fields

• viewscreen_layer_militaryst: identified equip.assigned.assigned_items

• viewscreen_layer_noblelistst: identified storage_status (see unit_storage_status type)

• viewscreen_new_regionst:

– identified rejection_msg, raw_folder, load_world_params

694 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– changed many int8_t fields to bool

• viewscreen_setupadventurest: identified some nemesis and personality fields, and page.ChooseHistfig

• world_data: added mountain_peak_flags type, including is_volcano

• world_history: identified names and/or types of some fields

• world_site: identified names and/or types of some fields

• written_content: named poetic_form

7.12.42 DFHack 0.44.12-r1

Fixes

• Console: fixed crash when entering long commands on Linux/macOS

• Fixed special characters in command-prompt and other non-console in-game outputs on Linux/macOS (in tools
using df2console)

• Removed jsoncpp’s include and lib folders from DFHack builds/packages

• die: fixed Windows crash in exit handling

• dwarfmonitor, manipulator: fixed stress cutoffs

• modtools/force: fixed a bug where the help text would always be displayed and nothing useful would happen

• ruby: fixed calling conventions for vmethods that return strings (currently enabler.GetKeyDisplay())

• startdwarf : fixed on 64-bit Linux

Misc Improvements

• Reduced time for designation jobs from tools like dig to be assigned workers

• embark-assistant:

– Switched to standard scrolling keys, improved spacing slightly

– Introduced scrolling of Finder search criteria, removing requirement for 46 lines to work properly
(Help/Info still formatted for 46 lines).

– Added Freezing search criterion, allowing searches for NA/Frozen/At_Least_Partial/Partial/At_Most_Partial/Never
Freezing embarks.

• rejuvenate:

– Added -all argument to apply to all citizens

– Added -force to include units under 20 years old

– Clarified documentation

7.12. Development changelog 695

DFHack Documentation, Release 50.11-r4

API

• Added to Units module:

– getStressCategory(unit)

– getStressCategoryRaw(level)

– stress_cutoffs (Lua: getStressCutoffs())

Internals

• Added documentation for all RPC functions and a build-time check

• Added support for build IDs to development builds

• Changed default build architecture to 64-bit

• Use dlsym(3) to find vtables from libgraphics.so

Structures

• Added start_dwarf_count on 64-bit Linux again and fixed scanning script

• army_controller: added new vector from 0.44.11

• belief_system: new type, few fields identified

• mental_picture: new type, some fields identified

• mission_report:

– new type (renamed, was mission before)

– identified some fields

• mission: new type (used in viewscreen_civlistst)

• spoils_report: new type, most fields identified

• viewscreen_civlistst:

– split unk_20 into 3 pointers

– identified new pages

– identified new messenger-related fields

• viewscreen_image_creatorst:

– fixed layout

– identified many fields

• viewscreen_reportlistst: added new mission and spoils report-related fields (fixed layout)

• world.languages: identified (minimal information; whole languages stored elsewhere)

• world.status:

– mission_reports: renamed, was missions

– spoils_reports: identified

• world.unk_131ec0, world.unk_131ef0: researched layout

696 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• world.worldgen_status: identified many fields

• world: belief_systems: identified

7.12.43 DFHack 0.44.12-alpha1

Fixes

• macOS: fixed renderer vtable address on x64 (fixes rendermax)

• stonesense: fixed PLANT:DESERT_LIME:LEAF typo

API

• Added C++-style linked list interface for DF linked lists

Structures

• Dropped 0.44.11 support

• ui.squads: Added fields new in 0.44.12

7.12.44 DFHack 0.44.11-beta2.1

Internals

• stonesense: fixed build

7.12.45 DFHack 0.44.11-beta2

Fixes

• Windows: Fixed console failing to initialize

• command-prompt: added support for commands that require a specific screen to be visible, e.g. cleaners

• gui/workflow: fixed advanced constraint menu for crafts

API

• Added Screen::Hide to temporarily hide screens, like command-prompt

7.12. Development changelog 697

DFHack Documentation, Release 50.11-r4

7.12.46 DFHack 0.44.11-beta1

Fixes

• Fixed displayed names (from Units::getVisibleName) for units with identities

• Fixed potential memory leak in Screen::show()

• fix/dead-units: fixed script trying to use missing isDiplomat function

Misc Improvements

• Console:

– added support for multibyte characters on Linux/macOS

– made the console exit properly when an interactive command is active (liquids, mode, tiletypes)

• Linux: added automatic support for GCC sanitizers in dfhack script

• Made the DFHACK_PORT environment variable take priority over remote-server.json

• dfhack-run: added support for port specified in remote-server.json, to match DFHack’s behavior

• digfort: added better map bounds checking

• remove-stress:

– added support for -all as an alternative to the existing all argument for consistency

– sped up significantly

– improved output/error messages

– now removes tantrums, depression, and obliviousness

• ruby: sped up handling of onupdate events

API

• Exposed Screen::zoom() to C++ (was Lua-only)

• New functions: Units::isDiplomat(unit)

Internals

• jsoncpp: updated to version 1.8.4 and switched to using a git submodule

Lua

• Added printall_recurse to print tables and DF references recursively. It can be also used with ^ from the
lua interpreter.

• gui.widgets: List:setChoices clones choices for internal table changes

698 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Structures

• history_event_entity_expels_hfst: added (new in 0.44.11)

• history_event_site_surrenderedst: added (new in 0.44.11)

• history_event_type: added SITE_SURRENDERED, ENTITY_EXPELS_HF (new in 0.44.11)

• syndrome: identified a few fields

• viewscreen_civlistst: fixed layout and identified many fields

7.12.47 DFHack 0.44.11-alpha1

Structures

• Added support for automatically sizing arrays indexed with an enum

• Dropped 0.44.10 support

• Removed stale generated CSV files and DT layouts from pre-0.43.05

• announcement_type: new in 0.44.11: NEW_HOLDING, NEW_MARKET_LINK

• breath_attack_type: added OTHER

• historical_figure_info.relationships.list: added unk_3a-unk_3c fields at end

• interface_key: added bindings new in 0.44.11

• occupation_type: new in 0.44.11: MESSENGER

• profession: new in 0.44.11: MESSENGER

• ui_sidebar_menus:

– unit.in_squad: renamed to unit.squad_list_opened, fixed location

– unit: added expel_error and other unknown fields new in 0.44.11

– hospital: added, new in 0.44.11

– num_speech_tokens, unk_17d8: moved out of command_line to fix layout on x64

• viewscreen_civlistst: added a few new fields (incomplete)

• viewscreen_locationsst: identified edit_input

7.12.48 DFHack 0.44.10-r2

New Plugins

• cxxrandom: exposes some features of the C++11 random number library to Lua

7.12. Development changelog 699

DFHack Documentation, Release 50.11-r4

New Scripts

• add-recipe: adds unknown crafting recipes to the player’s civ

• gui/stamper: allows manipulation of designations by transforms such as translations, reflections, rotations, and
inversion

Fixes

• Fixed many tools incorrectly using the dead unit flag (they should generally check flags2.killed instead)

• Fixed many tools passing incorrect arguments to printf-style functions, including a few possible crashes (change-
layer, follow, forceequip, generated-creature-renamer)

• Fixed several bugs in Lua scripts found by static analysis (df-luacheck)

• Fixed -g flag (GDB) in Linux dfhack script (particularly on x64)

• autochop, autodump, autogems, automelt, autotrade, buildingplan, dwarfmonitor, fix-unit-occupancy, fortplan,
stockflow: fix issues with periodic tasks not working for some time after save/load cycles

• autogems:

– stop running repeatedly when paused

– fixed crash when furnaces are linked to same stockpiles as jeweler’s workshops

• autogems, fix-unit-occupancy: stopped running when a fort isn’t loaded (e.g. while embarking)

• autounsuspend: now skips planned buildings

• ban-cooking: fixed errors introduced by kitchen structure changes in 0.44.10-r1

• buildingplan, fortplan: stopped running before a world has fully loaded

• deramp: fixed deramp to find designations that already have jobs posted

• dig: fixed “Inappropriate dig square” announcements if digging job has been posted

• fixnaked: fixed errors due to emotion changes in 0.44

• remove-stress: fixed an error when running on soul-less units (e.g. with -all)

• reveal: stopped revealing tiles adjacent to tiles above open space inappropriately

• stockpiles: loadstock now sets usable and unusable weapon and armor settings

• stocks: stopped listing carried items under stockpiles where they were picked up from

Misc Improvements

• Added script name to messages produced by qerror() in Lua scripts

• Fixed an issue in around 30 scripts that could prevent edits to the files (adding valid arguments) from taking effect

• Linux: Added several new options to dfhack script: --remotegdb, --gdbserver, --strace

• bodyswap: improved error handling

• buildingplan: added max quality setting

• caravan: documented (new in 0.44.10-alpha1)

• deathcause: added “slaughtered” to descriptions

700 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• embark-assistant:

– changed region interaction matching to search for evil rain, syndrome rain, and reanimation rather than
interaction presence (misleadingly called evil weather), reanimation, and thralling

– gave syndrome rain and reanimation wider ranges of criterion values

• fix/dead-units: added a delay of around 1 month before removing units

• fix/retrieve-units: now re-adds units to active list to counteract fix/dead-units

• modtools/create-unit:

– added quantity argument

– now selects a caste at random if none is specified

• mousequery:

– migrated several features from TWBT’s fork

– added ability to drag with left/right buttons

– added depth display for TWBT (when multilevel is enabled)

– made shift+click jump to lower levels visible with TWBT

• title-version: added version to options screen too

• item-descriptions: fixed several grammatical errors

API

• New functions (also exposed to Lua):

– Units::isKilled()

– Units::isActive()

– Units::isGhost()

• Removed Vermin module (unused and obsolete)

Internals

• Added build option to generate symbols for large generated files containing df-structures metadata

• Added fallback for YouCompleteMe database lookup failures (e.g. for newly-created files)

• Improved efficiency and error handling in stl_vsprintf and related functions

• jsoncpp: fixed constructor with long on Linux

7.12. Development changelog 701

DFHack Documentation, Release 50.11-r4

Lua

• Added profiler module to measure lua performance

• Enabled shift+cursor movement in WorkshopOverlay-derived screens

Structures

• incident_sub6_performance: identified some fields

• item_body_component: fixed location of corpse_flags

• job_handler: fixed static array layout

• job_type: added is_designation attribute

• unit_flags1: renamed dead to inactive to better reflect its use

• unit_personality: fixed location of current_focus and undistracted_focus

• unit_thought_type: added SawDeadBody (new in 0.44.10)

7.12.49 DFHack 0.44.10-r1

New Scripts

• bodyswap: shifts player control over to another unit in adventure mode

New Tweaks

• tweak kitchen-prefs-all: adds an option to toggle cook/brew for all visible items in kitchen preferences

• tweak stone-status-all: adds an option to toggle the economic status of all stones

Fixes

• Lua: registered dfhack.constructions.designateRemove() correctly

• prospector: fixed crash due to invalid vein materials

• tweak max-wheelbarrow: fixed conflict with building renaming

• view-item-info: stopped appending extra newlines permanently to descriptions

Misc Improvements

• Added logo to documentation

• Documented several missing dfhack.gui Lua functions

• adv-rumors: bound to Ctrl-A

• command-prompt: added support for Gui::getSelectedPlant()

• gui/advfort: bound to Ctrl-T

• gui/room-list: added support for Gui::getSelectedBuilding()

• gui/unit-info-viewer: bound to Alt-I

702 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

• modtools/create-unit: made functions available to other scripts

• search:

– added support for stone restrictions screen (under z: Status)

– added support for kitchen preferences (also under z)

API

• New functions (all available to Lua as well):

– Buildings::getRoomDescription()

– Items::checkMandates()

– Items::canTrade()

– Items::canTradeWithContents()

– Items::isRouteVehicle()

– Items::isSquadEquipment()

– Kitchen::addExclusion()

– Kitchen::findExclusion()

– Kitchen::removeExclusion()

• syndrome-util: added eraseSyndromeData()

Internals

• Fixed compiler warnings on all supported build configurations

• Windows build scripts now work with non-C system drives

Structures

• dfhack_room_quality_level: new enum

• glowing_barrier: identified triggered, added comments

• item_flags2: renamed has_written_content to unk_book

• kitchen_exc_type: new enum (for ui.kitchen)

• mandate.mode: now an enum

• unit_personality.emotions.flags.memory: identified

• viewscreen_kitchenprefst.forbidden, possible: now a bitfield, kitchen_pref_flag

• world_data.feature_map: added extensive documentation (in XML)

7.12. Development changelog 703

DFHack Documentation, Release 50.11-r4

7.12.50 DFHack 0.44.10-beta1

New Scripts

• devel/find-primitive: finds a primitive variable in memory

Fixes

• Units::getAnyUnit(): fixed a couple problematic conditions and potential segfaults if global addresses are missing

• autodump, automelt, autotrade, stocks, stockpiles: fixed conflict with building renaming

• exterminate: fixed documentation of this option

• full-heal:

– units no longer have a tendency to melt after being healed

– healed units are no longer treated as patients by hospital staff

– healed units no longer attempt to clean themselves unsuccessfully

– wounded fliers now regain the ability to fly upon being healing

– now heals suffocation, numbness, infection, spilled guts and gelding

• modtools/create-unit:

– creatures of the appropriate age are now spawned as babies or children where applicable

– fix: civ_id is now properly assigned to historical_figure, resolving several hostility issues (spawned
pets are no longer attacked by fortress military!)

– fix: unnamed creatures are no longer spawned with a string of numbers as a first name

• stockpiles: stopped sidebar option from overlapping with autodump

• tweak block-labors: fixed two causes of crashes related in the v-p-l menu

Misc Improvements

• blueprint: added a basic Lua API

• devel/export-dt-ini: added tool offsets for DT 40

• devel/save-version: added current DF version to output

• install-info: added information on tweaks

Internals

• Added function names to DFHack’s NullPointer and InvalidArgument exceptions

• Added Gui::inRenameBuilding()

• Linux: required plugins to have symbols resolved at link time, for consistency with other platforms

704 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

7.12.51 DFHack 0.44.10-alpha1

New Scripts

• caravan: adjusts properties of caravans

• gui/autogems: a configuration UI for the autogems plugin

Fixes

• Fixed uninitialized pointer being returned from Gui::getAnyUnit() in rare cases

• autohauler, autolabor, labormanager: fixed fencepost error and potential crash

• dwarfvet: fixed infinite loop if an animal is not accepted at a hospital

• liquids: fixed “range” command to default to 1 for dimensions consistently

• search: fixed 4/6 keys in unit screen search

• view-item-info: fixed an error with some armor

Misc Improvements

• autogems: can now blacklist arbitrary gem types (see gui/autogems)

• exterminate: added more words for current unit, removed warning

• fpause: now pauses worldgen as well

Internals

• Added some build scripts for Sublime Text

• Changed submodule URLs to relative URLs so that they can be cloned consistently over different protocols (e.g.
SSH)

7.12.52 DFHack 0.44.09-r1

Fixes

• modtools/item-trigger: fixed token format in help text

Misc Improvements

• Reorganized changelogs and improved changelog editing process

• modtools/item-trigger: added support for multiple type/material/contaminant conditions

7.12. Development changelog 705

DFHack Documentation, Release 50.11-r4

Internals

• OS X: Can now build with GCC 7 (or older)

Structures

• army: added vector new in 0.44.07

• building_type: added human-readable name attribute

• furnace_type: added human-readable name attribute

• renderer: fixed vtable addresses on 64-bit OS X

• site_reputation_report: named reports vector

• workshop_type: added human-readable name attribute

7.12.53 DFHack 0.44.09-alpha1

Fixes

• dig: stopped designating non-vein tiles (open space, trees, etc.)

• labormanager: fixed crash due to dig jobs targeting some unrevealed map blocks

7.12.54 DFHack 0.44.08-alpha1

Fixes

• fix/dead-units: fixed a bug that could remove some arriving (not dead) units

7.12.55 DFHack 0.44.07-beta1

Misc Improvements

• modtools/item-trigger: added the ability to specify inventory mode(s) to trigger on

Structures

• Added symbols for Toady’s 0.44.07 Linux test build to fix Bug 10615

• world_site: fixed alignment

706 Chapter 7. DFHack development guide

http://www.bay12forums.com/smf/index.php?topic=169839.msg7720111#msg7720111
https://www.bay12games.com/dwarves/mantisbt/view.php?id=10615

DFHack Documentation, Release 50.11-r4

7.12.56 DFHack 0.44.07-alpha1

Fixes

• Fixed some CMake warnings (CMP0022)

• Support for building on Ubuntu 18.04

• embark-assistant: fixed detection of reanimating biomes

Misc Improvements

• embark-assistant:

– Added search for adamantine

– Now supports saving/loading profiles

• fillneeds: added -all option to apply to all units

• RemoteFortressReader: added flows, instruments, tool names, campfires, ocean waves, spiderwebs

Structures

• Several new names in instrument raw structures

• identity: identified profession, civ

• manager_order_template: fixed last field type

• viewscreen_createquotast: fixed layout

• world.language: moved colors, shapes, patterns to world.descriptors

• world.reactions, world.reaction_categories: moved to new compound, world.reactions. Requires renaming:

– world.reactions to world.reactions.reactions

– world.reaction_categories to world.reactions.reaction_categories

7.12.57 DFHack 0.44.05-r2

New Plugins

• embark-assistant: adds more information and features to embark screen

New Scripts

• adv-fix-sleepers: fixes units in adventure mode who refuse to wake up (Bug 6798)

• hermit: blocks caravans, migrants, diplomats (for hermit challenge)

7.12. Development changelog 707

https://www.bay12games.com/dwarves/mantisbt/view.php?id=6798

DFHack Documentation, Release 50.11-r4

New Features

• With PRINT_MODE:TEXT, setting the DFHACK_HEADLESS environment variable will hide DF’s display and allow
the console to be used normally. (Note that this is intended for testing and is not very useful for actual gameplay.)

Fixes

• devel/export-dt-ini: fix language_name offsets for DT 39.2+

• devel/inject-raws: fixed gloves and shoes (old typo causing errors)

• RemoteFortressReader: fixed an issue with not all engravings being included

• view-item-info: fixed an error with some shields

Misc Improvements

• adv-rumors: added more keywords, including names

• autochop: can now exclude trees that produce fruit, food, or cookable items

• RemoteFortressReader: added plant type support

7.12.58 DFHack 0.44.05-r1

New Scripts

• break-dance: Breaks up a stuck dance activity

• fillneeds: Use with a unit selected to make them focused and unstressed

• firestarter: Lights things on fire: items, locations, entire inventories even!

• flashstep: Teleports adventurer to cursor

• ghostly: Turns an adventurer into a ghost or back

• questport: Sends your adventurer to the location of your quest log cursor

• view-unit-reports: opens the reports screen with combat reports for the selected unit

Fixes

• devel/inject-raws: now recognizes spaces in reaction names

• dig: added support for designation priorities - fixes issues with designations from digv and related commands
having extremely high priority

• dwarfmonitor:

– fixed display of creatures and poetic/music/dance forms on prefs screen

– added “view unit” option

– now exposes the selected unit to other tools

• names: fixed many errors

• quicksave: fixed an issue where the “Saving. . . ” indicator often wouldn’t appear

708 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

Misc Improvements

• binpatch: now reports errors for empty patch files

• force: now provides useful help

• full-heal:

– can now select corpses to resurrect

– now resets body part temperatures upon resurrection to prevent creatures from freezing/melting again

– now resets units’ vanish countdown to reverse effects of exterminate

• gui/gm-unit:

– added a profession editor

– misc. layout improvements

• launch: can now ride creatures

• names: can now edit names of units

• RemoteFortressReader:

– support for moving adventurers

– support for vehicles, gem shapes, item volume, art images, item improvements

Removed

• tweak: kitchen-keys: Bug 614 fixed in DF 0.44.04

Internals

• Gui::getAnyUnit() supports many more screens/menus

Structures

• New globals: soul_next_id

7.12.59 DFHack 0.44.05-alpha1

Misc Improvements

• gui/liquids: added more keybindings: 0-7 to change liquid level, P/B to cycle backwards

7.12. Development changelog 709

https://www.bay12games.com/dwarves/mantisbt/view.php?id=614

DFHack Documentation, Release 50.11-r4

Structures

• incident: re-aligned again to match disassembly

7.12.60 DFHack 0.44.04-alpha1

Fixes

• devel/inject-raws: now recognizes spaces in reaction names

• exportlegends: fixed an error that could occur when exporting empty lists

Structures

• artifact_record: fixed layout (changed in 0.44.04)

• incident: fixed layout (changed in 0.44.01) - note that many fields have moved

7.12.61 DFHack 0.44.03-beta1

Fixes

• autolabor, autohauler, labormanager: added support for “put item on display” jobs and building/destroying
display furniture

• gui/gm-editor: fixed an error when editing primitives in Lua tables

Misc Improvements

• devel/dump-offsets: now ignores index globals

• gui/pathable: added tile types to sidebar

• modtools/skill-change:

– now updates skill levels appropriately

– only prints output if -loud is passed

Structures

• Added job_type.PutItemOnDisplay

• Added twbt_render_map code offset on x64

• Fixed an issue preventing enabler from being allocated by DFHack

• Found renderer vtable on osx64

• New globals:

– version

– min_load_version

– movie_version

710 Chapter 7. DFHack development guide

DFHack Documentation, Release 50.11-r4

– basic_seed

– title

– title_spaced

– ui_building_resize_radius

• adventure_movement_optionst, adventure_movement_hold_tilest, adventure_movement_climbst:
named coordinate fields

• mission: added type

• unit: added 3 new vmethods: getCreatureTile, getCorpseTile, getGlowTile

• viewscreen_assign_display_itemst: fixed layout on x64 and identified many fields

• viewscreen_reportlistst: fixed layout, added mission_id vector

• world.status: named missions vector

7.12.62 DFHack 0.44.03-alpha1

Lua

• Improved json I/O error messages

• Stopped a crash when trying to create instances of classes whose vtable addresses are not available

7.12.63 DFHack 0.44.02-beta1

New Scripts

• devel/check-other-ids: Checks the validity of “other” vectors in the world global

• gui/cp437-table: An in-game CP437 table

Fixes

• Fixed issues with the console output color affecting the prompt on Windows

• createitem: stopped items from teleporting away in some forts

• gui/gm-unit: can now edit mining skill

• gui/quickcmd: stopped error from adding too many commands

• modtools/create-unit: fixed error when domesticating units

7.12. Development changelog 711

DFHack Documentation, Release 50.11-r4

Misc Improvements

• The console now provides suggestions for built-in commands

• devel/export-dt-ini: avoid hardcoding flags

• exportlegends:

– reordered some tags to match DF’s order

– added progress indicators for exporting long lists

• gui/gm-editor: added enum names to enum edit dialogs

• gui/gm-unit: made skill search case-insensitive

• gui/rename: added “clear” and “special characters” options

• RemoteFortressReader:

– includes item stack sizes

– some performance improvements

Removed

• warn-stuck-trees: Bug 9252 fixed in DF 0.44.01

Lua

• Exposed get_vector() (from C++) for all types that support find(), e.g. df.unit.get_vector() == df.
global.world.units.all

Structures

• Added buildings_other_id.DISPLAY_CASE

• Fixed unit alignment

• Fixed viewscreen_titlest.start_savegames alignment

• Identified historical_entity.unknown1b.deities (deity IDs)

• Located start_dwarf_count offset for all builds except 64-bit Linux; startdwarf should work now

7.12.64 DFHack 0.44.02-alpha1

New Scripts

• devel/dump-offsets: prints an XML version of the global table included in in DF

712 Chapter 7. DFHack development guide

https://www.bay12games.com/dwarves/mantisbt/view.php?id=9252

DFHack Documentation, Release 50.11-r4

Fixes

• Fixed a crash that could occur if a symbol table in symbols.xml had no content

Lua

• Added a new dfhack.console API

• API can now wrap functions with 12 or 13 parameters

Structures

• The former announcements global is now a field in d_init

• The ui_menu_width global is now a 2-byte array; the second item is the former ui_area_map_width global,
which is now removed

• world fields formerly beginning with job_ are now fields of world.jobs, e.g. world.job_list is now
world.jobs.list

7.12. Development changelog 713

DFHack Documentation, Release 50.11-r4

714 Chapter 7. DFHack development guide

CHAPTER

EIGHT

ABOUT DFHACK

These pages contain information about the general DFHack project.

8.1 List of authors

The following is a list of people who have contributed to DFHack, in alphabetical order.

If you should be here and aren’t, please get in touch on Discord or the forums, or make a pull request!

Name Github Other
8Z 8Z
Abel abstern
acwatkins acwatkins
Alex Blamey Cubittus
Alexander Collins gearsix
Alexander Gavrilov angavrilov ag
Amber Brown hawkowl
Amostubal Amostubal
Andrea Cattaneo acattaneo88
AndreasPK AndreasPK
Andriel Chaoti AndrielChaoti
Angus Mezick amezick
Antalia tamarakorr
Anuradha Dissanayake falconne
Ariphaos Ariphaos
arzyu arzyu
Atkana Atkana
AtomicChicken AtomicChicken
Batt Mush hobotron-df
Bearskie Bearskie
belal jimhester
Ben Lubar BenLubar
Ben Rosser TC01
Benjamin McKenna britishben
Benjamin Seiller bseiller RedDwarfStepper
billw2012 billw2012
BrickViking brickviking
brndd brndd burneddi
Caldfir caldfir

continues on next page

715

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Name Github Other
Cameron Ewell Ozzatron
Carter Bray Qartar
Chris Dombroski cdombroski
Chris Parsons chrismdp
cjhammel cjhammel
Clayton Hughes
Clément Vuchener cvuchener
Corey CoreyJ87
daedsidog daedsidog
Dan Amlund danamlund
Daniel Brooks db48x
David Nilsolm
David Corbett dscorbett
David Seguin dseguin
David Timm dtimm
Deon
dikbut Tjudge1
Dmitrii Kurkin Kurkin
DoctorVanGogh DoctorVanGogh
Donald Ruegsegger hashaash
doomchild doomchild
DwarvenM DwarvenM
Eamon Bode eamondo2 Baron Von Munchhausen
EarthPulseAcademy EarthPulseAcademy
ElMendukol ElMendukol
ElsaTheHobo ElsaTheHobo Elsa
enjia2000
Eric Wald eswald
Erik Youngren Artanis
Espen Wiborg
expwnent expwnent
Feng
figment figment
Gabe Rau gaberau
Gaelmare Gaelmare
gchristopher gchristopher
George Murray GitOnUp
grubsteak grubsteak
Guilherme Abraham GuilhermeAbraham
Harlan Playford playfordh
Hayati Ayguen hayguen
Herwig Hochleitner bendlas
Hevlikn Hevlikn
Ian S kremlin-
IndigoFenix
Jacek Konieczny Jajcus
James 20k
James Gilles kazimuth
James Logsdon jlogsdon

continues on next page

716 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Name Github Other
Janeene Beeforth dawnmist
Jared Adams
Jeremy Apthorp nornagon
Jim Lisi stonetoad
Jimbo Whales jimbowhales
jimcarreer jimcarreer
jj jjyg jj``
Joel Meador janxious
John Beisley huin
John Cosker johncosker
John Shade gsvslto
Jonas Ask
Jonathan Clark AridTag
Josh Cooper cppcooper coope
jowario jowario
kane-t kane-t
Kelly Kinkade ab9rf
Kelvie Wong kelvie
Kib Arekatír arekatir
KlonZK KlonZK
Kris Parker kaypy
Kristjan Moore kristjanmoore
Kromtec Kromtec
Kurik Amudnil
Kévin Boissonneault KABoissonneault
Lethosor lethosor
LordGolias LordGolias
Mark Nielson pseudodragon
Mason11987 Mason11987
Matt Regul mattregul
Matthew Cline
Matthew Lindner mlindner
Matthew Taylor ymber yutna
Max maxthyme Max^TM
McArcady McArcady
melkor217 melkor217
Meneth32
Meph
Michael Casadevall NCommander
Michael Crouch creidieki
Michon van Dooren MaienM
miffedmap miffedmap
Mike Stewart thewonderidiot
Mikhail Panov Halifay
Mikko Juola Noeda Adeon
Milo Christiansen milochristiansen
MithrilTuxedo MithrilTuxedo
mizipzor mizipzor
moversti moversti

continues on next page

8.1. List of authors 717

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Name Github Other
mrrho mrrho
Murad Beybalaev Erquint
Myk Taylor myk002
Najeeb Al-Shabibi master-spike
napagokc napagokc
Neil Little nmlittle
Nick Rart nickrart comestible
Nicolas Ayala nicolasayala
Nik Nyby nikolas
Nikolay Amiantov abbradar
nocico nocico
NotRexButCaesar NotRexButCaesar
Nuno Fernandes UnknowableCoder
nuvu vallode
Omniclasm
oorzkws oorzkws
OwnageIsMagic OwnageIsMagic
palenerd dlmarquis
PassionateAngler PassionateAngler
Patrik Lundell PatrikLundell
Paul Fenwick pjf
PeridexisErrant PeridexisErrant
Peter Hansen previsualconsent
Petr Mrázek peterix
Pfhreak Pfhreak
Pierre Lulé plule
Pierre-David Bélanger pierredavidbelanger
PopnROFL PopnROFL
potato
ppaawwll ppaawwll
Priit Laes plaes
Putnam Putnam3145
quarque2 quarque2
Quietust quietust _Q
Rafał Karczmarczyk CarabusX
Raidau Raidau
Ralph Bisschops ralpha
Ramblurr Ramblurr
rampaging-poet
Raoul van Putten
Raoul XQ raoulxq
reverb
Rich Rauenzahn rrauenza
Rinin Rinin
rndmvar rndmvar
Rob Bailey actionninja
Rob Goodberry robob27
Robert Heinrich rh73
Robert Janetzko robertjanetzko

continues on next page

718 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Name Github Other
Rocco Moretti roccomoretti
RocheLimit
rofl0r rofl0r
root
Rose RosaryMala
Roses Pheosics
Ross M RossM
rout
Roxy TealSeer gallowsCalibrator
rubybrowncoat rubybrowncoat
Rumrusher rumrusher
RusAnon RusAnon
Ryan Bennitt ryanbennitt
Ryan Dwyer ToxicBananaParty Jimdude2435
Ryan Williams Bumber64 Bumber
sami
scamtank scamtank
Scott Ellis StormCrow42
Sebastian Wolfertz Enkrod
SeerSkye SeerSkye
seishuuu seishuuu
Seth Woodworth sethwoodworth
shevernitskiy shevernitskiy
Shim Panze Shim-Panze
Silver silverflyone
simon
Simon Jackson sizeak
Simon Lees simotek
stolencatkarma
Stoyan Gaydarov sgayda2
Su Moth-Tolias
suokko suokko shrieker
sv-esk sv-esk
Tachytaenius wolfboyft
Tacomagic
TaxiService TaxiService
thefriendlyhacker thefriendlyhacker
TheHologram TheHologram
Theo Kalfas teolandon
therahedwig therahedwig
ThiagoLira ThiagoLira
thurin thurin
Tim Siegel softmoth
Tim Walberg twalberg
Timothy Collett danaris
Timur Kelman TymurGubayev
Tom Jobbins TheBloke
Tom Prince
Tommy R tommy

continues on next page

8.1. List of authors 719

DFHack Documentation, Release 50.11-r4

Table 1 – continued from previous page
Name Github Other
TotallyGatsby TotallyGatsby
Travis Hoppe thoppe orthographic-pedant
txtsd txtsd
U-glouglou\simon
Valentin Ochs Cat-Ion
Vitaly Pronkin pronvit mifki
ViTuRaS ViTuRaS
Vjek vjek
Warmist warmist
Wes Malone wesQ3
Will H TSM-EVO
Will Rogers wjrogers
WoosterUK WoosterUK
XianMaeve XianMaeve
ZechyW ZechyW
Zhentar Zhentar
zilpin zilpin
Zishi Wu zishiwu123

8.2 Licenses

DFHack is distributed under the Zlib license, with some MIT- and BSD-licensed components. These licenses protect
your right to use DFHack for any purpose, distribute copies, and so on.

The core, plugins, scripts, and other DFHack code all use the ZLib license unless noted otherwise. By contributing to
DFHack, authors release the contributed work under this license.

DFHack also draws on several external packages. Their licenses are summarised here and reproduced below.

720 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Compo-
nent

License Copyright

DFHack Zlib (c) 2009-2012, Petr Mrázek
clsocket BSD

3-clause
(c) 2007-2009, CarrierLabs, LLC.

dirent MIT (c) 2006, Toni Ronkko
JSON.lua CC-BY-SA (c) 2010-2014, Jeffrey Friedl
jsoncpp MIT (c) 2007-2010, Baptiste Lepilleur
libexpat MIT (c) 1998-2000 Thai Open Source Software Center Ltd and Clark Cooper (c) 2001-

2019 Expat maintainers
libzip BSD

3-clause
(c) 1999-2020 Dieter Baron and Thomas Klausner

linenoise BSD
2-clause

(c) 2010, Salvatore Sanfilippo & Pieter Noordhuis

lua MIT (c) 1994-2008, Lua.org, PUC-Rio.
luacov MIT (c) 2007 - 2018 Hisham Muhammad
luafilesys-
tem

MIT (c) 2003-2014, Kepler Project

lua-profiler MIT (c) 2002,2003,2004 Pepperfish
protobuf BSD

3-clause
(c) 2008, Google Inc.

tinythread Zlib (c) 2010, Marcus Geelnard
tinyxml Zlib (c) 2000-2006, Lee Thomason
UTF-8-
decoder

MIT (c) 2008-2010, Bjoern Hoehrmann

xlsxio MIT (c) 2016-2020, Brecht Sanders
alt-getopt MIT (c) 2009 Aleksey Cheusov
googletest BSD

3-Clause
(c) 2008, Google Inc.

8.2.1 Zlib License

See https://en.wikipedia.org/wiki/Zlib_License

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.

Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
(continues on next page)

8.2. Licenses 721

https://github.com/DFHack/dfhack
https://github.com/DFHack/clsocket
https://github.com/tronkko/dirent
http://regex.info/blog/lua/json
http://creativecommons.org/licenses/by/3.0/deed.en_US
https://github.com/open-source-parsers/jsoncpp
https://github.com/libexpat/libexpat
https://github.com/nih-at/libzip
http://github.com/antirez/linenoise
http://www.lua.org
https://github.com/keplerproject/luacov
https://github.com/keplerproject/luafilesystem
https://github.com/keplerproject/luafilesystem
http://lua-users.org/wiki/PepperfishProfiler
https://github.com/google/protobuf
http://tinythreadpp.bitsnbites.eu/
http://www.sourceforge.net/projects/tinyxml
http://bjoern.hoehrmann.de/utf-8/decoder/dfa
http://bjoern.hoehrmann.de/utf-8/decoder/dfa
https://github.com/brechtsanders/xlsxio
https://github.com/LuaDist/alt-getopt
https://github.com/google/googletest
https://en.wikipedia.org/wiki/Zlib_License

DFHack Documentation, Release 50.11-r4

(continued from previous page)

distribution.

8.2.2 MIT License

See https://en.wikipedia.org/wiki/MIT_License

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

8.2.3 BSD Licenses

See https://en.wikipedia.org/wiki/BSD_licenses

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(continues on next page)

722 Chapter 8. About DFHack

https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/BSD_licenses

DFHack Documentation, Release 50.11-r4

(continued from previous page)

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

linenoise adds no further clauses.

protobuf adds the following clause:

3. Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

clsocket adds the following clauses:

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior
written permission.

4. The name "CarrierLabs" must not be used to endorse or promote
products derived from this software without prior written
permission. For written permission, please contact
mark@carrierlabs.com

8.3 Removed tools

This page lists tools (plugins or scripts) that were previously included in DFHack but have been removed. It exists
primarily so that internal links still work (e.g. links from the Changelog).

Contents

• workorder-recheck

• autohauler

• automaterial

• automelt

• autotrade

• autounsuspend

• combine-drinks

• combine-plants

• command-prompt

• create-items

• deteriorateclothes

• deterioratecorpses

• deterioratefood

• devel/unforbidall

8.3. Removed tools 723

DFHack Documentation, Release 50.11-r4

• digfort

• fix-armory

• fix/build-location

• fix/diplomats

• fix/fat-dwarves

• fix/feeding-timers

• fix/merchants

• fortplan

• gui/assign-rack

• gui/automelt

• gui/dig

• gui/hack-wish

• gui/mechanisms

• gui/no-dfhack-init

• masspit

• resume

• ruby

• search

• show-unit-syndromes

• stocksettings

• title-version

• warn-stuck-trees

8.3.1 workorder-recheck

Tool to set ‘Checking’ status of the selected work order, allowing conditions to be reevaluated. Merged into orders.

724 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

8.3.2 autohauler

An automated labor management tool that only addressed hauling labors, leaving the assignment of skilled labors
entirely up to the player. Fundamentally incompatible with the work detail system of labor management in v50 of
Dwarf Fortress.

8.3.3 automaterial

Moved frequently used materials to the top of the materials list when building buildings. Also offered extended options
when building constructions. All functionality has been merged into buildingplan.

8.3.4 automelt

Automatically mark items for melting when they are brought to a monitored stockpile. Merged into logistics.

8.3.5 autotrade

Automatically mark items for trading when they are brought to a monitored stockpile. Merged into logistics.

8.3.6 autounsuspend

Replaced by suspendmanager.

8.3.7 combine-drinks

Replaced by the new combine script. Run combine here --types=drink

8.3.8 combine-plants

Replaced by the new combine script. Run combine here --types=plants

8.3.9 command-prompt

Replaced by gui/launcher –minimal.

8.3.10 create-items

Replaced by gui/create-item.

8.3. Removed tools 725

DFHack Documentation, Release 50.11-r4

8.3.11 deteriorateclothes

Replaced by the new combined deteriorate script. Run deteriorate --types=clothes.

8.3.12 deterioratecorpses

Replaced by the new combined deteriorate script. Run deteriorate --types=corpses.

8.3.13 deterioratefood

Replaced by the new combined deteriorate script. Run deteriorate --types=food.

8.3.14 devel/unforbidall

Replaced by the unforbid script. Run unforbid all --quiet to match the behavior of the original devel/
unforbidall script.

8.3.15 digfort

A script to designate an area for digging according to a plan in csv format. Please use DFHack’s more powerful quickfort
script instead. You can use your existing .csv files. Just move them to the blueprints folder in your DF installation,
and instead of digfort file.csv, run quickfort run file.csv.

8.3.16 fix-armory

Allowed the military to store equipment in barracks containers. Removed because it required a binary patch to DF in
order to function, and no such patch has existed since DF 0.34.11.

8.3.17 fix/build-location

The corresponding DF Bug 5991 was fixed in DF 0.40.05.

8.3.18 fix/diplomats

The corresponding DF Bug 3295 was fixed in DF 0.40.05.

8.3.19 fix/fat-dwarves

The corresponding DF Bug 5971 was fixed in DF 0.40.05.

726 Chapter 8. About DFHack

https://www.bay12games.com/dwarves/mantisbt/view.php?id=5991
https://www.bay12games.com/dwarves/mantisbt/view.php?id=3295
https://www.bay12games.com/dwarves/mantisbt/view.php?id=5971

DFHack Documentation, Release 50.11-r4

8.3.20 fix/feeding-timers

The corresponding DF Bug 2606 was fixed in DF 0.40.12.

8.3.21 fix/merchants

Humans can now make trade agreements. This fix is no longer necessary.

8.3.22 fortplan

Designates furniture for building according to a .csv file with quickfort-style syntax. Please use DFHack’s more
powerful quickfort script instead. You can use your existing .csv files. Just move them to the blueprints folder in
your DF installation, and instead of fortplan file.csv run quickfort run file.csv.

8.3.23 gui/assign-rack

This script is no longer useful in current DF versions. The script required a binpatch <binpatches/needs-patch>`, which
has not been available since DF 0.34.11.

8.3.24 gui/automelt

Replaced by the stockpiles overlay and the gui for logistics.

8.3.25 gui/dig

Renamed to gui/design

8.3.26 gui/hack-wish

Replaced by gui/create-item.

8.3.27 gui/mechanisms

Linked building interface has been added to the vanilla UI.

8.3.28 gui/no-dfhack-init

Tool that warned the user when the dfhack.init file did not exist. Now that dfhack.init is autogenerated in
dfhack-config/init, this warning is no longer necessary.

8.3. Removed tools 727

https://www.bay12games.com/dwarves/mantisbt/view.php?id=2606

DFHack Documentation, Release 50.11-r4

8.3.29 masspit

Replaced with a GUI version: gui/masspit.

8.3.30 resume

Allowed you to resume suspended jobs and displayed an overlay indicating suspended building construction jobs.
Replaced by unsuspend script.

8.3.31 ruby

Support for the Ruby language in DFHack scripts was removed due to the issues the Ruby library causes when used as
an embedded language.

8.3.32 search

Functionality was merged into sort.

8.3.33 show-unit-syndromes

Replaced with a GUI version: gui/unit-syndromes.

8.3.34 stocksettings

Along with copystock, loadstock and savestock, replaced with the new stockpiles API.

8.3.35 title-version

Replaced with an overlay.

8.3.36 warn-stuck-trees

The corresponding DF Bug 9252 was fixed in DF 0.44.01.

8.4 Changelog

This file contains changes grouped by the stable release in which they first appeared. See Building the changelogs for
more information.

See Development changelog for a list of changes grouped by development releases.

Contents

• DFHack 50.11-r4

• DFHack 50.11-r3

728 Chapter 8. About DFHack

https://www.bay12games.com/dwarves/mantisbt/view.php?id=9252

DFHack Documentation, Release 50.11-r4

• DFHack 50.11-r2

• DFHack 50.11-r1

• DFHack 50.10-r1

• DFHack 50.09-r4

• DFHack 50.09-r3

• DFHack 50.09-r2

• DFHack 50.09-r1

• DFHack 50.08-r4

• DFHack 50.08-r3

• DFHack 50.08-r2

• DFHack 50.08-r1

• DFHack 50.07-r1

• DFHack 0.47.05-r8

• DFHack 0.47.05-r7

• DFHack 0.47.05-r6

• DFHack 0.47.05-r5

• DFHack 0.47.05-r4

• DFHack 0.47.05-r3

• DFHack 0.47.05-r2

• DFHack 0.47.05-r1

• DFHack 0.47.04-r5

• DFHack 0.47.04-r4

• DFHack 0.47.04-r3

• DFHack 0.47.04-r2

• DFHack 0.47.04-r1

• DFHack 0.44.12-r3

• DFHack 0.44.12-r2

• DFHack 0.44.12-r1

• DFHack 0.44.10-r2

• DFHack 0.44.10-r1

• DFHack 0.44.09-r1

• DFHack 0.44.05-r2

• DFHack 0.44.05-r1

• Older Changelogs

8.4. Changelog 729

DFHack Documentation, Release 50.11-r4

8.4.1 DFHack 50.11-r4

New Tools

• build-now: (reinstated) instantly complete unsuspended buildings that are ready to be built

Fixes

• RemoteServer: don’t shut down the socket prematurely, allowing continuing connections from, for example,
dfhack-run

• buildingplan: fix choosing the wrong mechanism (or something that isn’t a mechanism) when linking a lever and
manually choosing a mechanism, but then canceling the selection

• combine: prevent stack sizes from growing beyond quantities that you would normally see in vanilla gameplay

• sort:

– fix potential crash when exiting and re-entering a creatures subtab with a search active

– prevent keyboard keys from affecting the UI when search is active and multiple keys are hit at once

• tailor: fix corner case where existing stock was being ignored, leading to over-ordering

Misc Improvements

• buildingplan:

– save magma safe mechanisms for when magma safety is requested when linking levers and pressure
plates to targets

– when choosing mechanisms for linking levers/pressure plates, filter out unreachable mechanisms

• caravan: enable searching within containers in trade screen when in “trade bin with contents” mode

• sort: when searching on the Tasks tab, also search the names of the things the task is associated with, such as
the name of the stockpile that an item will be stored in

8.4.2 DFHack 50.11-r3

New Tools

• burrow: (reinstated) automatically expand burrows as you dig

• sync-windmills: synchronize or randomize movement of active windmills

• trackstop: (reimplemented) integrated overlay for changing track stop and roller settings after construction

730 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

New Features

• buildingplan: allow specific mechanisms to be selected when linking levers or pressure plates

• burrow: integrated 3d box fill and 2d/3d flood fill extensions for burrow painting mode

• fix/dead-units: gained ability to scrub dead units from burrow membership lists

• gui/design: show selected dimensions next to the mouse cursor when designating with vanilla tools, for example
when painting a burrow or designating digging

• prospector: can now give you an estimate of resources from the embark screen. hover the mouse over a potential
embark area and run prospector.

• quickfort: new burrow blueprint mode for designating or manipulating burrows

• sort: military and burrow membership filters for the burrow assignment screen

• unforbid: now ignores worn and tattered items by default (X/XX), use -X to bypass

Fixes

• RemoteServer: continue to accept connections as long as the listening socket is valid instead of closing the socket
after the first disconnect

• buildingplan: overlay and filter editor gui now uses ctrl-d to delete the filter to avoid conflict with increasing the
filter’s minimum quality (shift-x)

• caravan: price of vermin swarms correctly adjusted down. a stack of 10000 bees is worth 10, not 10000

• emigration: fix clearing of work details assigned to units that leave the fort

• gui/unit-syndromes: show the syndrome names properly in the UI

• sort: when filtering out already-established temples in the location assignment screen, also filter out the “No
specific deity” option if a non-denominational temple has already been established

• stockpiles: hide configure and help buttons when the overlay panel is minimized

• tailor: fix crash on Linux where scanned unit is wearing damaged non-clothing (e.g. a crown)

Misc Improvements

• buildingplan:

– display how many items are available on the planner panel

– make it easier to build single-tile staircases of any shape (up, down, or up/down)

• Dreamfort: Inside+ and Clearcutting burrows now automatically created and managed

• sort:

– allow searching by profession on the squad assignment page

– add search for places screens

– add search for work animal assignment screen; allow filtering by miltary/squad/civilian/burrow

– on the squad assignment screen, make effectiveness and potential ratings use the same scale so effec-
tiveness is always less than or equal to potential for a given unit. this way you can also tell when units
are approaching their maximum potential

8.4. Changelog 731

DFHack Documentation, Release 50.11-r4

– new overlay on the animal assignment screen that shows how many work animals each visible unit
already has assigned to them

• warn-stranded: don’t warn for units that are temporarily on unwalkable tiles (e.g. as they pass under a waterfall)

Removed

• gui/control-panel:

– removed always-on system services from the System tab: buildingplan, confirm, logistics, and overlay.
The base services should not be turned off by the player. Individual confirmation prompts can be
managed via gui/confirm, and overlays (including those for buildingplan and logistics) are managed
on the control panel Overlays tab.

– removed autolabor from the Fort and Autostart tabs. The tool does not function correctly with the
new labor types, and is causing confusion. You can still enable autolabor from the commandline with
enable autolabor if you understand and accept its limitations.

API

• Buildings::completebuild: used to link a newly created building into the world

• Burrows::setAssignedUnit: now properly handles inactive burrows

• Gui::getMousePos: now takes an optional allow_out_of_bounds parameter so coordinates can be returned
for mouse positions outside of the game map (i.e. in the blank space around the map)

• Gui::revealInDwarfmodeMap: gained highlight parameter to control setting the tile highlight on the zoom
target

• Maps::getWalkableGroup: get the walkability group of a tile

• Units::getReadableName: now returns the untranslated name

Lua

• dfhack.buildings.completebuild: expose new module API

• dfhack.gui.getMousePos: support new optional allow_out_of_bounds parameter

• dfhack.gui.revealInDwarfmodeMap: gained highlight parameter to control setting the tile highlight on
the zoom target

• dfhack.maps.getWalkableGroup: get the walkability group of a tile

• gui.FRAME_THIN: a panel frame suitable for floating tooltips

Structures

• burrow: add new graphics mode texture and color fields

• job_item_flags3: identify additional flags

732 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Documentation

• Document the Lua API for the dfhack.world module

8.4.3 DFHack 50.11-r2

New Tools

• add-recipe: (reinstated) add reactions to your civ (e.g. for high boots if your civ didn’t start with the ability to
make high boots)

• burial: (reinstated) create tomb zones for unzoned coffins

• fix/corrupt-jobs: prevents crashes by automatically removing corrupted jobs

• preserve-tombs: keep tombs assigned to units when they die

• spectate: (reinstated) automatically follow dwarves, cycling among interesting ones

New Scripts

• warn-stranded: new repeatable maintenance script to check for stranded units, similar to warn-starving

New Features

• burial: new options to configure automatic burial and limit scope to the current z-level

• drain-aquifer:

– gained ability to drain just above or below a certain z-level

– new option to drain all layers except for the first N aquifer layers, in case you want some aquifer layers
but not too many

• gui/control-panel: drain-aquifer --top 2 added as an autostart option

• logistics: automelt now optionally supports melting masterworks; click on gear icon on stockpiles overlay frame

• sort:

– new search widgets for Info panel tabs, including all “Creatures” subtabs, all “Objects” subtabs,
“Tasks”, candidate assignment on the “Noble” subtab, and the “Work details” subtab under “Labor”

– new search and filter widgets for the “Interrogate” and “Convict” screens under “Justice”

– new search widgets for location selection screen (when you’re choosing what kind of guildhall or
temple to dedicate)

– new search widgets for burrow assignment screen and other unit assignment dialogs

– new search widgets for artifacts on the world/raid screen

– new search widgets for slab engraving menu; can filter for only units that need a slab to prevent rising
as a ghost

• stocks: hotkey for collapsing all categories on stocks screen

8.4. Changelog 733

DFHack Documentation, Release 50.11-r4

Fixes

• buildingplan:

– remove bars of ash, coal, and soap as valid building materials to match v50 rules

– fix incorrect required items being displayed sometimes when switching the planner overlay on and off

• dwarfvet: fix invalid job id assigned to Rest job, which could cause crashes on reload

• full-heal: fix removal of corpse after resurrection

• gui/sandbox: fix scrollbar moving double distance on click

• hide-tutorials: fix the embark tutorial prompt sometimes not being skipped

• sort: don’t count mercenaries as appointed officials in the squad assignment screen

• suspendmanager: fix errors when constructing near the map edge

• toggle-kbd-cursor: clear the cursor position when disabling, preventing the game from sometimes jumping the
viewport around when cursor keys are hit

• zone:

– races without specific child or baby names will now get generic child/baby names instead of an empty
string

– don’t show animal assignment link for cages and restraints linked to dungeon zones (which aren’t
normally assignable)

Misc Improvements

• Help icons added to several complex overlays. clicking the icon runs gui/launcher with the help text in the help
area

• buildingplan:

– support filtering cages by whether they are occupied

– show how many items you need to make when planning buildings

• gui/gm-editor: for fields with primitive types, change from click to edit to click to select, double-click to edit.
this should help prevent accidental modifications to the data and make hotkeys easier to use (since you have to
click on a data item to use a hotkey on it)

• gui/overlay: filter overlays by current context so there are fewer on the screen at once and you can more easily
click on the one you want to reposition

• orders: recheck command now only resets orders that have conditions that can be rechecked

• overlay: allow overlay_onupdate_max_freq_seconds to be dynamically set to 0 for a burst of high-
frequency updates

• prioritize: refuse to automatically prioritize dig and smooth/carve job types since it can break the DF job sched-
uler; instead, print a suggestion that the player use specialized units and vanilla designation priorities

• quickfort: now allows constructions to be built on top of constructed floors and ramps, just like vanilla. however,
to allow blueprints to be safely reapplied to the same area, for example to fill in buildings whose constructions
were canceled due to lost items, floors will not be rebuilt on top of floors and ramps will not be rebuilt on top of
ramps

• sort: added help button for squad assignment search/filter/sort

• tailor: now adds to existing orders if possilbe instead of creating new ones

734 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• zone: animals trained for war or hunting are now labeled as such in animal assignment screens

Removed

• FILTER_FULL_TEXT: moved from gui.widgets to utils; if your full text search preference is lost, please reset
it in gui/control-panel

API

• added Items::getCapacity, returns the capacity of an item as a container (reverse-engineered), needed for
combine

Lua

• added dfhack.items.getCapacity to expose the new module API

• added GRAY color aliases for GREY colors

• utils.search_text: text search routine (generalized from internal widgets.FilteredList logic)

Structures

• add new globals: translate_name, buildingst_completebuild

• artifact_rumor_locationst: defined

• viewscreen_worldst: defined types for view_mode and artifacts_arl fields

• world_view_mode_type: defined

Documentation

• unavailable tools are no longer listed in the tag indices in the online docs

8.4.4 DFHack 50.11-r1

New Tools

• startdwarf : (reinstated) set number of starting dwarves

• tubefill: (reinstated) replenishes mined-out adamantine

New Features

• A new searchable, sortable, filterable dialog for selecting items for display on pedestals and display cases

• startdwarf : overlay scrollbar so you can scroll through your starting dwarves if they don’t all fit on the screen

8.4. Changelog 735

DFHack Documentation, Release 50.11-r4

Fixes

• EventManager: Unit death event no longer misfires on units leaving the map

• autolabor: ensure vanilla work details are reinstated when the fort or the plugin is unloaded

• suspendmanager: fixed a bug where floor grates, bars, bridges etc. wouldn’t be recognised as walkable, leading
to unnecessary suspensions in certain cases.

• dfhack.TranslateName(): fixed crash on certain invalid names, which affected warn-starving

Misc Improvements

• EventManager:

– guard against potential iterator invalidation if one of the event listeners were to modify the global data
structure being iterated over

– for onBuildingCreatedDestroyed events, changed firing order of events so destroyed events come
before created events

• devel/inspect-screen: display total grid size for UI and map layers

• dig:

– designate only visible tiles by default, and use “auto” dig mode for following veins

– added options for designating only current z-level, this z-level and above, and this z-level and below

• hotkeys:

– make the DFHack logo brighten on hover in ascii mode to indicate that it is clickable

– use vertical bars instead of “!” symbols for the DFHack logo in ascii mode to make it easier to read

• suspendmanager: now suspends constructions that would cave-in immediately on completion

Lua

• mouse key events are now aligned with internal DF semantics: _MOUSE_L indicates that the left mouse button
has just been pressed and _MOUSE_L_DOWN indicates that the left mouse button is being held down. similarly for
_MOUSE_R and _MOUSE_M. 3rd party scripts may have to adjust.

Structures

• add new global: start_dwarf_count

8.4.5 DFHack 50.10-r1

Fixes

• ‘fix/general-strike: fix issue where too many seeds were getting planted in farm plots

• Linux launcher: allow Steam Overlay and game streaming to function

• autobutcher: don’t ignore semi-wild units when marking units for slaughter

736 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Misc Improvements

• ‘sort’: Improve combat skill scale thresholds

8.4.6 DFHack 50.09-r4

New Features

• dig: new overlay for ASCII mode that visualizes designations for smoothing, engraving, carving tracks, and
carving fortifications

Fixes

• buildingplan: make the construction dimensions readout visible again

• gui/mod-manager: don’t continue to display overlay after the raws loading progress bar appears

• seedwatch: fix a crash when reading data saved by very very old versions of the plugin

Misc Improvements

• autofish: changed --raw argument format to allow explicit setting to on or off

• caravan: move goods to depot screen can now see/search/trade items inside of barrels and pots

• gui/launcher: show tagged tools in the autocomplete list when a tag name is typed

• sort:

– add sort option for training need on squad assignment screen

– filter mothers with infants, units with weak mental fortitude, and critically injured units on the squad
assignment screen

– display a rating relative to the current sort order next to the visible units on the squad assignment screen

API

• overlay: overlay widgets can now declare a version attribute. changing the version of a widget will reset its
settings to defaults. this is useful when changing the overlay layout and old saved positions will no longer be
valid.

Lua

• argparse.boolean: convert arguments to lua boolean values.

8.4. Changelog 737

DFHack Documentation, Release 50.11-r4

Structures

• Identified a number of previously anonymous virtual methods in itemst

Documentation

• add instructions for downloading development builds to the Installing page

8.4.7 DFHack 50.09-r3

New Tools

• devel/scan-vtables: scan and dump likely vtable addresses (for memory research)

• hide-interface: hide the vanilla UI elements for clean screenshots or laid-back fortress observing

• hide-tutorials: hide the DF tutorial popups; enable in the System tab of gui/control-panel

• set-orientation: tinker with romantic inclinations (reinstated from back catalog of tools)

New Features

• buildingplan: one-click magma/fire safety filter for planned buildings

• exportlegends: new overlay that integrates with the vanilla “Export XML” button. Now you can generate both
the vanilla export and the extended data export with a single click!

• sort: search, sort, and filter for squad assignment screen

• zone: advanced unit assignment screens for cages, restraints, and pits/ponds

Fixes

• Core:

– reload scripts in mods when a world is unloaded and immediately loaded again

– fix text getting added to DFHack text entry widgets when Alt- or Ctrl- keys are hit

• autobutcher: fix ticks commandline option incorrectly rejecting positive integers as valid values

• buildingplan: ensure selected barrels and buckets are empty (or at least free of lye and milk) as per the require-
ments of the building

• caravan:

– corrected prices for cages that have units inside of them

– correct price adjustment values in trade agreement details screen

– apply both import and export trade agreement price adjustments to items being both bought or sold to
align with how vanilla DF calculates prices

– cancel any active TradeAtDepot jobs if all caravans are instructed to leave

• emigration:

– fix errors loading forts after dwarves assigned to work details or workshops have emigrated

– fix citizens sometimes “emigrating” to the fortress site

738 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• fix/retrieve-units: fix retrieved units sometimes becoming duplicated on the map

• gui/launcher, gui/gm-editor: recover gracefully when the saved frame position is now offscreen

• gui/sandbox: correctly load equipment materials in modded games that categorize non-wood plants as wood

• orders: prevent import/export overlay from appearing on the create workorder screen

• quickfort: cancel old dig jobs that point to a tile when a new designation is applied to the tile

• seedwatch: ignore unplantable tree seeds

• starvingdead: ensure sieges end properly when undead siegers starve

• suspendmanager:

– Fix the overlay enabling/disabling suspendmanager unexpectedly

– improve the detection on “T” and “+” shaped high walls

• tailor: remove crash caused by clothing items with an invalid maker_race

• dialogs.MessageBox: fix spacing around scrollable text

Misc Improvements

• Surround DFHack-specific UI elements with square brackets instead of red-yellow blocks for better readability

• autobutcher: don’t mark animals for butchering if they are already marked for some kind of training (war, hunt)

• caravan: optionally display items within bins in bring goods to depot screen

• createitem: support creating items inside of bags

• devel/lsmem: added support for filtering by memory addresses and filenames

• gui/design: change “auto commit” hotkey from c to Alt-c to avoid conflict with the default keybinding for
z-level down

• gui/gm-editor:

– hold down shift and right click to exit, regardless of how many substructures deep you are

– display in the title bar whether the editor window is scanning for live updates

• gui/liquids: support removing river sources by converting them into stone floors

• gui/quickfort: blueprint details screen can now be closed with Ctrl-D (the same hotkey used to open the details)

• hotkeys: don’t display DFHack logo in legends mode since it covers up important interface elements. the Ctrl-
Shift-C hotkey to bring up the menu and the mouseover hotspot still function, though.

• quickfort: linked stockpiles and workshops can now be specified by ID instead of only by name. this is mostly
useful when dynamically generating blueprints and applying them via the quickfort API

• sort: animals are now sortable by race on the assignment screens

• suspendmanager: display a different color for jobs suspended by suspendmanager

8.4. Changelog 739

DFHack Documentation, Release 50.11-r4

API

• RemoteFortressReader: add a force_reload option to the GetBlockList RPC API to return blocks regardless
of whether they have changed since the last request

• Gui: getAnyStockpile and getAnyCivzone (along with their getSelected variants) now work through
layers of ZScreens. This means that they will still return valid results even if a DFHack tool window is in the
foereground.

• Items::getValue(): remove caravan_buying parameter since the identity of the selling party doesn’t actu-
ally affect the item value

• Units: new animal propery check functions isMarkedForTraining(unit), isMarkedForTaming(unit),
isMarkedForWarTraining(unit), and isMarkedForHuntTraining(unit)

Lua

• dfhack.gui: new getAnyCivZone and getAnyStockpile functions; also behavior of getSelectedCivZone
and getSelectedStockpile functions has changes as per the related API notes

• dfhack.items.getValue(): remove caravan_buying param as per C++ API change

• dfhack.screen.readTile(): now populates extended tile property fields (like top_of_text) in the returned
Pen object

• dfhack.units: new animal propery check functions isMarkedForTraining(unit),
isMarkedForTaming(unit), isMarkedForWarTraining(unit), and isMarkedForHuntTraining(unit)

• new(): improved error handling so that certain errors that were previously uncatchable (creating objects with
members with unknown vtables) are now catchable with pcall()

• widgets.BannerPanel: panel with distinctive border for marking DFHack UI elements on otherwise vanilla
screens

• widgets.Panel: new functions to override instead of setting corresponding properties (useful when subclassing
instead of just setting attributes): onDragBegin, onDragEnd, onResizeBegin, onResizeEnd

Structures

• Added global_table global and corresponding global_table_entry type

• help_context_type: fix typo in enum name: EMBARK_TUTORIAL_CHICE -> EMBARK_TUTORIAL_CHOICE

• plotinfo: name the fields related to tutorial popups

• viewscreen_legendsst: realign structure

• viewscreen_new_arenast: added (first appeared in 50.06)

740 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

8.4.8 DFHack 50.09-r2

New Plugins

• 3dveins: reinstated for v50, this plugin replaces vanilla DF’s blobby vein generation with veins that flow smoothly
and naturally between z-levels

• dig: new dig.asciiwarmdamp overlay that highlights warm and damp tiles when in ASCII mode. there is no
effect in graphics mode since the tiles are already highlighted there

• dwarfvet: reinstated and updated for v50’s new hospital mechanics; allow your animals to have their wounds
treated at hospitals

• zone: new searchable, sortable, filterable screen for assigning units to pastures

New Scripts

• caravan: new trade screen UI replacements for bringing goods to trade depot and trading

• fix/empty-wheelbarrows: new script to empty stuck rocks from all wheelbarrows on the map

Fixes

• Fix extra keys appearing in DFHack text boxes when shift (or any other modifier) is released before the other key
you were pressing

• gui/autodump: when “include items claimed by jobs” is on, actually cancel the job so the item can be teleported

• gui/create-item: when choosing a citizen to create the chosen items, avoid choosing a dead citizen

• gui/gm-unit: fix commandline processing when a unit id is specified

• logistics:

– don’t autotrain domestic animals brought by invaders (they’ll get attacked by friendly creatures as soon
as you let them out of their cage)

– don’t bring trade goods to depot if the only caravans present are tribute caravans

– fix potential crash when removing stockpiles or turning off stockpile features

• suspendmanager:

– take in account already built blocking buildings

– don’t consider tree branches as a suitable access path to a building

Misc Improvements

• Dreamfort: give noble suites double-thick walls and add apartment doors

• Suppress DF keyboard events when a DFHack keybinding is matched. This prevents, for example, a backtick
from appearing in a textbox as text when you launch gui/launcher from the backtick keybinding.

• autonick: add more variety to nicknames based on famous literary dwarves

• gui/unit-syndromes: make lists searchable

• logistics: bring an autotraded bin to the depot if any item inside is tradeable instead of marking all items within
the bin as untradeable if any individual item is untradeable

8.4. Changelog 741

DFHack Documentation, Release 50.11-r4

• quickfort: blueprint libraries are now moddable – add a blueprints/ directory to your mod and they’ll show
up in quickfort and gui/quickfort!

• stockpiles: include exotic pets in the “tameable” filter

• suspendmanager: display the suspension reason when viewing a suspended building

• widgets.EditField: DFHack edit fields now support cut/copy/paste with the system clipboard with Ctrl-
X/Ctrl-C/Ctrl-V

API

• Items::markForTrade(), Items::isRequestedTradeGood(), Items::getValue: see Lua notes below

• Units::getUnitByNobleRole, Units::getUnitsByNobleRole: unit lookup API by role

Internals

• Price calculations fixed for many item types

Lua

• dfhack.items.getValue: gained optional caravan and caravan_buying parameters for prices that take
trader races and agreements into account

• dfhack.items.isRequestedTradeGood: discover whether an item is named in a trade agreement with an
active caravan

• dfhack.items.markForTrade: mark items for trade

• dfhack.units.getUnitByNobleRole, dfhack.units.getUnitsByNobleRole: unit lookup API by role

• widgets.TextButton: wraps a HotkeyLabel and decorates it to look more like a button

Structures

• build_req_choicest: realign structure and fix vmethods

• squad_orderst: fix vmethods

Documentation

• misery: rewrite the documentation to clarify the actual effects of the plugin

8.4.9 DFHack 50.09-r1

Misc Improvements

• caravan: new overlay for selecting all/none on trade request screen

• suspendmanager: don’t suspend constructions that are built over open space

742 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Internals

• Core: update SDL interface from SDL1 to SDL2

Structures

• tiletype_shape: changed RAMP_TOP and ENDLESS_PIT to not walkable to reflect how scripts actually
need these types to be treated

8.4.10 DFHack 50.08-r4

New Plugins

• logistics: automatically mark and route items or animals that come to monitored stockpiles. options are tog-
gleable on an overlay that comes up when you have a stockpile selected.

Fixes

• buildingplan: don’t include artifacts when max quality is masterful

• dig-now: clear item occupancy flags for channeled tiles that had items on them

• emigration: reassign home site for emigrating units so they don’t just come right back to the fort

• gui/create-item: allow blocks to be made out of wood when using the restrictive filters

• gui/liquids: ensure tile temperature is set correctly when painting water or magma

• gui/quickfort:

– allow traffic designations to be applied over buildings

– protect against meta blueprints recursing infinitely if they include themselves

• gui/sandbox: allow creatures that have separate caste-based graphics to be spawned (like ewes/rams)

• RemoteFortressReader: fix a crash with engravings with undefined images

• workorder: prevent autoMilkCreature from over-counting milkable animals, which was leading to cancella-
tion spam for the MilkCreature job

Misc Improvements

• Blueprint library:

– dreamfort: full rewrite and update for DF v50

– pump_stack: updated walkthrough and separated dig and channel steps so boulders can be cleared

– aquifer_tap: updated walkthrough

• autonick: additional nicknames based on burrowing animals, colours, gems, and minerals

• combine: reduce max different stacks in containers to 30 to prevent contaners from getting overfull

• dig-now: can now handle digging obsidian that has been formed from magma and water

• gui/autodump: add option to clear the trader flag from teleported items, allowing you to reclaim items dropped
by merchants

8.4. Changelog 743

DFHack Documentation, Release 50.11-r4

• gui/control-panel:

– add some popular startup configuration commands for autobutcher and autofarm

– add option for running fix/blood-del on new forts (enabled by default)

• gui/quickfort:

– adapt “cursor lock” to mouse controls so it’s easier to see the full preview for multi-level blueprints
before you apply them

– only display post-blueprint messages once when repeating the blueprint up or down z-levels

• gui/sandbox: when creating citizens, give them names appropriate for their races

• orders:

– only display import/export/sort/clear panel on main orders screen

– refine order conditions for library orders to reduce cancellation spam

• prioritize: add wild animal management tasks and lever pulling to the default list of prioritized job types

• quickfort: significant rewrite for DF v50! now handles zones, locations, stockpile configuration, hauling routes,
and more

• stockpiles: added barrels, organic, artifacts, and masterworks stockpile presets

• suspendmanager:

– now suspends construction jobs on top of floor designations, protecting the designations from being
erased

– suspend blocking jobs when building high walls or filling corridors

• workorder: reduce existing orders for automatic shearing and milking jobs when animals are no longer available

Removed

• gui/automelt: replaced by an overlay panel that appears when you click on a stockpile

Structures

• abstract_building_libraryst: initialize unknown variables as DF does

• misc_trait_type: realign

Documentation

• Quickfort blueprint library: update Dreamfort screenshots and links, add aquifer_tap screenshot

744 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

8.4.11 DFHack 50.08-r3

Fixes

• Fix crash for some players when they launch DF outside of the Steam client

8.4.12 DFHack 50.08-r2

New Plugins

• add-spatter: (reinstated) allow mods to add poisons and magical effects to weapons

• changeitem: (reinstated) change item material, quality, and subtype

• createitem: (reinstated) create arbitrary items from the command line

• deramp: (reinstated) removes all ramps designated for removal from the map

• flows: (reinstated) counts map blocks with flowing liquids

• lair: (reinstated) mark the map as a monster lair (this avoids item scatter when the fortress is abandoned)

• luasocket: (reinstated) provides a Lua API for accessing network sockets

• work-now: (reinstated, renamed from workNow) prevent dwarves from wandering aimlessly with “No job” after
completing a task

New Scripts

• assign-minecarts: (reinstated) quickly assign minecarts to hauling routes

• diplomacy: view or alter diplomatic relationships

• exportlegends: (reinstated) export extended legends information for external browsing

• fix/stuck-instruments: fix instruments that are attached to invalid jobs, making them unusable. turn on automatic
fixing in gui/control-panel in the Maintenance tab.

• gui/autodump: point and click item teleportation and destruction interface (available only if armok tools are
shown)

• gui/mod-manager: automatically restore your list of active mods when generating new worlds

• gui/sandbox: creation interface for units, trees, and items (available only if armok tools are shown)

• light-aquifers-only: (reinstated) convert heavy aquifers to light

• modtools/create-item: (reinstated) commandline and API interface for creating items

• necronomicon: search fort for items containing the secrets of life and death

8.4. Changelog 745

DFHack Documentation, Release 50.11-r4

Fixes

• DFHack screen backgrounds now use appropriate tiles in DF Classic

• RemoteServer: fix crash on malformed json in dfhack-config/remote-server.json

• autolabor: work detail override warning now only appears on the work details screen

• deathcause: fix incorrect weapon sometimes being reported

• gui/create-item: allow armor to be made out of leather when using the restrictive filters

• gui/design: Fix building and stairs designation

• quickfort:

– properly allow dwarves to smooth, engrave, and carve beneath walkable tiles of buildings

– fixed detection of tiles where machines are allowed (e.g. water wheels can be built on stairs if there is
a machine support nearby)

– fixed rotation of blueprints with carved track tiles

• RemoteFortressReader: ensured names are transmitted in UTF-8 instead of CP437

Misc Improvements

• Core: new commandline flag/environment var: pass --disable-dfhack on the Dwarf Fortress commandline
or specify DFHACK_DISABLE=1 in the environment to disable DFHack for the current session.

• Dreamfort: improve traffic patterns throughout the fortress

• Settings: recover gracefully when settings files become corrupted (e.g. by DF CTD)

• Window behavior:

– non-resizable windows now allow dragging by their frame edges by default

– if you have multiple DFHack tool windows open, scrolling the mouse wheel while over an unfocused
window will focus it and raise it to the top

• autodump: no longer checks for a keyboard cursor before executing, so autodump destroy (which doesn’t
require a cursor) can still function

• gui/autodump: fort-mode keybinding: Ctrl-H (when armok tools are enabled in gui/control-panel)

• gui/blueprint: recording of stockpile layouts and categories is now supported. note that detailed stockpile con-
figurations will not be saved (yet)

• gui/control-panel: new preference for whether filters in lists search for substrings in the middle of words (e.g. if
set to true, then “ee” will match “steel”)

• gui/create-item: ask for number of items to spawn by default

• gui/design: Improved performance for drawing shapes

• gui/gm-editor:

– when passing the --freeze option, further ensure that the game is frozen by halting all rendering
(other than for DFHack tool windows)

– Alt-A now enables auto-update mode, where you can watch values change live when the game is
unpaused

• gui/quickfort:

746 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– blueprints that designate items for dumping/forbidding/etc. no longer show an error highlight for tiles
that have no items on them

– place (stockpile layout) mode is now supported. note that detailed stockpile configurations were part
of query mode and are not yet supported

– you can now generate manager orders for items required to complete bluerpints

• light-aquifers-only: now available as a fort Autostart option in gui/control-panel. note that it will only appear if
“armok” tools are configured to be shown on the Preferences tab.

• orders: update orders in library for prepared meals, bins, archer uniforms, and weapons

• overlay: add links to the quickstart guide and the control panel on the DF title screen

• stockpiles: allow filtering creatures by tameability

Removed

• orders: library/military_include_artifact_materials library file removed since recent research indi-
cates that platinum blunt weapons and silver crossbows are not more effective than standard steel. the alternate
military orders file was also causing unneeded confusion.

Internals

• dfhack.internal: added memory analysis functions: msizeAddress, getHeapState,
heapTakeSnapshot, isAddressInHeap, isAddressActiveInHeap, isAddressUsedAfterFreeInHeap,
getAddressSizeInHeap, and getRootAddressOfHeapObject

Lua

• ensure_keys: walks a series of keys, creating new tables for any missing values

• gui: changed frame naming scheme to FRAME_X rather than X_FRAME, and added aliases for backwards compat-
ibility. (for example BOLD_FRAME is now called FRAME_BOLD)

• overlay.reload(): has been renamed to overlay.rescan() so as not to conflict with the global reload()
function. If you are developing an overlay, please take note of the new function name for reloading your overlay
during development.

Structures

• Removed steam_mod_manager and game_extra globals. Their contents have been merged back into game.

• abstract_building_contents: identify fields and flags related to location item counts

• arena_tree: identify fields related to tree creation

• arena_unit: identify fields related to unit creation

• mod_headerst: rename non_vanilla flag to vanilla to reflect its actual usage

• profession: renamed captions Cheese Maker to Cheesemaker, Bee Keeper to Beekeeper, and Bone
Setter to Bone Doctor

8.4. Changelog 747

DFHack Documentation, Release 50.11-r4

8.4.13 DFHack 50.08-r1

Fixes

• autoclothing: eliminate game lag when there are many inventory items in the fort

• buildingplan:

– fixed size limit calculations for rollers

– fixed items not being checked for accessibility in the filter and item selection dialogs

• deteriorate: ensure remains of enemy dwarves are properly deteriorated

• dig-now: properly detect and complete smoothing designations that have been converted into active jobs

• suspendmanager: Fix over-aggressive suspension of jobs that could still possibly be done (e.g. jobs that are
partially submerged in water)

Misc Improvements

• buildingplan:

– planner panel is minimized by default and now remembers minimized state

– can now filter by gems (for gem windows) and yarn (for ropes in wells)

• combine: Now supports ammo, parts, powders, and seeds, and combines into containers

• deteriorate: add option to exclude useable parts from deterioration

• gui/control-panel:

– add preference option for hiding the terminal console on startup

– add preference option for hiding “armok” tools in command lists

• gui/gm-editor:

– press g to move the map to the currently selected item/unit/building

– press Ctrl-D to toggle read-only mode to protect from accidental changes; this state persists across
sessions

– new --freeze option for ensuring the game doesn’t change while you’re inspecting it

• gui/launcher: DFHack version now shown in the default help text

• gui/prerelease-warning: widgets are now clickable

• overlay: add the DFHack version string to the DF title screen

• Dwarf Therapist: add a warning to the Labors screen when Dwarf Therapist is active so players know that
changes they make to that screen will have no effect. If you’re starting a new embark and nobody seems to be
doing anything, check your Labors tab for this warning to see if Dwarf Therapist thinks it is in control (even if
it’s not running).

• toggle-kbd-cursor: add hotkey for toggling the keyboard cursor (Alt-K)

• version: add alias to display the DFHack help (including the version number) so something happens when
players try to run “version”

748 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Removed

• title-version: replaced by an overlay widget

Lua

• gui.ZScreenModal: ZScreen subclass for modal dialogs

• widgets.CycleHotkeyLabel: exposed “key_sep” and “option_gap” attributes for improved stylistic control.

• widgets.RangeSlider: new mouse-controlled two-headed slider widget

Structures

• convert mod_manager fields to pointers

8.4.14 DFHack 50.07-r1

New Plugins

• autoslab: automatically create work orders to engrave slabs for ghostly dwarves

• faststart: speeds up the “Loading. . . ” screen so the Main Menu appears faster

• getplants: reinstated: designate trees for chopping and shrubs for gathering according to type

• prospector: reinstated: get stone, ore, gem, and other tile property counts in fort mode.

New Scripts

• allneeds: list all unmet needs sorted by how many dwarves suffer from them.

• autofish: auto-manage fishing labors to control your stock of fish

• combine: combines stacks of food and plant items.

• devel/tile-browser: page through available textures and see their texture ids

• fix/civil-war: removes negative relations with own government

• fix/general-strike: fix known causes of the general strike bug (contributed by Putnam)

• fix/protect-nicks: restore nicknames when DF loses them

• forbid: forbid and list forbidden items on the map

• gui/autochop: configuration frontend and status monitor for the autochop plugin

• gui/autofish: GUI config and status panel interface for autofish

• gui/automelt: GUI config and status panel interface for automelt

• gui/civ-alert: configure and trigger civilian alerts

• gui/control-panel: quick access to DFHack configuration

• gui/design: digging and construction designation tool with shapes and patterns

• gui/seedwatch: GUI config and status panel interface for seedwatch

• gui/suspendmanager: graphical configuration interface for suspendmanager

8.4. Changelog 749

DFHack Documentation, Release 50.11-r4

• gui/unit-syndromes: browser for syndrome information

• makeown: makes the selected unit a citizen of your fortress

• suspendmanager: automatic job suspension management (replaces autounsuspend)

• suspend: suspends building construction jobs

Fixes

• autochop: fixed a crash when processing trees with corrupt data structures (e.g. when a trunk tile fails to fall
when the rest of the tree is chopped down)

• autoclothing: fixed a crash that can happen when units are holding invalid items.

• autodump: changed behaviour to only change dump and forbid flags if an item is successfully dumped.

• blueprint: interpret saplings, shrubs, and twigs as floors instead of walls

• build-now:

– now correctly avoids adjusting non-empty tiles above constructions that it builds

– don’t error on constructions that do not have an item attached

• buildingplan:

– upright spike traps are now placed extended rather than retracted

– you can no longer designate constructions on tiles with magma or deep water, mirroring the vanilla
restrictions

• catsplosion: now only affects live, active units

• combine: fix error processing stockpiles with boundaries that extend outside of the map

• devel/query: can now properly index vectors in the –table argument

• dig-now: fixed multi-layer channel designations only channeling every second layer

• getplants: trees are now designated correctly

• gui/launcher: tab characters in command output now appear as a space instead of a code page 437 “blob”

• make-legendary: “MilitaryUnarmed” option now functional

• orders: library/military now sticks to vanilla rules and does not add orders for normally-mood-only platinum
weapons. A new library orders file library/military_include_artifact_materials is now offered as
an alternate library/military set of orders that still includes the platinum weapons.

• quickfort: allow floor bars, floor grates, and hatches to be placed over all stair types like vanilla allows

• showmood properly count required number of bars and cloth when they aren’t the main item for the strange mood

• stockpiles: fix crash when importing settings for gems from other worlds

• tailor:

– properly discriminate between dyed and undyed cloth

– take queued orders into account when calculating available materials

– skip units who can’t wear clothes

– identify more available items as available, solving issues with over-production

– block making clothing sized for toads; make replacement clothing orders use the size of the wearer,
not the size of the garment

750 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– now respects the setting of the “used dyed clothing” standing order toggle

• warn-starving:

– no longer warns for dead units

– no longer warns for enemy and neutral units

• Buildings::StockpileIterator: fix check for stockpile items on block boundary.

• dfhack.job.isSuitableMaterial: now properly detects lack of fire and magma safety for vulnerable mate-
rials with high melting points

• Units::isFortControlled: Account for agitated wildlife

• widgets.WrappedLabel: no longer resets scroll position when window is moved or resized

Misc Improvements

• Core: hide DFHack terminal console by default when running on Steam Deck

• DFHack tool windows that capture mouse clicks (and therefore prevent you from clicking on the “pause” button)
now unconditionally pause the game when they open (but you can still unpause with the keyboard if you want
to). Examples of this behavior: gui/quickfort, gui/blueprint, gui/liquids

• Mods: scripts in mods are now automatically added to the DFHack script path. DFHack recognizes two directo-
ries in a mod’s folder: scripts_modinstalled/ and scripts_modactive/. scripts_modinstalled/
folders will always be added the script path, regardless of whether the mod is active in a world.
scripts_modactive/ folders will only be added to the script path when the mod is active in the current loaded
world.

• Scrollable widgets now react to mouse wheel events when the mouse is over the widget

• the dfhack-config/scripts/ folder is now searched for scripts by default

• autobutcher:

– logs activity to the console terminal instead of making disruptive in-game announcements

– changed defaults from 5 females / 1 male to 4 females / 2 males so a single unfortunate accident doesn’t
leave players without a mating pair

– now immediately loads races available at game start into the watchlist

• autodump: new hotkey for autodump-destroy-here: Ctrl-H

• automelt:

– now allows metal chests to be melted (workaround for DF bug 2493 is no longer needed)

– stockpile configuration can now be set from the commandline

• autounsuspend: now saves its state with your fort

• ban-cooking:

– ban announcements are now hidden by default; use new option --verbose to show them.

– report number of items banned.

• Quickfort blueprint library:

– library blueprints have moved from blueprints to hack/data/blueprints

8.4. Changelog 751

DFHack Documentation, Release 50.11-r4

– player-created blueprints should now go in the dfhack-config/blueprints folder. please move
your existing blueprints from blueprints to dfhack-config/blueprints. you don’t need to move
the library blueprints – those can be safely deleted from the old blueprints directory.

• blueprint: now writes blueprints to the dfhack-config/blueprints directory

• build-now: now handles dirt roads and initializes farm plots properly

• buildingplan:

– can now filter by cloth and silk materials (for ropes)

– filters and global settings are now ignored when manually choosing items for a building, allowing you
to make custom choices independently of the filters that would otherwise be used

– if suspendmanager is running, then planned buildings will be left suspended when their items are all
attached. suspendmanager will unsuspsend them for construction when it is safe to do so.

– add option for autoselecting the last manually chosen item (like automaterial used to do)

– entirely new UI for building placement, item selection, and materials filtering!

• caravan: add trade screen overlay that assists with seleting groups of items and collapsing groups in the UI

• channel-safely: new monitoring for cave-in prevention

• combine:

– you can select a target stockpile in the UI instead of having to use the keyboard cursor

– added --quiet option for no output when there are no changes

• confirm:

– adds confirmation for removing burrows via the repaint menu

– configuration data is now persisted globally.

• devel/click-monitor: report on middle mouse button actions

• devel/inspect-screen: updated for new rendering semantics and can now also inspect map textures

• devel/query: will now search for jobs at the map coordinate highlighted, if no explicit job is highlighted and there
is a map tile highlighted

• devel/visualize-structure: now automatically inspects the contents of most pointer fields, rather than inspecting
the pointers themselves

• dig-now: added handling of dig designations that have been converted into active jobs

• emigration: now saves its state with your fort

• enable: can now interpret aliases defined with the alias command

• exterminate:

– add support for vaporize kill method for when you don’t want to leave a corpse

– added drown method. magma and drown methods will now clean up liquids automatically.

• getplants: ID values will now be accepted regardless of case

• gui/control-panel:

– bugfix services are now enabled by default

– new global hotkey for quick access: Ctrl-Shift-E

– Now detects overlays from scripts named with capital letters

752 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• gui/cp437-table:

– now has larger key buttons and clickable backspace/submit/cancel buttons, making it fully usable on
the Steam Deck and other systems that don’t have an accessible keyboard

– dialog is now fully controllable with the mouse, including highlighting which key you are hovering
over and adding a clickable backspace button

– converted to a movable, mouse-enabled window

• gui/create-item:

– added ability to spawn ‘whole’ corpsepieces (every layer of a part)

– support spawning corpse pieces (e.g. shells) under “body part”

– added search and filter capabilities to the selection lists

– added whole corpse spawning alongside corpsepieces. (under “corpse”)

• gui/gm-editor:

– can now jump to material info objects from a mat_type reference with a mat_index using i

– the key column now auto-fits to the widest key

– can now open the selected stockpile if run without parameters

– will now inspect a selected building itself if the building has no current jobs

– now supports multiple independent data inspection windows

– now prints out contents of coordinate vars instead of just the type

– converted to a movable, resizable, mouse-enabled window

• gui/gm-unit: converted to a movable, resizable, mouse-enabled window

• gui/launcher:

– sped up initialization time for faster window appearance

– make command output scrollback separate from the help text so players can continue to see the output
of the previous command as they type the next one

– allow double spacebar to pause/unpause the game, even while typing a command

– clarify what is being shown in the autocomplete list (all commands, autocompletion of partially typed
command, or commands related to typed command)

– support running commands directly from the autocomplete list via double-clicking

– now supports a smaller, minimal mode. click the toggle in the launcher UI or start in minimal mode
via the Ctrl-Shift-P keybinding

– can now be dragged from anywhere on the window body

– now remembers its size and position between invocations

• gui/liquids: interface overhaul, also now allows spawning river sources, setting/adding/removing liquid levels,
and cleaning water from being salty or stagnant

• gui/overlay: now focuses on repositioning overlay widgets; enabling, disabling, and getting help for overlay
widgets has moved to the new gui/control-panel

• gui/quickcmd:

– now has its own global keybinding for your convenience: Ctrl-Shift-A

8.4. Changelog 753

DFHack Documentation, Release 50.11-r4

– converted to a movable, resizable, mouse-enabled window

– commands are now stored globally so you don’t have to recreate commands for every fort

• gui/quickfort: don’t close the window when applying a blueprint so players can apply the same blueprint multiple
times more easily

• hotkeys: overlay hotspot widget now shows the DFHack logo in graphics mode and “DFHack” in text mode

• locate-ore: now only searches revealed tiles by default

• misery: now persists state with the fort

• modtools/spawn-liquid: sets tile temperature to stable levels when spawning water or magma

• nestboxes: now saves enabled state in your savegame

• orders:

– add minimize button to overlay panel so you can get it out of the way to read long statue descriptions
when choosing a subject in the details screen

– add option to delete exported files from the import dialog

– orders plugin functionality is now accessible via an overlay widget when the manager orders screen is
open

• prioritize:

– revise and simplify the default list of prioritized jobs – be sure to tell us if your forts are running
noticeably better (or worse!)

– now automatically starts boosting the default list of job types when enabled

– now saves its state with your fort

• quickfort: now reads player-created blueprints from dfhack-config/blueprints/ instead of the old
blueprints/ directory. Be sure to move over your personal blueprints to the new directory!

• rejuvenate: now takes an –age parameter to choose a desired age.

• Script paths: removed “raw” directories from default script paths. now the default locations to search for scripts
are dfhack-config/scripts, save/*/scripts, and hack/scripts

• seedwatch: now persists enabled state in the savegame, automatically loads useful defaults, and respects reacha-
bility when counting available seeds

• showmood: now shows the number of items needed for cloth and bars in addition to the technically correct but
always confusing “total dimension” (150 per bar or 10,000 per cloth)

• stockpiles:

– support applying stockpile configurations with fully enabled categories to stockpiles in worlds other
than the one where the configuration was exported from

– support partial application of a saved config based on dynamic filtering (e.g. disable all tallow in a
food stockpile, even tallow from world-specific generated creatures)

– additive and subtractive modes when applying a second stockpile configuration on top of a first

– write player-exported stockpile configurations to the dfhack-config/stockpiles folder. If you
have any stockpile configs in other directories, please move them to that folder.

– now includes a library of useful stockpile configs (see docs for details)

• stonesense: added an INVERT_MOUSE_Z option to invert the mouse wheel direction

• stripcaged:

754 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– added --skip-forbidden option for greater control over which items are marked for dumping

– items that are marked for dumping are now automatically unforbidden (unless --skip-forbidden is
set)

• tailor: add support for adamantine cloth (off by default); improve logging

• troubleshoot-item:

– output as bullet point list with indenting, with item description and ID at top

– reports on items that are hidden, artifacts, in containers, and held by a unit

– reports on the contents of containers with counts for each contained item type

• unforbid: avoids unforbidding unreachable and underwater items by default

• unsuspend:

– overlay now displays different letters for different suspend states so they can be differentiated in graph-
ics mode (P=planning, x=suspended, X=repeatedly suspended)

– overlay now shows a marker all the time when in graphics mode. ascii mode still only shows when
paused so that you can see what’s underneath.

• init.d: directories have moved from the raw subfolder (which no longer exists) to the root of the main DF
folder or a savegame folder

Removed

• Ruby is no longer a supported DFHack scripting language

• autohauler: no plans to port to v50, as it just doesn’t make sense with the new work detail system

• automaterial: all functionality has been merged into buildingplan

• autounsuspend: replaced by suspendmanager

• combine-drinks: replaced by combine

• combine-plants: replaced by combine

• create-items: replaced by gui/create-item --multi

• show-unit-syndromes: replaced by gui/unit-syndromes; html export is no longer supported

• fix-job-postings from the workflow plugin is now obsolete since affected savegames can no longer be loaded

API

• Gui focus strings will no longer get the “dfhack/” prefix if the string “dfhack/” already exists in the focus string

• Units module: added new predicates for isGeldable(), isMarkedForGelding(), and isPet()

• overlay: overlay widgets can now specify a default enabled state if they are not already set in the player’s overlay
config file

• Buildings::containsTile(): no longer takes a room parameter since that’s not how rooms work anymore.
If the building has extents, the extents will be checked. otherwise, the result just depends on whether the tile is
within the building’s bounding box.

• Gui::any_civzone_hotkey, Gui::getAnyCivZone, Gui::getSelectedCivZone: new functions to oper-
ate on the new zone system

• Gui::getDFViewscreen: returns the topmost underlying DF viewscreen

8.4. Changelog 755

DFHack Documentation, Release 50.11-r4

• Gui::getDwarfmodeDims: now only returns map viewport dimensions; menu dimensions are obsolete

• Lua::Push: now supports std::unordered_map

• Maps::GetBiomeTypeRef renamed to Maps::getBiomeTypeRef for consistency

• Maps::GetBiomeType renamed to Maps::getBiomeType for consistency

• Military:

– New module for military functionality

– new makeSquad to create a squad

– changed getSquadName to take a squad identifier

– new updateRoomAssignments for assigning a squad to a barracks and archery range

• Screen::Pen:

– now accepts top_of_text and bottom_of_text properties to support offset text in graphics mode

– now accepts keep_lower and write_to_lower properties to support foreground and background
textures in graphics mode

• Units::getCitizens(): gets a list of citizens, which otherwise you’d have to iterate over all units the world
to discover

Lua

• added two new window borders: gui.BOLD_FRAME for accented elements and gui.INTERIOR_MEDIUM_FRAME
for a signature-less frame that’s thicker than the existing gui.INTERIOR_FRAME

• Removed os.execute() and io.popen() built-in functions

• helpdb:

– new function: helpdb.refresh() to force a refresh of the database. Call if you are a developer
adding new scripts, loading new plugins, or changing help text during play

– changed from auto-refreshing every 60 seconds to only refreshing on explicit call to helpdb.
refresh(). docs very rarely change during a play session, and the automatic database refreshes
were slowing down the startup of gui/launcher and anything else that displays help text.

• overlay:

– overlay widgets can now specify focus paths for the viewscreens they attach to so they only appear in
specific contexts. see DFHack overlay dev guide for details.

– OverlayWidget now inherits from Panel instead of Widget to get all the frame and mouse integra-
tion goodies

• tiletypes: now has a Lua API! tiletypes_setTile

• dfhack.gui.getDFViewscreen(): returns the topmost underlying DF viewscreen

• dfhack.gui.getSelectedCivZone: returns the Zone that the user has selected currently

• dfhack.job.attachJobItem(): allows you to attach specific items to a job

• dfhack.screen.paintTile(): you can now explicitly clear the interface cursor from a map tile by passing 0
as the tile value

• dfhack.units.getCitizens(): gets a list of citizens

756 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• gui.CLEAR_PEN: now clears the background and foreground and writes to the background (before it would
always write to the foreground)

• gui.KEEP_LOWER_PEN: a general use pen that writes associated tiles to the foreground while keeping the existing
background

• gui.View:

– visible and active can now be functions that return a boolean

– new function view:getMouseFramePos() for detecting whether the mouse is within (or over) the
exterior frame of a view

• gui.ZScreen: Screen subclass that implements window raising, multi-viewscreen input handling, and
viewscreen event pass-through so the underlying map can be interacted with and dragged around while DFHack
screens are visible

• maps.getBiomeType: exposed preexisting function to Lua

• widgets.CycleHotkeyLabel:

– options that are bare integers will no longer be interpreted as the pen color in addition to being the
label and value

– option labels and pens can now be functions that return a label or pen

– add label_below attribute for compact 2-line output

– Added key_back optional parameter to cycle backwards.

– now supports rendering option labels in the color of your choice

– new functions setOption() and getOptionPen()

• widgets.FilteredList:

– Added edit_on_change optional parameter to allow a custom callback on filter edit change.

– Added case_sensitive optional paramter to determine if filtering is case sensitive.

• widgets.HotkeyLabel:

– Added setLabel method to allow easily updating the label text without mangling the keyboard short-
cut.

– Added setOnActivate method to allow easily updating the on_activate callback.

• widgets.Label:

– tokens can now specify a htile property to indicate the tile that should be shown when the Label is
hovered over with the mouse

– click handlers no longer get the label itself as the first param to the click handler

– token tile properties can now be functions that return a value

– label.scroll() now understands home and end keywords for scrolling to the top or bottom

– token tile properties can now be either pens or numeric texture ids

– tiles can now have an associated width

• widgets.List: new callbacks for double click and shift double click

• widgets.Panel: new attributes to control window dragging and resizing with mouse or keyboard

• widgets.TabBar: new library widget (migrated from control-panel.lua)

• widgets.ToggleHotkeyLabel: now renders the On option in green text

8.4. Changelog 757

DFHack Documentation, Release 50.11-r4

• widgets.Window: Panel subclass with attributes preset for top-level windows

Structures

• add “hospital” language name category

• added missing tiletypes and corrected a few old ones based on a list supplied by Toady

• correct bit size of tree body data

• corrected alignment in world.status

• corrected misalignment in historical_entity

• corrected misalignment in unitst (affecting occupation and adjective)

• identified fields for squads and other military structures

• identified fields in deep_vein_hollow, glowing_barrier, and cursed_tomb map events

• identified some anons in unitst related to textures (thanks, putnam)

• identified two fields related to saves/autosaves to facilitate quicksave implementation

• identified two old and one new language name groups

• identified divine_treasure and encased_horror map events

• identify a table of daily events scheduled to take place inthe current year

• identify item vmethod 213 (applies a thread improvements to appropriate items based on an RNG)

• identify two anons in difficultyst

• identify various data types related to job completion/cancellation

• partially identified squad-related structures in plotinfo and corrected position of civ_alert_idx (does not
affect alignment)

• realigned and fleshed out entity_site_link (again, thanks, putnam)

• realigned furniture_type enum (added BAG)

• realigned stockpile_settings for new “corpses” vector

• remove some no-longer-valid reputation types

• Renamed globals to match DF:

– ui: renamed to plotinfo

– ui_advmode: renamed to adventure

– ui_build_selector: renamed to buildreq

– ui_sidebar_menus: renamed to game

• split gamest into gamest and gamest_extra to accommodate steam-specific data in gamest.mod_manager

• activity_info: unit_actor, unit_noble, and place converted from pointers to integer references.

• building_civzonest: identify two variables, dir_x and dir_y, that handle archery range direction.

• building_design: corrected misalignments

• creature_raw_graphics: corrected misalignments

• dipscript_popup: meeting_holder converted from unit pointer into two unit refs meeting_holder_actor
and meeting_holder_noble.

758 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• history_eventst: Removed history_event_masterpiece_created_arch_designst and related enum
value

• item.setSharpness(): more info about params

• occupation_type: add enum values for new occupations related to hospitals

• plotinfost.``equipment``: Converted items_unmanifested, items_unassigned, and items_assigned
vectors from pointers to item refs

• plot_infost.``unk_8``: renamed to theft_intrigues. Fields unk_1 thru unk_8 renamed to target_item,
mastermind_hf, mastermind_plot_id, corruptor_hf, corruptor, corruptee_hf, corruptee, and
theft_agreement. unk_1 renamed to item_known_pos.

• specific_ref_type: Removed BUILDING_PARTY, PETINFO_PET, and PETINFO_OWNER enum values to fix
alignment.

Documentation

• added DFHack architecture diagrams to the dev intro

• added DFHack Quickstart guide

• the untested tag has been renamed to unavailable to better reflect the status of the remaining unavaialable
tools. most of the simply “untested” tools have now been tested and marked as working. the remaining tools are
known to need development work before they are available again.

• Compilation: instructions added for cross-compiling DFHack for Windows from a Linux Docker builder

• devel/hello-world: updated to be a better example from which to start new gui scripts

• Installing DFHack: updated to include Steam installation instructions

• DFHack modding guide: guide updated to include information for 3rd party script developers

• DFHack overlay dev guide: added troubleshooting tips and common development workflows

8.4.15 DFHack 0.47.05-r8

New Plugins

• channel-safely: auto-manage channel designations to keep dwarves safe

• overlay: plugin is transformed from a single line of text that runs gui/launcher on click to a fully-featured overlay
injection framework. It now houses a popup menu for keybindings relevant to the current DF screen, all the
widgets previously provided by dwarfmonitor (e.g. the current date and number of happy/unhappy dwarves),
the overlay that highlights suspended buildings when you pause, and others. See DFHack overlay dev guide for
details.

8.4. Changelog 759

DFHack Documentation, Release 50.11-r4

New Scripts

• gui/overlay: configuration interface for the DFHack overlays and overlay widgets. includes a click-and-drag
interface for repositioning widgets!

Fixes

• Core: ensure foo.init always runs before foo.*.init (e.g. dfhack.init should always run before dfhack.
something.init)

• autofarm: flush output so status text is visible immediately after running the command

• autolabor, autohauler: properly handle jobs 241, 242, and 243

• automaterial:

– fix the cursor jumping up a z level when clicking quickly after box select

– fix rendering errors with box boundary markers

• buildingplan: fix crash when canceling out of placement mode for a building with planning mode enabled and
subsequently attempting to place a building that does not have planning mode enabled and that has no pertinent
materials available

• dwarf-op: fixed error when matching dwarves by name

• gui/create-item: prevent materials list filter from intercepting sublist hotkeys

• gui/gm-unit: fixed behavior of + and - to adjust skill values instead of populating the search field

• hotkeys: correctly detect hotkeys bound to number keys, F11, and F12

• labormanager: associate quern construction with the correct labor

• mousequery: fix the cursor jumping up z levels sometimes when using TWBT

• tiletypes: no longer resets dig priority to the default when updating other properties of a tile

• warn-stealers:

– register callback with correct event name so that units entering the map are detected

– announce thieving creatures that spawn already revealed

– cache unit IDs instead of unit objects to avoid referencing stale pointers

• workorder: fix interpretation of json-specified orders that set the item_type field

• EventManager:

– fix a segmentation fault with the REPORT event

– fix the JOB_STARTED event only sending events to the first handler listed instead of all registered
handlers

760 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Misc Improvements

• UX:

– List widgets now have mouse-interactive scrollbars

– You can now hold down the mouse button on a scrollbar to make it scroll multiple times.

– You can now drag the scrollbar up and down to scroll to a specific spot

• autolabor, autohauler: refactored to use DFHack’s messaging system for info/debug/trace messages

• blueprint:

– new --smooth option for recording all smoothed floors and walls instead of just the ones that require
smoothing for later carving

– record built constructions in blueprints

– record stockpile/building/zone names in blueprints

– record room sizes in blueprints

– generate meta blueprints to reduce the number of blueprints you have to apply

– support splitting the output file into phases grouped by when they can be applied

– when splitting output files, number them so they sort into the order you should apply them in

• dig: new -z option for digtype to restrict designations to the current z-level and down

• dwarfmonitor: widgets have been ported to the overlay framework and can be enabled and configured via the
gui/overlay UI

• gui/blueprint: support new blueprint phases and options

• gui/cp437-table: new global keybinding for the clickable on-screen keyboard for players with keyboard layouts
that prevent them from using certain keys: Ctrl-Shift-K

• gui/create-item: restrict materials to those normally allowed by the game by default, introduce new
--unrestricted option for full freedom in choosing materials

• gui/launcher: show help for commands that start with ‘:’ (like :lua)

• gui/quantum: add option to allow corpses and refuse in your quantum stockpile

• hotkeys:

– hotkey screen has been transformed into an interactive overlay widget that you can bring up by
moving the mouse cursor over the hotspot (in the upper left corner of the screen by default). En-
able/disable/reposition the hotspot in the gui/overlay UI. Even if the hotspot is disabled, the menu can
be brought up at any time with the Ctrl-Shift-C hotkey.

– now supports printing active hotkeys to the console with hotkeys list

• ls:

– indent tag listings and wrap them in the rightmost column for better readability

– new --exclude option for hiding matched scripts from the output. this can be especially useful for
modders who don’t want their mod scripts to be included in ls output.

• modtools/create-unit: better unit naming, more argument checks, assign nemesis save data for units without
civilization so they can be properly saved when offloaded

• orders: replace shell craft orders in the standard orders list you get with orders import library/basic with
orders for shell leggings. They have a slightly higher trade price. Also, “shleggings” is just hilarious.

8.4. Changelog 761

DFHack Documentation, Release 50.11-r4

• Quickfort blueprint library: improved layout of marksdwarf barracks in the example Dreamfort blueprints

• spectate:

– new auto-unpause option for auto-dismissal of announcement pause events (e.g. sieges).

– new auto-disengage option for auto-disengagement of plugin through player interaction whilst un-
paused.

– new tick-threshold option for specifying the maximum time to follow the same dwarf

– new animals option for sometimes following animals

– new hostiles option for sometimes following hostiles

– new visiting option for sometimes following visiting merchants, diplomats or plain visitors

– added persistent configuration of the plugin settings

• unsuspend: new overlay for displaying status of suspended buildings (functionality migrated from removed re-
sume plugin)

Removed

• gui/create-item: removed --restricted option. it is now the default behavior

• resume: functionality (including suspended building overlay) has moved to unsuspend

API

• Constructions module: added insert() to insert constructions into the game’s sorted list.

• MiscUtils: added the following string transformation functions (refactored from uicommon.h):
int_to_string, ltrim, rtrim, and trim; added string_to_int

• Units module:

– added new predicates for:

– isUnitInBox()

– isAnimal()

– isVisiting() any visiting unit (diplomat, merchant, visitor)

– isVisitor() ie. not merchants or diplomats

– isInvader()

– isDemon() returns true for unique/regular demons

– isTitan()

– isMegabeast()

– isGreatDanger() returns true if unit is a demon, titan, or megabeast

– isSemiMegabeast()

– isNightCreature()

– isDanger() returns true if is a ‘GreatDanger’, semi-megabeast, night creature, undead, or invader

– modified predicates:

– isUndead() now optionally ignores vampires instead of always ignoring vampires

762 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– isCitizen() now optionally ignores insane citizens instead of always ignoring insane citizens

– new action timer API for speeding up of slowing down units

• Gui::anywhere_hotkey: for plugin commands bound to keybindings that can be invoked on any screen

• Gui::autoDFAnnouncement, Gui::pauseRecenter: added functionality reverse-engineered from announce-
ment code

• Gui::revealInDwarfmodeMap: Now enforce valid view bounds when pos invalid, add variant accepting x, y,
z

• Lua::Push(): now handles maps with otherwise supported keys and values

• Lua::PushInterfaceKeys(): transforms viewscreen feed() keys into something that can be interpreted by
lua-based widgets

Internals

• Constructions module: findAtTile now uses a binary search intead of a linear search

• MSVC warning level upped to /W3, and /WX added to make warnings cause compilations to fail.

Lua

• Lua mouse events now conform to documented behavior in DFHack Lua API Reference – _MOUSE_L_DOWN will
be sent exactly once per mouse click and _MOUSE_L will be sent repeatedly as long as the button is held down.
Similarly for right mouse button events.

• dfhack.constructions.findAtTile(): exposed preexisting function to Lua.

• dfhack.constructions.insert(): exposed new function to Lua.

• gui.Screen.show(): now returns self as a convenience

• gui.View.getMousePos() now takes an optional ViewRect parameter in case the caller wants to get the mouse
pos relative to a rect that is not the frame_body (such as the frame_rect that includes the frame itself)

• widgets.EditField: now allows other widgets to process characters that the on_char callback rejects.

• widgets.FilteredList: now provides a useful default search key for list items made up of text tokens instead
of plain text

• widgets.HotkeyLabel: now ignores mouse clicks when on_activate is not defined

• widgets.List:

– new getIdxUnderMouse() function for detecting the list index under the active mouse cursor. this
allows for “selection follows mouse” behavior

– shift-clicking now triggers the submit2 attribute function if it is defined

• widgets.Panel: new frame_style and frame_title attributes for drawing frames around groups of widgets

• widgets.ResizingPanel: now accounts for frame inset when calculating frame size

• widgets.Scrollbar: new scrollbar widget that can be paired with an associated scrollable widget. Integrated
with widgets.Label and widgets.List.

8.4. Changelog 763

DFHack Documentation, Release 50.11-r4

Structures

• general_refst: type virtual union member for ITEM_GENERAL

• historical_figure_info.T_reputation.unk_2c: identify year + year_ticks

• itemst: identify two vmethods related to adding thread improvements to items made of cloth, and label several
previously unknown return types

• proj_magicst: correct structure fields (to match 40d)

• unit_action_type_group: added enum and tagged unit_action_type entries with its groups for DFHack’s
new action timer API.

• world: identify type of a vector (still not known what it’s for, but it’s definitely an item vector)

Documentation

• DFHack overlay dev guide: documentation and guide for injecting functionality into DF viewscreens from Lua
scripts and creating interactive overlay widgets

• dfhack.gui.revealInDwarfmodeMap: document center bool for Lua API

8.4.16 DFHack 0.47.05-r7

New Plugins

• autobutcher: split off from zone into its own plugin. Note that to enable, the command has changed from
autobutcher start to enable autobutcher.

• autonestbox: split off from zone into its own plugin. Note that to enable, the command has changed from
autonestbox start to enable autonestbox.

• overlay: display a “DFHack” button in the lower left corner that you can click to start the new GUI command
launcher. The dwarfmonitor weather display had to be moved to make room for the button. If you are seeing the
weather indicator rendered over the overlay button, please remove the dfhack-config/dwarfmonitor.json
file to fix the weather indicator display offset.

New Scripts

• gui/kitchen-info: adds more info to the Kitchen screen

• gui/launcher: in-game command launcher with autocomplete, history, and context-sensitive help

• gui/workorder-details: adjusts work orders’ input item, material, traits

• max-wave: dynamically limit the next immigration wave, can be set to repeat

• pop-control: persistent per fortress population cap, hermit, and max-wave management

• warn-stealers: warn when creatures that may steal your food, drinks, or items become visible

764 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

New Internal Commands

• tags: new built-in command to list the tool category tags and their definitions. tags associated with each tool are
visible in the tool help and in the output of ls.

Fixes

• autochop: designate largest trees for chopping first, instead of the smallest

• devel/query: fixed error when –tile is specified

• dig-now: Fix direction of smoothed walls when adjacent to a door or floodgate

• dwarf-op: fixed error when applying the Miner job to dwarves

• emigration: fix emigrant logic so unhappy dwarves leave as designed

• gui/gm-unit: allow + and - to adjust skill values as intended instead of letting the filter intercept the characters

• gui/unit-info-viewer: fix logic for displaying undead creature names

• gui/workflow: restore functionality to the add/remove/order hotkeys on the workflow status screen

• modtools/moddable-gods: fixed an error when assigning spheres

• quickfort: Dreamfort blueprint set: declare the hospital zone before building the coffer; otherwise DF fails to
stock the hospital with materials

• view-item-info: fixed a couple errors when viewing items without materials

• dfhack.buildings.findCivzonesAt: no longer return duplicate civzones after loading a save with existing
civzones

• dfhack.run_script: ensure the arguments passed to scripts are always strings. This allows other scripts to
call run_script with numeric args and it won’t break parameter parsing.

• job.removeJob(): ensure jobs are removed from the world list when they are canceled

Misc Improvements

• History files: dfhack.history, tiletypes.history, lua.history, and liquids.history have moved to
the dfhack-config directory. If you’d like to keep the contents of your current history files, please move them
to dfhack-config.

• Init scripts: dfhack.init and other init scripts have moved to dfhack-config/init/. If you have customized
your dfhack.init file and want to keep your changes, please move the part that you have customized to the
new location at dfhack-config/init/dfhack.init. If you do not have changes that you want to keep, do
not copy anything, and the new defaults will be used automatically.

• UX:

– You can now move the cursor around in DFHack text fields in gui/ scripts (e.g. gui/blueprint,
gui/quickfort, or gui/gm-editor). You can move the cursor by clicking where you want it to go with
the mouse or using the Left/Right arrow keys. Ctrl+Left/Right will move one word at a time, and
Alt+Left/Right will move to the beginning/end of the text.

– You can now click on the hotkey hint text in many gui/ script windows to activate the hotkey, like a but-
ton. Not all scripts have been updated to use the clickable widget yet, but you can try it in gui/blueprint
or gui/quickfort.

8.4. Changelog 765

DFHack Documentation, Release 50.11-r4

– Label widget scroll icons are replaced with scrollbars that represent the percentage of text on the screen
and move with the position of the visible text, just like web browser scrollbars.

• devel/query:

– inform the user when a query has been truncated due to --maxlength being hit.

– increased default maxlength value from 257 to 2048

• do-job-now: new global keybinding for boosting the priority of the jobs associated with the selected build-
ing/work order/unit/item etc.: Alt-N

• dwarf-op: replaces [a b c] option lists with a,b,c option lists

• gui/gm-unit: don’t clear the list filter when you adjust a skill value

• gui/quickfort:

– better formatting for the generated manager orders report

– you can now click on the map to move the blueprint anchor point to that tile instead of having to use
the cursor movement keys

– display an error message when the blueprints directory cannot be found

• gui/workorder-details: new keybinding on the workorder details screen: D

• keybinding: support backquote (`) as a hotkey (and assign the hotkey to the new gui/launcher interface)

• ls: can now filter tools by substring or tag. note that dev scripts are hidden by default. pass the --dev option to
show them.

• manipulator:

– add a library of useful default professions

– move professions configuration from professions/ to dfhack-config/professions/ to keep it
together with other dfhack configuration. If you have saved professions that you would like to keep,
please manually move them to the new folder.

• orders: added useful library of manager orders. see them with orders list and import them with, for example,
orders import library/basic

• prioritize: new defaults keyword to prioritize the list of jobs that the community agrees should generally be
prioritized. Run prioritize -a defaults to try it out in your fort!

• prospector: add new --show option to give the player control over which report sections are shown. e.g.
prospect all --show ores will just show information on ores.

• quickfort:

– Dreamfort blueprint set improvements: set traffic designations to encourage dwarves to eat cooked
food instead of raw ingredients

– library blueprints are now included by default in quickfort list output. Use the new --useronly
(or just -u) option to filter out library bluerpints.

– better error message when the blueprints directory cannot be found

• seedwatch: seedwatch all now adds all plants with seeds to the watchlist, not just the “basic” crops.

• materials.ItemTraitsDialog: added a default on_select-handler which toggles the traits.

766 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Removed

• fix/build-location: The corresponding DF bug (5991) was fixed in DF 0.40.05

• fix/diplomats: DF bug 3295 fixed in 0.40.05

• fix/fat-dwarves: DF bug 5971 fixed in 0.40.05

• fix/feeding-timers: DF bug 2606 is fixed in 0.40.12

• fix/merchants: DF bug that prevents humans from making trade agreements has been fixed

• gui/assign-rack: No longer useful in current DF versions

• gui/hack-wish: Replaced by gui/create-item

• gui/no-dfhack-init: No longer useful since players don’t have to create their own dfhack.init files anymore

API

• Removed “egg” (“eggy”) hook support (Linux only). The only remaining method of hooking into DF is by
interposing SDL calls, which has been the method used by all binary releases of DFHack.

• Removed Engravings module (C++-only). Access world.engravings directly instead.

• Removed Notes module (C++-only). Access ui.waypoints.points directly instead.

• Removed Windows module (C++-only) - unused.

• Constructions module (C++-only): removed t_construction, isValid(), getCount(),
getConstruction(), and copyConstruction(). Access world.constructions directly instead.

• Gui::getSelectedItem(), Gui::getAnyItem(): added support for the artifacts screen

• Units::teleport(): now sets unit.idle_area to discourage units from walking back to their original lo-
cation (or teleporting back, if using fastdwarf)

Lua

• Added dfhack.screen.hideGuard(): exposes the C++ Screen::Hide to Lua

• History: added dfhack.getCommandHistory(history_id, history_filename) and dfhack.
addCommandToHistory(history_id, history_filename, command) so gui scripts can access a
commandline history without requiring a terminal.

• helpdb: database and query interface for DFHack tool help text

• tile-material: fix the order of declarations. The GetTileMat function now returns the material as intended
(always returned nil before). Also changed the license info, with permission of the original author.

• utils.df_expr_to_ref(): fixed some errors that could occur when navigating tables

• widgets.CycleHotkeyLabel: clicking on the widget will now cycle the options and trigger on_change().
This also applies to the ToggleHotkeyLabel subclass.

• widgets.EditField:

– new onsubmit2 callback attribute is called when the user hits Shift-Enter.

– new function: setCursor(position) sets the input cursor.

– new attribute: ignore_keys lets you ignore specified characters if you want to use them as hotkeys

8.4. Changelog 767

DFHack Documentation, Release 50.11-r4

• widgets.FilteredList: new attribute: edit_ignore_keys gets passed to the filter EditField as
ignore_keys

• widgets.HotkeyLabel: clicking on the widget will now call on_activate().

• widgets.Label: scroll function now interprets the keywords +page, -page, +halfpage, and -halfpage
in addition to simple positive and negative numbers.

Structures

• Eliminate all “anon_X” names from structure fields

• army: change squads vector type to world_site_inhabitant, identify
min_smell_trigger``+``max_odor_level``+``max_low_light_vision``+``sense_creature_classes

• cave_column_rectangle: identify coordinates

• cave_column: identify Z coordinates

• embark_profile: identify reclaim fields, add missing pet_count vector

• entity_population: identify layer_id

• feature: identify “shiftCoords” vmethod, irritation_level and irritation_attacks fields

• flow_guide: identify “shiftCoords” vmethod

• general_refst: name parameters on getLocation and setLocation vmethods

• general_ref_locationst: name member fields

• historical_entity: confirm hostility_level and siege_tier

• item: identify method notifyCreatedMasterwork that is called when a masterwork is created.

• language_name_type: identify ElfTree and SymbolArtifice thru SymbolFood

• misc_trait_type: update auto-decrement markers, remove obsolete references

• timed_event: identify layer_id

• ui_advmode: identify several fields as containing coordinates

• ui_build_selector: identify cur_walk_tag and min_weight_races``+``max_weight_races

• ui: identify actual contents of unk5b88 field, identify infiltrator references

• unitst: identify histeventcol_id field inside status2

• viewscreen_barterst: name member fields

• viewscreen_tradegoodsst: rename trade_reply OffendedAnimal``+``OffendedAnimalAlt to
OffendedBoth``+``OffendedAnimal

• world_site_inhabitant: rename outcast_id and founder_outcast_entity_id, identify
interaction_id and interaction_effect_idx

768 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Documentation

• Added DFHack modding guide

• Group DFHack tools by tag so similar tools are grouped and easy to find

• Update all DFHack tool documentation (300+ pages) with standard syntax formatting, usage examples, and
overall clarified text.

8.4.17 DFHack 0.47.05-r6

New Scripts

• assign-minecarts: automatically assign minecarts to hauling routes that don’t have one

• deteriorate: combines, replaces, and extends previous deteriorateclothes, deterioratecorpses, and deteriorate-
food scripts.

• gui/petitions: shows petitions. now you can see which guildhall/temple you agreed to build!

• gui/quantum: point-and-click tool for creating quantum stockpiles

• gui/quickfort: shows blueprint previews on the live map so you can apply them interactively

• modtools/fire-rate: allows modders to adjust the rate of fire for ranged attacks

Fixes

• build-now: walls built above other walls can now be deconstructed like regularly-built walls

• eventful:

– fix eventful.registerReaction to correctly pass call_native argument thus allowing canceling
vanilla item creation. Updated related documentation.

– renamed NEW_UNIT_ACTIVE event to UNIT_NEW_ACTIVE to match the EventManager event
name

– fixed UNIT_NEW_ACTIVE event firing too often

• gui/dfstatus: no longer count items owned by traders

• gui/unit-info-viewer: fix calculation/labeling of unit size

• job.removeJob(): fixes regression in DFHack 0.47.05-r5 where items/buildings associated with the job were
not getting disassociated when the job is removed. Now build-now can build buildings and gui/mass-remove can
cancel building deconstruction again

• widgets.CycleHotkeyLabel: allow initial option values to be specified as an index instead of an option value

8.4. Changelog 769

DFHack Documentation, Release 50.11-r4

Misc Improvements

• build-now: buildings that were just designated with buildingplan are now built immediately (as long as there are
items available to build the buildings with) instead of being skipped until buildingplan gets around to doing its
regular scan

• caravan: new unload command, fixes endless unloading at the depot by reconnecting merchant pack animals
that were disconnected from their owners

• confirm:

– added a confirmation dialog for removing manager orders

– allow players to pause the confirmation dialog until they exit the current screen

• deteriorate: new now command immediately deteriorates items of the specified types

• New Fort Autostart Commands:

– refine food preparation orders so meal types are chosen intelligently according to the amount of meals
that exist and the number of aviailable items to cook with

– reduce required stock of dye for “Dye cloth” orders

– fix material conditions for making jugs and pots

– make wooden jugs by default to differentiate them from other stone tools. this allows players to more
easily select jugs out with a properly-configured stockpile (i.e. the new woodentools alias)

• list-agreements: now displays translated guild names, worshipped deities, petition age, and race-appropriate
professions (e.g. “Craftsdwarf” instead of “Craftsman”)

• Quickfort blueprint creation guide:

– new aliases: forbidsearch, permitsearch, and togglesearch use the search plugin to alter the
settings for a filtered list of item types when configuring stockpiles

– new aliases: stonetools and woodentools. the jugs alias is deprecated. please use stonetools
instead, which is the same as the old jugs alias.

– new aliases: usablehair, permitusablehair, and forbidusablehair alter settings for the types
of hair/wool that can be made into cloth: sheep, llama, alpaca, and troll. The craftrefuse aliases
have been altered to use this alias as well.

– new aliases: forbidthread, permitthread, forbidadamantinethread,
permitadamantinethread, forbidcloth, permitcloth, forbidadamantinecloth, and
permitadamantinecloth give you more control how adamantine-derived items are stored

• quickfort:

– Dreamfort blueprint set improvements: automatically create tavern, library, and temple locations (re-
stricted to residents only by default), automatically associate the rented rooms with the tavern

– Dreamfort blueprint set improvements: new design for the services level, including were-bitten hos-
pital recovery rooms and an appropriately-themed interrogation room next to the jail! Also fits better
in a 1x1 embark for minimalist players.

• workorder: a manager is no longer required for orders to be created (matching bevavior in the game itself)

770 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Removed

• deteriorateclothes: please use deteriorate --types=clothes instead

• deterioratecorpses: please use deteriorate --types=corpses instead

• deterioratefood: please use deteriorate --types=food instead

• devel/unforbidall: please use unforbid instead. You can silence the output with unforbid all --quiet

API

• word_wrap: argument bool collapse_whitespace converted to enum word_wrap_whitespace_mode
mode, with valid modes WSMODE_KEEP_ALL, WSMODE_COLLAPSE_ALL, and WSMODE_TRIM_LEADING.

Lua

• gui.View: all View subclasses (including all Widgets) can now acquire keyboard focus with the new
View:setFocus() function. See docs for details.

• materials.ItemTraitsDialog: new dialog to edit item traits (where “item” is part of a job or work order or
similar). The list of traits is the same as in vanilla work order conditions “t change traits”.

• widgets.EditField:

– the key_sep string is now configurable

– can now display an optional string label in addition to the activation key

– views that have an EditField subview no longer need to manually manage the EditField activation
state and input routing. This is now handled automatically by the new gui.View keyboard focus
subsystem.

• widgets.HotkeyLabel: the key_sep string is now configurable

Structures

• art_image_elementst: identify vmethod markDiscovered and second parameter for getName2

• art_image_propertyst: identify parameters for getName

• building_handler: fix vmethod get_machine_hookup_list parameters

• vermin: identify category field as new enum

• world.unk_26a9a8: rename to allow_announcements

8.4.18 DFHack 0.47.05-r5

New Plugins

• spectate: “spectator mode” – automatically follows dwarves doing things in your fort

8.4. Changelog 771

DFHack Documentation, Release 50.11-r4

New Scripts

• devel/eventful-client: useful for testing eventful events

New Tweaks

• tweak: partial-items displays percentage remaining for partially-consumed items such as hospital cloth

Fixes

• autofarm: removed restriction on only planting “discovered” plants

• cxxrandom: fixed exception when calling bool_distribution

• devel/query:

– fixed a problem printing parents when the starting path had lua pattern special characters in it

– fixed a crash when trying to iterate over linked lists

• gui/advfort: encrust and stud jobs no longer consume reagents without actually improving the target item

• luasocket: return correct status code when closing socket connections so clients can know when to retry

• quickfort: contructions and bridges are now properly placed over natural ramps

• setfps: keep internal ratio of processing FPS to graphics FPS in sync when updating FPS

Misc Improvements

• autochop:

– only designate the amount of trees required to reach max_logs

– preferably designate larger trees over smaller ones

• autonick:

– now displays help instead of modifying dwarf nicknames when run without parameters. use autonick
all to rename all dwarves.

– added --quiet and --help options

• blueprint:

– track phase renamed to carve

– carved fortifications and (optionally) engravings are now captured in generated blueprints

• cursecheck: new option, --ids prints creature and race IDs of the cursed creature

• debug:

– DFHack log messages now have configurable headers (e.g. timestamp, origin plugin name, etc.) via
the debugfilter command of the debug plugin

– script execution log messages (e.g. “Loading script: dfhack_extras.init” can now be controlled
with the debugfilter command. To hide the messages, add this line to your dfhack.init file:
debugfilter set Warning core script

• New Fort Autostart Commands:

– add mugs to basic manager orders

772 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– onMapLoad_dreamfort.init remove “cheaty” commands and new tweaks that are now in the default
dfhack.init-example file

• dig-now: handle fortification carving

• Events from EventManager:

– add new event type JOB_STARTED, triggered when a job first gains a worker

– add new event type UNIT_NEW_ACTIVE, triggered when a new unit appears on the active list

• gui/blueprint: support new blueprint options and phases

• gui/create-item: Added “(chain)” annotation text for armours with the [CHAIN_METAL_TEXT] flag set

• manipulator: tweak colors to make the cursor easier to locate

• quickfort:

– support transformations for blueprints that use expansion syntax

– adjust direction affinity when transforming buildings (e.g. bridges that open to the north now open to
the south when rotated 180 degrees)

– automatically adjust cursor movements on the map screen in #query and #config modes when the
blueprint is transformed. e.g. {Up} will be played back as {Right} when the blueprint is rotated
clockwise and the direction key would move the map cursor

– new blueprint mode: #config; for playing back key sequences that don’t involve the map cursor (like
configuring hotkeys, changing standing orders, or modifying military uniforms)

– API function apply_blueprint can now take data parameters that are simple strings instead of
coordinate maps. This allows easier application of blueprints that are just one cell.

• stocks: allow search terms to match the full item label, even when the label is truncated for length

• tweak: stable-cursor now keeps the cursor stable even when the viewport moves a small amount

• dfhack.init-example: recently-added tweaks added to example dfhack.init file

API

• add functions reverse-engineered from ambushing unit code: Units::isHidden(),
Units::isFortControlled(), Units::getOuterContainerRef(), Items::getOuterContainerRef()

• Job::removeJob(): use the job cancel vmethod graciously provided by The Toady One in place of a synthetic
method derived from reverse engineering

Lua

• custom-raw-tokens: library for accessing tokens added to raws by mods

• dfhack.units: Lua wrappers for functions reverse-engineered from ambushing unit code: isHidden(unit),
isFortControlled(unit), getOuterContainerRef(unit), getOuterContainerRef(item)

• dialogs: show* functions now return a reference to the created dialog

• dwarfmode.enterSidebarMode(): passing df.ui_sidebar_mode.DesignateMine now always results in
you entering DesignateMine mode and not DesignateChopTrees, even when you looking at the surface
(where the default designation mode is DesignateChopTrees)

• dwarfmode.MenuOverlay:

8.4. Changelog 773

DFHack Documentation, Release 50.11-r4

– if sidebar_mode attribute is set, automatically manage entering a specific sidebar mode on show and
restoring the previous sidebar mode on dismiss

– new class function renderMapOverlay to assist with painting tiles over the visible map

• ensure_key: new global function for retrieving or dynamically creating Lua table mappings

• safe_index: now properly handles lua sparse tables that are indexed by numbers

• string: new function escape_pattern() escapes regex special characters within a string

• widgets:

– unset values in frame_inset table default to 0

– FilteredList class now allows all punctuation to be typed into the filter and can match search keys
that start with punctuation

– minimum height of ListBox dialog is now calculated correctly when there are no items in the list (e.g.
when a filter doesn’t match anything)

– if autoarrange_subviews is set, Panels will now automatically lay out widgets vertically accord-
ing to their current height. This allows you to have widgets dynamically change height or become
visible/hidden and you don’t have to worry about recalculating frame layouts

– new class ResizingPanel (subclass of Panel) automatically recalculates its own frame height based
on the size, position, and visibility of its subviews

– new class HotkeyLabel (subclass of Label) that displays and reacts to hotkeys

– new class CycleHotkeyLabel (subclass of Label) allows users to cycle through a list of options by
pressing a hotkey

– new class ToggleHotkeyLabel (subclass of CycleHotkeyLabel) toggles between On and Off states

– new class WrappedLabel (subclass of Label) provides autowrapping of text

– new class TooltipLabel (subclass of WrappedLabel) provides tooltip-like behavior

Structures

• adventure_optionst: add missing getUnitContainer vmethod

• historical_figure.T_skills: add account_balance field

• job: add improvement field (union with hist_figure_id and race)

• report_init.flags: rename sparring flag to hostile_combat

• viewscreen_loadgamest: add missing LoadingImageSets and LoadingDivinationSets enum values to
cur_step field

Documentation

• add more examples to the plugin example skeleton files so they are more informative for a newbie

• update download link and installation instructions for Visual C++ 2015 build tools on Windows

• update information regarding obtaining a compatible Windows build environment

• confirm: correct the command name in the plugin help text

• cxxrandom: added usage examples

774 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• String class extensions: document DFHack string extensions (startswith(), endswith(), split(), trim(),
wrap(), and escape_pattern())

• Quickfort blueprint creation guide: added screenshots to the Dreamfort case study and overall clarified text

• Client libraries: add new Rust client library

• Lua API.rst: added isHidden(unit), isFortControlled(unit), getOuterContainerRef(unit),
getOuterContainerRef(item)

8.4.19 DFHack 0.47.05-r4

Fixes

• blueprint:

– fixed passing incorrect parameters to gui/blueprint when you run blueprint gui with optional
params

– key sequences for constructed walls and down stairs are now correct

• exportlegends: fix issue where birth year was outputted as birth seconds

• quickfort:

– produce a useful error message instead of a code error when a bad query blueprint key sequence leaves
the game in a mode that does not have an active cursor

– restore functionality to the --verbose commandline flag

– don’t designate tiles for digging if they are within the bounds of a planned or constructed building

– allow grates, bars, and hatches to be built on flat floor (like DF itself allows)

– allow tracks to be built on hard, natural rock ramps

– allow dig priority to be properly set for track designations

– fix incorrect directions for tracks that extend south or east from a track segment pair specified with
expansion syntax (e.g. T(4x4))

– fix parsing of multi-part extended zone configs (e.g. when you set custom supply limits for hospital
zones AND set custom flags for a pond)

– fix error when attempting to set a custom limit for plaster powder in a hospital zone

• tailor: fixed some inconsistencies (and possible crashes) when parsing certain subcommands, e.g. tailor help

• tiletypes, tiletypes: fix crash when running from an unsuspended core context

Misc Improvements

• Core: DFHack now prints the name of the init script it is running to the console and stderr

• automaterial: ensure construction tiles are laid down in order when using buildingplan to plan the constructions

• blueprint:

– all blueprint phases are now written to a single file, using quickfort multi-blueprint file syntax. to get
the old behavior of each phase in its own file, pass the --splitby=phase parameter to blueprint

– you can now specify the position where the cursor should be when the blueprint is played back with
quickfort by passing the --playback-start parameter

8.4. Changelog 775

DFHack Documentation, Release 50.11-r4

– generated blueprints now have labels so quickfort can address them by name

– all building types are now supported

– multi-type stockpiles are now supported

– non-rectangular stockpiles and buildings are now supported

– blueprints are no longer generated for phases that have nothing to do (unless those phases are explicitly
enabled on the commandline or gui)

– new “track” phase that discovers and records carved tracks

– new “zone” phase that discovers and records activity zones, including custom configuration for ponds,
gathering, and hospitals

• dig-now: no longer leaves behind a designated tile when a tile was designated beneath a tile designated for
channeling

• gui/blueprint:

– support the new --splitby and --format options for blueprint

– hide help text when the screen is too short to display it

• orders: added list subcommand to show existing exported orders

• Quickfort blueprint library: added light aquifer tap and pump stack blueprints (with step-by-step usage guides)
to the quickfort blueprint library

• quickfort:

– Dreamfort blueprint set improvements: added iron and flux stock level indicators on the industry level
and a prisoner processing quantum stockpile in the surface barracks. also added help text for how to
manage sieges and how to manage prisoners after a siege.

– add quickfort.apply_blueprint() API function that can be called directly by other scripts

– by default, don’t designate tiles for digging that have masterwork engravings on them. quality level to
preserve is configurable with the new --preserve-engravings param

– implement single-tile track aliases so engraved tracks can be specified tile-by-tile just like constructed
tracks

– allow blueprints to jump up or down multiple z-levels with a single command (e.g. #>5 goes down 5
levels)

– blueprints can now be repeated up and down a specified number of z-levels via repeat markers in
meta blueprints or the --repeat commandline option

– blueprints can now be rotated, flipped, and shifted via transform and shift markers in meta
blueprints or the corresponding commandline options

• quickfort, New Fort Autostart Commands: Dreamfort blueprint set improvements based on playtesting and feed-
back. includes updated profession definitions.

776 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Removed

• digfort: please use quickfort instead

• fortplan: please use quickfort instead

API

• Buildings::findCivzonesAt(): lookups now complete in constant time instead of linearly scanning through
all civzones in the game

Lua

• argparse.processArgsGetopt(): you can now have long form parameters that are not an alias for a short
form parameter. For example, you can now have a parameter like --longparam without needing to have an
equivalent one-letter -l param.

• dwarfmode.enterSidebarMode(): df.ui_sidebar_mode.DesignateMine is now a suported target sidebar
mode

Structures

• historical_figure_info.spheres: give spheres vector a usable name

• unit.enemy: fix definition of enemy_status_slot and add combat_side_id

8.4.20 DFHack 0.47.05-r3

New Plugins

• dig-now: instantly completes dig designations (including smoothing and carving tracks)

New Scripts

• autonick: gives dwarves unique nicknames

• build-now: instantly completes planned building constructions

• do-job-now: makes a job involving current selection high priority

• prioritize: automatically boosts the priority of current and/or future jobs of specified types, such as hauling food,
tanning hides, or pulling levers

• reveal-adv-map: exposes/hides all world map tiles in adventure mode

8.4. Changelog 777

DFHack Documentation, Release 50.11-r4

Fixes

• Core: alt keydown state is now cleared when DF loses and regains focus, ensuring the alt modifier state is not
stuck on for systems that don’t send standard keyup events in response to alt-tab window manager events

• Lua: memscan.field_offset(): fixed an issue causing devel/export-dt-ini to crash sometimes, especially on
Windows

• autofarm: autofarm will now count plant growths as well as plants toward its thresholds

• autogems: no longer assigns gem cutting jobs to workshops with gem cutting prohibited in the workshop profile

• devel/export-dt-ini: fixed incorrect vtable address on Windows

• quickfort:

– allow machines (e.g. screw pumps) to be built on ramps just like DF allows

– fix error message when the requested label is not found in the blueprint file

Misc Improvements

• assign-beliefs, assign-facets: now update needs of units that were changed

• buildingplan: now displays which items are attached and which items are still missing for planned buildings

• devel/query:

– updated script to v3.2 (i.e. major rewrite for maintainability/readability)

– merged options -query and -querykeys into -search

– merged options -depth and -keydepth into -maxdepth

– replaced option -safer with -excludetypes and -excludekinds

– improved how tile data is dealt with identification, iteration, and searching

– added option -findvalue

– added option -showpaths to print full data paths instead of nested fields

– added option -nopointers to disable printing values with memory addresses

– added option -alignto to set the value column’s alignment

– added options -oneline and alias -1 to avoid using two lines for fields with metadata

– added support for matching multiple patterns

– added support for selecting the highlighted job, plant, building, and map block data

– added support for selecting a Lua script (e.g. Data tables)

– added support for selecting a Json file (e.g. dwarf_profiles.json)

– removed options -listall, -listfields, and -listkeys - these are now simply default behaviour

– -table now accepts the same abbreviations (global names, unit, screen, etc.) as lua and gui/gm-
editor

• Data tables: integrated devel/query to show the table definitions when requested with -list

• geld: fixed -help option

• gui/gm-editor: made search case-insensitive

• orders:

778 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– support importing and exporting reaction-specific item conditions, like “lye-containing” for soap pro-
duction orders

– new sort command. sorts orders according to their repeat frequency. this prevents daily orders from
blocking other orders for simlar items from ever getting completed.

• quickfort:

– Dreamfort blueprint set improvements: extensive revision based on playtesting and feedback. in-
cludes updated onMapLoad_dreamfort.init settings file, enhanced automation orders, and pre-
made profession definitions. see full changelog at https://github.com/DFHack/dfhack/pull/1921 and
https://github.com/DFHack/dfhack/pull/1925

– accept multiple commands, list numbers, and/or blueprint lables on a single commandline

• tailor: allow user to specify which materials to be used, and in what order

• tiletypes, tiletypes: add --cursor and --quiet options to support non-interactive use cases

• unretire-anyone: replaced the ‘undead’ descriptor with ‘reanimated’ to make it more mod-friendly

• warn-starving: added an option to only check sane dwarves

API

• The Items module moveTo* and remove functions now handle projectiles

Internals

• Install tests in the scripts repo into hack/scripts/test/scripts when the CMake variable BUILD_TESTS is defined

Lua

• new global function: safe_pairs(iterable[, iterator_fn]) will iterate over the iterable (a table or
iterable userdata) with the iterator_fn (pairs if not otherwise specified) if iteration is possible. If iteration is
not possible or would throw an error, for example if nil is passed as the iterable, the iteration is just silently
skipped.

Structures

• cursed_tomb: new struct type

• job_item: identified several fields

• ocean_wave_maker: new struct type

• worldgen_parms: moved to new struct type

8.4. Changelog 779

https://github.com/DFHack/dfhack/pull/1921
https://github.com/DFHack/dfhack/pull/1925

DFHack Documentation, Release 50.11-r4

Documentation

• New Fort Autostart Commands: documentation for all of Dreamfort’s supporting files (useful for all forts, not
just Dreamfort!)

• Quickfort blueprint library: updated dreamfort documentation and added screenshots

8.4.21 DFHack 0.47.05-r2

New Scripts

• clear-webs: removes all webs on the map and/or frees any webbed creatures

• devel/block-borders: overlay that displays map block borders

• devel/luacov: generate code test coverage reports for script development. Define the
DFHACK_ENABLE_LUACOV=1 environment variable to start gathering coverage metrics.

• fix/drop-webs: causes floating webs to fall to the ground

• gui/blueprint: interactive frontend for the blueprint plugin (with mouse support!)

• gui/mass-remove: mass removal/suspension tool for buildings and constructions

• reveal-hidden-sites: exposes all undiscovered sites

• set-timeskip-duration: changes the duration of the “Updating World” process preceding the start of a new game,
enabling you to jump in earlier or later than usual

Fixes

• Fixed an issue preventing some external scripts from creating zones and other abstract buildings (see note about
room definitions under “Internals”)

• Fixed an issue where scrollable text in Lua-based screens could prevent other widgets from scrolling

• bodyswap:

– stopped prior party members from tagging along after bodyswapping and reloading the map

– made companions of bodyswapping targets get added to the adventurer party - they can now be viewed
using the in-game party system

• buildingplan:

– fixed an issue where planned constructions designated with DF’s sizing keys (umkh) would sometimes
be larger than requested

– fixed an issue preventing other plugins like automaterial from planning constructions if the “enable
all” buildingplan setting was turned on

– made navigation keys work properly in the materials selection screen when alternate keybindings are
used

• color-schemes: fixed an error in the register subcommand when the DF path contains certain punctuation
characters

• command-prompt: fixed issues where overlays created by running certain commands (e.g. gui/liquids,
gui/teleport) would not update the parent screen correctly

• dwarfvet: fixed a crash that could occur with hospitals overlapping with other buildings in certain ways

780 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• embark-assistant: fixed faulty early exit in first search attempt when searching for waterfalls

• gui/advfort: fixed an issue where starting a workshop job while not standing at the center of the workshop required
advancing time manually

• gui/unit-info-viewer: fixed size description displaying unrelated values instead of size

• orders: fixed crash when importing orders with malformed IDs

• quickfort:

– comments in blueprint cells no longer prevent the rest of the row from being read. A cell with a single
‘#’ marker in it, though, will still stop the parser from reading further in the row.

– fixed an off-by-one line number accounting in blueprints with implicit #dig modelines

– changed to properly detect and report an error on sub-alias params with no values instead of just failing
to apply the alias later (if you really want an empty value, use {Empty} instead)

– improved handling of non-rectangular and non-solid extent-based structures (like fancy-shaped stock-
piles and farm plots)

– fixed conversion of numbers to DF keycodes in #query blueprints

– fixed various errors with cropping across the map edge

– properly reset config to default values in quickfort reset even if if the dfhack-config/
quickfort/quickfort.txt config file doesn’t mention all config vars. Also now works even if
the config file doesn’t exist.

• stonesense: fixed a crash that could occur when ctrl+scrolling or closing the Stonesense window

• quickfortress.csv blueprint: fixed refuse stockpile config and prevented stockpiles from covering stairways

Misc Improvements

• Added adjectives to item selection dialogs, used in tools like gui/create-item - this makes it possible to differen-
tiate between different types of high/low boots, shields, etc. (some of which are procedurally generated)

• blueprint:

– made depth and name parameters optional. depth now defaults to 1 (current level only) and name
defaults to “blueprint”

– depth can now be negative, which will result in the blueprints being written from the highest z-level
to the lowest. Before, blueprints were always written from the lowest z-level to the highest.

– added the --cursor option to set the starting coordinate for the generated blueprints. A game cursor
is no longer necessary if this option is used.

• devel/annc-monitor: added report enable|disable subcommand to filter combat reports

• embark-assistant: slightly improved performance of surveying and improved code a little

• gui/advfort: added workshop name to workshop UI

• quickfort:

– the Dreamfort blueprint set can now be comfortably built in a 1x1 embark

– added the --cursor option for running a blueprint at specific coordinates instead of starting at the
game cursor position

– added more helpful error messages for invalid modeline markers

– added support for extra space characters in blueprints

8.4. Changelog 781

DFHack Documentation, Release 50.11-r4

– added a warning when an invalid alias is encountered instead of silently ignoring it

– made more quiet when the --quiet parameter is specified

• setfps: improved error handling

• stonesense: sped up startup time

• tweak hide-priority: changed so that priorities stay hidden (or visible) when exiting and re-entering the designa-
tions menu

• unretire-anyone: the historical figure selection list now includes the SYN_NAME (necromancer, vampire, etc) of
figures where applicable

API

• Added dfhack.maps.getPlantAtTile(x, y, z) and dfhack.maps.getPlantAtTile(pos), and up-
dated dfhack.gui.getSelectedPlant() to use it

• Added dfhack.units.teleport(unit, pos)

Internals

• Room definitions and extents are now created for abstract buildings so callers don’t have to initialize the room
structure themselves

• The DFHack test harness is now much easier to use for iterative development. Configuration can now be specified
on the commandline, there are more test filter options, and the test harness can now easily rerun tests that have
been run before.

• The test/main command to invoke the test harness has been renamed to just test

• Unit tests can now use delay_until(predicate_fn, timeout_frames) to delay until a condition is met

• Unit tests must now match any output expected to be printed via dfhack.printerr()

• Unit tests now support fortress mode (allowing tests that require a fortress map to be loaded) - note that these
tests are skipped by continuous integration for now, pending a suitable test fortress

Lua

• new library: argparse is a collection of commandline argument processing functions

• new string utility functions:

– string:wrap(width) wraps a string at space-separated word boundaries

– string:trim() removes whitespace characters from the beginning and end of the string

– string:split(delimiter, plain) splits a string with the given delimiter and returns a table of
substrings. if plain is specified and set to true, delimiter is interpreted as a literal string instead
of as a pattern (the default)

• new utility function: utils.normalizePath(): normalizes directory slashes across platoforms to / and coa-
leses adjacent directory separators

• reveal: now exposes unhideFlood(pos) functionality to Lua

• xlsxreader: added Lua class wrappers for the xlsxreader plugin API

• argparse.processArgsGetopt() (previously utils.processArgsGetopt()):

782 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– now returns negative numbers (e.g. -10) in the list of positional parameters instead of treating it as an
option string equivalent to -1 -0

– now properly handles -- like GNU getopt as a marker to treat all further parameters as non-options

– now detects when required arguments to long-form options are missing

• gui.dwarfmode: new function: enterSidebarMode(sidebar_mode, max_esc) which uses keypresses to
get into the specified sidebar mode from whatever the current screen is

• gui.Painter: fixed error when calling viewport() method

Structures

• Identified remaining rhythm beat enum values

• ui_advmode.interactions: identified some fields related to party members

• ui_advmode_menu: identified several enum items

• ui_advmode:

– identified several fields

– renamed wait to rest_mode and changed to an enum with correct values

• viewscreen_legendsst.cur_page: added missing Books enum item, which fixes some other values

Documentation

• Added more client library implementations to the remote interface docs

8.4.22 DFHack 0.47.05-r1

Fixes

• confirm: stopped exposing alternate names when convicting units

• embark-assistant: fixed bug in soil depth determination for ocean tiles

• orders: don’t crash when importing orders with malformed JSON

• prospector: improved pre embark rough estimates, particularly for small clusters

• quickfort: raw numeric Dig priorities (e.g. 3, which is a valid shorthand for d3) now works when used in .xlsx
blueprints

Misc Improvements

• autohauler: allowed the Alchemist labor to be enabled in manipulator and other labor screens so it can be used
for its intended purpose of flagging that no hauling labors should be assigned to a dwarf. Before, the only way
to set the flag was to use an external program like Dwarf Therapist.

• embark-assistant: slightly improved performance of surveying

• gui/no-dfhack-init: clarified how to dismiss dialog that displays when no dfhack.init file is found

• quickfort:

8.4. Changelog 783

DFHack Documentation, Release 50.11-r4

– Dreamfort blueprint set improvements: significant refinements across the entire blueprint set. Dream-
fort is now much faster, much more efficient, and much easier to use. The checklist now includes a
mini-walkthrough for quick reference. The spreadsheet now also includes embark profile suggestions

– added aliases for configuring masterwork and artifact core quality for all stockpile categories that have
them; made it possible to take from multiple stockpiles in the quantumstop alias

– an active cursor is no longer required for running #notes blueprints (like the dreamfort walkthrough)

– you can now be in any mode with an active cursor when running #query blueprints (before you could
only be in a few “approved” modes, like look, query, or place)

– refined #query blueprint sanity checks: cursor should still be on target tile at end of configuration,
and it’s ok for the screen ID to change if you are destroying (or canceling destruction of) a building

– now reports how many work orders were added when generating manager orders from blueprints in
the gui dialog

– added --dry-run option to process blueprints but not change any game state

– you can now specify the number of desired barrels, bins, and wheelbarrows for individual stockpiles
when placing them

– quickfort orders on a #place blueprint will now enqueue manager orders for barrels, bins, or
wheelbarrows that are explicitly set in the blueprint.

– you can now add alias definitions directly to your blueprint files instead of having to put them in a
separate aliases.txt file. makes sharing blueprints with custom alias definitions much easier.

– new commandline options for setting the initial state of the gui dialog. for example: quickfort gui
-l dreamfort notes will start the dialog filtered for the dreamfort walkthrough blueprints

Structures

• Dropped support for 0.47.03-0.47.04

• Identified scattered enum values (some rhythm beats, a couple of corruption unit thoughts, and a few language
name categories)

• viewscreen_loadgamest: renamed cur_step enumeration to match style of
viewscreen_adopt_regionst and viewscreen_savegamest

• viewscreen_savegamest: identified cur_step enumeration

Documentation

• digfort: added deprecation warnings - digfort has been replaced by quickfort

• fortplan: added deprecation warnings - fortplan has been replaced by quickfort

784 Chapter 8. About DFHack

http://www.bay12forums.com/smf/index.php?topic=176889.msg8239017#msg8239017
https://docs.google.com/spreadsheets/d/13PVZ2h3Mm3x_G1OXQvwKd7oIR2lK4A1Ahf6Om1kFigw/edit#gid=1459509569
https://docs.google.com/spreadsheets/d/13PVZ2h3Mm3x_G1OXQvwKd7oIR2lK4A1Ahf6Om1kFigw/edit#gid=149144025

DFHack Documentation, Release 50.11-r4

8.4.23 DFHack 0.47.04-r5

New Scripts

• gui/quickfort: fast access to the quickfort interactive dialog

• workorder-recheck: resets the selected work order to the Checking state

Fixes

• embark-assistant:

– fixed order of factors when calculating min temperature

– improved performance of surveying

• quickfort:

– fixed eventual crashes when creating zones

– fixed library aliases for tallow and iron, copper, and steel weapons

– zones are now created in the active state by default

– solve rare crash when changing UI modes

• search: fixed crash when searching the k sidebar and navigating to another tile with certain keys, like < or >

• seedwatch: fixed an issue where the plugin would disable itself on map load

• stockflow: fixed j character being intercepted when naming stockpiles

• stockpiles: no longer outputs hotkey help text beneath stockflow hotkey help text

Misc Improvements

• Lua label widgets (used in all standard message boxes) are now scrollable with Up/Down/PgUp/PgDn keys

• autofarm: now fallows farms if all plants have reached the desired count

• buildingplan:

– added ability to set global settings from the console, e.g. buildingplan set boulders false

– added “enable all” option for buildingplan (so you don’t have to enable all building types individu-
ally). This setting is not persisted (just like quickfort_mode is not persisted), but it can be set from
onMapLoad.init

– modified Planning Mode status in the UI to show whether the plugin is in quickfort mode, “enable
all” mode, or whether just the building type is enabled.

• quickfort:

– Dreamfort blueprint set improvements: added a streamlined checklist for all required dreamfort com-
mands and gave names to stockpiles, levers, bridges, and zones

– added aliases for bronze weapons and armor

– added alias for tradeable crafts

– new blueprint mode: #ignore, useful for scratch space or personal notes

– implement {Empty} keycode for use in quickfort aliases; useful for defining blank-by-default alias
values

8.4. Changelog 785

DFHack Documentation, Release 50.11-r4

– more flexible commandline parsing allowing for more natural parameter ordering (e.g. where you
used to have to write quickfort list dreamfort -l you can now write quickfort list -l
dreamfort)

– print out blueprint names that a #meta blueprint is applying so it’s easier to understand what meta
blueprints are doing

– whitespace is now allowed between a marker name and the opening parenthesis in blueprint modelines.
for example, #dig start (5; 5) is now valid (you used to be required to write #dig start(5;
5))

Lua

• dfhack.run_command(): changed to interface directly with the console when possible, which allows interactive
commands and commands that detect the console encoding to work properly

• processArgsGetopt() added to utils.lua, providing a callback interface for parameter parsing and getopt-like
flexibility for parameter ordering and combination (see docs in library/lua/utils.lua and library/lua/
3rdparty/alt_getopt.lua for details).

Structures

• job: identified order_id field

Documentation

• Added documentation for Lua’s dfhack.run_command() and variants

8.4.24 DFHack 0.47.04-r4

New Scripts

• fix/corrupt-equipment: fixes some military equipment-related corruption issues that can cause DF crashes

Fixes

• Fixed an issue on some Linux systems where DFHack installed through a package manager would attempt to
write files to a non-writable folder (notably when running exportlegends or gui/autogems)

• adaptation: fixed handling of units with no cave adaptation suffered yet

• assign-goals: fixed error preventing new goals from being created

• assign-preferences: fixed handling of preferences for flour

• buildingplan:

– fixed an issue preventing artifacts from being matched when the maximum item quality is set to
artifacts

– stopped erroneously matching items to buildings while the game is paused

– fixed a crash when pressing 0 while having a noble room selected

• deathcause: fixed an error when inspecting certain corpses

786 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• dwarfmonitor: fixed a crash when opening the prefs screen if units have vague preferences

• dwarfvet: fixed a crash that could occur when discharging patients

• embark-assistant:

– fixed an issue causing incursion resource matching (e.g. sand/clay) to skip some tiles if those resources
were provided only through incursions

– corrected river size determination by performing it at the MLT level rather than the world tile level

• quickfort:

– fixed handling of modifier keys (e.g. {Ctrl} or {Alt}) in query blueprints

– fixed misconfiguration of nest boxes, hives, and slabs that were preventing them from being built from
build blueprints

– fixed valid placement detection for floor hatches, floor grates, and floor bars (they were erroneously
being rejected from open spaces and staircase tops)

– fixed query blueprint statistics being added to the wrong metric when both a query and a zone blueprint
are run by the same meta blueprint

– added missing blueprint labels in gui dialog list

– fixed occupancy settings for extent-based structures so that stockpiles can be placed within other stock-
piles (e.g. in a checkerboard or bullseye pattern)

• search: fixed an issue where search options might not display if screens were destroyed and recreated program-
matically (e.g. with quickfort)

• unsuspend: now leaves buildingplan-managed buildings alone and doesn’t unsuspend underwater tasks

• workflow: fixed an error when creating constraints on “mill plants” jobs and some other plant-related jobs

• zone: fixed an issue causing the enumnick subcommand to run when attempting to run assign, unassign, or
slaughter

Misc Improvements

• buildingplan:

– added support for all buildings, furniture, and constructions (except for instruments)

– added support for respecting building job_item filters when matching items, so you can set your own
programmatic filters for buildings before submitting them to buildingplan

– changed default filter setting for max quality from artifact to masterwork

– changed min quality adjustment hotkeys from ‘qw’ to ‘QW’ to avoid conflict with existing hotkeys for
setting roller speed - also changed max quality adjustment hotkeys from ‘QW’ to ‘AS’ to make room
for the min quality hotkey changes

– added a new global settings page accessible via the G hotkey when on any building build screen;
Quickfort Mode toggle for legacy Python Quickfort has been moved to this page

– added new global settings for whether generic building materials should match blocks, boulders, logs,
and/or bars - defaults are everything but bars

• devel/export-dt-ini: updated for Dwarf Therapist 41.2.0

• embark-assistant: split the lair types displayed on the local map into mound, burrow, and lair

• gui/advfort: added support for linking to hatches and pressure plates with mechanisms

8.4. Changelog 787

DFHack Documentation, Release 50.11-r4

• modtools/add-syndrome: added support for specifying syndrome IDs instead of names

• probe: added more output for designations and tile occupancy

• quickfort:

– The Dreamfort sample blueprints now have complete walkthroughs for each fort level and importable
orders that automate basic fort stock management

– added more blueprints to the blueprints library: several bedroom layouts, the Saracen Crypts, and the
complete fortress example from Python Quickfort: TheQuickFortress

– query blueprint aliases can now accept parameters for dynamic expansion - see dfhack-
config/quickfort/aliases.txt for details

– alias names can now include dashes and underscores (in addition to letters and numbers)

– improved speed of first call to quickfort list significantly, especially for large blueprint libraries

– added query_unsafe setting to disable query blueprint error checking - useful for query blueprints
that send unusual key sequences

– added support for bookcases, display cases, and offering places (altars)

– added configuration support for zone pit/pond, gather, and hospital sub-menus in zone blueprints

– removed buildings_use_blocks setting and replaced it with more flexible functionality in build-
ingplan

– added support for creating uninitialized stockpiles with c

API

• buildingplan: added Lua interface API

• Buildings::setSize(): changed to reuse existing extents when possible

• dfhack.job.isSuitableMaterial(): added an item type parameter so the non_economic flag can be prop-
erly handled (it was being matched for all item types instead of just boulders)

Lua

• utils.addressof(): fixed for raw userdata

Structures

• building_extents_type: new enum, used for building_extents.extents

• world_mountain_peak: new struct (was previously inline) - used in world_data.mountain_peaks

788 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Documentation

• Quickfort blueprint creation guide: alias syntax and alias standard library documentation for quickfort blueprints

• Quickfort blueprint library: overview of the quickfort blueprint library

8.4.25 DFHack 0.47.04-r3

New Plugins

• xlsxreader: provides an API for Lua scripts to read Excel spreadsheets

New Scripts

• quickfort: DFHack-native implementation of quickfort with many new features and integrations - see the Quick-
fort blueprint creation guide for details

• timestream: controls the speed of the calendar and creatures

• uniform-unstick: prompts units to reevaluate their uniform, by removing/dropping potentially conflicting worn
items

Fixes

• ban-cooking: fixed an error in several subcommands

• buildingplan: fixed handling of buildings that require buckets

• getplants: fixed a crash that could occur on some maps

• search: fixed an issue causing item counts on the trade screen to display inconsistently when searching

• stockpiles:

– fixed a crash when loading food stockpiles

– fixed an error when saving furniture stockpiles

Misc Improvements

• createitem:

– added support for plant growths (fruit, berries, leaves, etc.)

– added an inspect subcommand to print the item and material tokens of existing items, which can be
used to create additional matching items

• embark-assistant: added support for searching for taller waterfalls (up to 50 z-levels tall)

• search: added support for searching for names containing non-ASCII characters using their ASCII equivalents

• stocks: added support for searching for items containing non-ASCII characters using their ASCII equivalents

• unretire-anyone: made undead creature names appear in the historical figure list

• zone:

– added an enumnick subcommand to assign enumerated nicknames (e.g “Hen 1”, “Hen 2”. . .)

– added slaughter indication to uinfo output

8.4. Changelog 789

DFHack Documentation, Release 50.11-r4

API

• Added DFHack::to_search_normalized() (Lua: dfhack.toSearchNormalized()) to convert non-ASCII
alphabetic characters to their ASCII equivalents

Structures

• history_event_masterpiece_createdst: fixed alignment, including subclasses, and identified
skill_at_time

• item_body_component: fixed some alignment issues and identified some fields (also applies to subclasses like
item_corpsest)

• stockpile_settings: removed furniture.sand_bags (no longer present)

Documentation

• Fixed syntax highlighting of most code blocks to use the appropriate language (or no language) instead of Python

8.4.26 DFHack 0.47.04-r2

New Scripts

• animal-control: helps manage the butchery and gelding of animals

• devel/kill-hf : kills a historical figure

• geld: gelds or ungelds animals

• list-agreements: lists all guildhall and temple agreements

• list-waves: displays migration wave information for citizens/units

• ungeld: ungelds animals (wrapper around geld)

New Tweaks

• tweak do-job-now: adds a job priority toggle to the jobs list

• tweak reaction-gloves: adds an option to make reactions produce gloves in sets with correct handedness

Fixes

• Fixed a segfault when attempting to start a headless session with a graphical PRINT_MODE setting

• Fixed an issue with the macOS launcher failing to un-quarantine some files

• Fixed Units::isEggLayer, Units::isGrazer, Units::isMilkable, Units::isTrainableHunting,
Units::isTrainableWar, and Units::isTamable ignoring the unit’s caste

• Linux: fixed dfhack.getDFPath() (Lua) and Process::getPath() (C++) to always return the DF root path,
even if the working directory has changed

• digfort:

– fixed y-line tracking when .csv files contain lines with only commas

790 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– fixed an issue causing blueprints touching the southern or eastern edges of the map to be rejected
(northern and western edges were already allowed). This allows blueprints that span the entire embark
area.

• embark-assistant: fixed a couple of incursion handling bugs.

• embark-skills: fixed an issue with structures causing the points option to do nothing

• exportlegends:

– fixed an issue where two different <reason> tags could be included in a <historical_event>

– stopped including some tags with -1 values which don’t provide useful information

• getplants: fixed issues causing plants to be collected even if they have no growths (or unripe growths)

• gui/advfort: fixed “operate pump” job

• gui/load-screen: fixed an issue causing longer timezones to be cut off

• labormanager:

– fixed handling of new jobs in 0.47

– fixed an issue preventing custom furnaces from being built

• modtools/moddable-gods:

– fixed an error when creating the historical figure

– removed unused -domain and -description arguments

– made -depictedAs argument work

• names:

– fixed an error preventing the script from working

– fixed an issue causing renamed units to display their old name in legends mode and some other places

• pref-adjust: fixed some compatibility issues and a potential crash

• RemoteFortressReader:

– fixed a couple crashes that could result from decoding invalid enum items
(site_realization_building_type and improvement_type)

– fixed an issue that could cause block coordinates to be incorrect

• rendermax: fixed a hang that could occur when enabling some renderers, notably on Linux

• stonesense:

– fixed a crash when launching Stonesense

– fixed some issues that could cause the splash screen to hang

8.4. Changelog 791

DFHack Documentation, Release 50.11-r4

Misc Improvements

• Linux/macOS: Added console keybindings for deleting words (Alt+Backspace and Alt+d in most terminals)

• add-recipe:

– added tool recipes (minecarts, wheelbarrows, stepladders, etc.)

– added a command explanation or error message when entering an invalid command

• armoks-blessing: added adjustments to values and needs

• blueprint:

– now writes blueprints to the blueprints/ subfolder instead of the df root folder

– now automatically creates folder trees when organizing blueprints into subfolders (e.g. blueprint 30
30 1 rooms/dining dig will create the file blueprints/rooms/dining-dig.csv); previously
it would fail if the blueprints/rooms/ directory didn’t already exist

• confirm: added a confirmation dialog for convicting dwarves of crimes

• devel/query: added many new query options

• digfort:

– handled double quotes (”) at the start of a string, allowing .csv files exported from spreadsheets to work
without manual modification

– documented that removing ramps, cutting trees, and gathering plants are indeed supported

– added a force option to truncate blueprints if the full blueprint would extend off the edge of the map

• dwarf-op:

– added ability to select dwarves based on migration wave

– added ability to protect dwarves based on symbols in their custom professions

• exportlegends:

– changed some flags to be represented by self-closing tags instead of true/false strings (e.g.
<is_volcano/>) - note that this may require changes to other XML-parsing utilities

– changed some enum values from numbers to their string representations

– added ability to save all files to a subfolder, named after the region folder and date by default

• gui/advfort: added support for specifying the entity used to determine available resources

• gui/gm-editor: added support for automatically following ref-targets when pressing the i key

• manipulator: added a new column option to display units’ goals

• modtools/moddable-gods: added support for neuter gender

• pref-adjust:

– added support for adjusting just the selected dwarf

– added a new goth profile

• remove-stress: added a -value argument to enable setting stress level directly

• workorder: changed default frequency from “Daily” to “OneTime”

792 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

API

• Added Filesystem::mkdir_recursive

• Extended Filesystem::listdir_recursive to optionally make returned filenames relative to the start direc-
tory

• Units: added goal-related functions: getGoalType(), getGoalName(), isGoalAchieved()

Internals

• Added support for splitting scripts into multiple files in the scripts/internal folder without polluting the
output of ls

Lua

• Added a ref_target field to primitive field references, corresponding to the ref-target XML attribute

• Made dfhack.units.getRaceNameById(), dfhack.units.getRaceBabyNameById(), and dfhack.
units.getRaceChildNameById() available to Lua

Ruby

• Updated item_find and building_find to use centralized logic that works on more screens

Structures

• Added a new <df-other-vectors-type>, which allows world.*.other collections of vectors to use the
correct subtypes for items

• creature_raw: renamed gender to sex to match the field in unit, which is more frequently used

• crime: identified witnesses, which contains the data held by the old field named reports

• intrigue: new type (split out from historical_figure_relationships)

• items_other_id: removed BAD, and by extension, world.items.other.BAD, which was overlapping with
world.items.bad

• job_type: added job types new to 0.47

• plant_raw: material_defs now contains arrays rather than loose fields

• pronoun_type: new enum (previously documented in field comments)

• setup_character_info: fixed a couple alignment issues (needed by embark-skills)

• ui_advmode_menu: identified some new enum items

8.4. Changelog 793

DFHack Documentation, Release 50.11-r4

Documentation

• Added some new dev-facing pages, including dedicated pages about the remote API, memory research, and
documentation

• Expanded the installation guide

• Made a couple theme adjustments

8.4.27 DFHack 0.47.04-r1

New Scripts

• color-schemes: manages color schemes

• devel/print-event: prints the description of an event by ID or index

• devel/sc: checks size of structures

• devel/visualize-structure: displays the raw memory of a structure

• gui/color-schemes: an in-game interface for color-schemes

• light-aquifers-only: changes heavy aquifers to light aquifers

• on-new-fortress: runs DFHack commands only in a new fortress

• once-per-save: runs DFHack commands unless already run in the current save

• resurrect-adv: brings your adventurer back to life

• reveal-hidden-units: exposes all sneaking units

• workorder: allows queuing manager jobs; smart about shear and milk creature jobs

Fixes

• Fixed a crash in find() for some types when no world is loaded

• Fixed a crash when starting DFHack in headless mode with no terminal

• Fixed translation of certain types of in-game names

• autogems: fixed an issue with binned gems being ignored in linked stockpiles

• catsplosion: fixed error when handling races with only one caste (e.g. harpies)

• deep-embark:

– prevented running in non-fortress modes

– ensured that only the newest wagon is deconstructed

• devel/visualize-structure: fixed padding detection for globals

• exportlegends:

– added UTF-8 encoding and XML escaping for more fields

– added checking for unhandled structures to avoid generating invalid XML

– fixed missing fields in history_event_assume_identityst export

• full-heal:

794 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– fixed issues with removing corpses

– fixed resurrection for non-historical figures

– when resurrected by specifying a corpse, units now appear at the location of the corpse rather than
their location of death

– resurrected units now have their tile occupancy set (and are placed in the prone position to facilitate
this)

• spawnunit: fixed an error when forwarding some arguments but not a location to modtools/create-unit

• stocks: fixed display of book titles

• teleport: fixed setting new tile occupancy

• tweak embark-profile-name: fixed handling of the native shift+space key

Misc Improvements

• Added “bit” suffix to downloads (e.g. 64-bit)

• Tests:

– moved from DF folder to hack/scripts folder, and disabled installation by default

– made test runner script more flexible

• deep-embark:

– improved support for using directly from the DFHack console

– added a -clear option to cancel

• devel/export-dt-ini: updated some field names for DT for 0.47

• devel/visualize-structure: added human-readable lengths to containers

• dfhack-run: added color output support

• embark-assistant:

– updated embark aquifer info to show all aquifer kinds present

– added neighbor display, including kobolds (SKULKING) and necro tower count

– updated aquifer search criteria to handle the new variation

– added search criteria for embark initial tree cover

– added search criteria for necro tower count, neighbor civ count, and specific neighbors. Should handle
additional entities, but not tested

• exportlegends:

– added identity information

– added creature raw names and flags

– made interaction export more robust and human-readable

– removed empty <item_subtype> and <claims> tags

– added evilness and force IDs to regions

– added profession and weapon info to relevant entities

– added support for many new history events in 0.47

8.4. Changelog 795

DFHack Documentation, Release 50.11-r4

– added historical event relationships and supplementary data

• full-heal:

– made resurrection produce a historical event viewable in Legends mode

– made error messages more explanatory

• getplants: added switches for designations for farming seeds and for max number designated per plant

• gui/prerelease-warning: updated links and information about nightly builds

• install-info: added DFHack build ID to report

• manipulator: added intrigue to displayed skills

• modtools/create-item: added -matchingGloves and -matchingShoes arguments

• modtools/create-unit:

– added -equip option to equip created units

– added -skills option to give skills to units

– added -profession and -customProfession options to adjust unit professions

– added -duration argument to make the unit vanish after some time

– added -locationRange argument to allow spawning in a random position within a defined area

– added -locationType argument to specify the type of location to spawn in

• modtools/syndrome-trigger: enabled simultaneous use of -synclass and -syndrome

• repeat: added -list option

• search: added support for the fortress mode justice screen

• unretire-anyone: added -dead argument to revive and enable selection of a dead historical figure to use as an
adventurer in adv mode

• dfhack.init-example: enabled autodump

API

• Added Items::getBookTitle to get titles of books. Catches titles buried in improvements, unlike getDescrip-
tion.

Internals

• Added separate changelogs in the scripts and df-structures repos

• Improved support for tagged unions, allowing tools to access union fields more safely

• Moved reversing scripts to df_misc repo

796 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Lua

• pairs() now returns available class methods for DF types

Structures

• Added an XML schema for validating df-structures syntax

• Added globals: cur_rain, cur_rain_counter, cur_snow, cur_snow_counter, weathertimer,
jobvalue, jobvalue_setter, interactitem, interactinvslot, handleannounce, preserveannounce,
updatelightstate

• Added divination_set_next_id and image_set_next_id globals

• Dropped support for 0.44.12-0.47.02

• abstract_building_type: added types (and subclasses) new to 0.47

• activity_entry_type: new enum type

• adventure_optionst: identified many vmethods

• agreement_details_data_plot_sabotage: new struct type, along with related
agreement_details_type.PlotSabotage

• agreement_details_type: added enum

• agreement_details:

– added struct type (and many associated data types)

– identified most fields of most sub-structs

• agreement_party: added struct type

• announcement_type: added types new to 0.47

• architectural_element: new enum

• artifact_claim_type: added enum

• artifact_claim:

– added struct type

– identified several fields

• artifact_record: identified several fields

• battlefield: new struct type

• breath_attack_type: added SHARP_ROCK

• breed: new struct type

• building_offering_placest: new class

• building_type: added OfferingPlace

• caste_raw_flags:

– renamed many items to match DF names

– renamed and identified many flags to match information from Toady

• creature_handler: identified vmethods

• creature_interaction_effect: added subclasses new to 0.47

8.4. Changelog 797

DFHack Documentation, Release 50.11-r4

• creature_raw_flags:

– identified several more items

– renamed many items to match DF names

– renamed and identified many flags to match information from Toady

• crime_type: new enum type

• crime: removed fields of reports that are no longer present

• dance_form: identified most fields

• dfhack_room_quality_level: added enum attributes for names of rooms of each quality

• d_init: added settings new to 0.47

• entity_name_type: added MERCHANT_COMPANY, CRAFT_GUILD

• entity_position_responsibility: added values new to 0.47

• entity_site_link_type: new enum type

• export_map_type: new enum type

• fortress_type: added enum

• general_ref_type: added UNIT_INTERROGATEE

• ghost_type: added None value

• goal_type: added goals types new to 0.47

• histfig_site_link: added subclasses new to 0.47

• historical_entity.flags: identified several flags

• historical_entity.relations: renamed from unknown1b and identified several fields

• historical_figure.vague_relationships: identified

• historical_figure_info.known_info: renamed from secret, identified some fields

• historical_figure: renamed unit_id2 to nemesis_id

• history_event_circumstance_info: new struct type (and changed several history_event subclasses to
use this)

• history_event_collection: added subtypes new to 0.47

• history_event_context:

– added lots of new fields

– identified fields

• history_event_reason_info: new struct type (and changed several history_event subclasses to use this)

• history_event_reason:

– added captions for all items

– added items new to 0.47

• history_event_type: added types for events new to 0.47, as well as corresponding history_event sub-
classes (too many to list here)

• honors_type:

– added struct type

798 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– identified several fields

• identity_type: new enum

• identity: renamed civ to entity_id, identified type

• image_set: new struct type

• interaction_effect_create_itemst: new struct type

• interaction_effect_summon_unitst: new struct type

• interaction_effect: added subtypes new to 0.47

• interaction_source_experimentst: added class type

• interaction_source_usage_hint: added values new to 0.47

• interface_key: added items for keys new to 0.47

• interrogation_report: new struct type

• itemdef_flags: new enum, with GENERATED flag

• item: identified several vmethods

• job_skill: added INTRIGUE, RIDING

• justification: new enum

• lair_type: added enum

• layer_type: new enum type

• lever_target_type: identified LeverMechanism and TargetMechanism values

• monument_type: added enum

• musical_form: identified fields, including some renames. Also identified fields in scale and rhythm

• next_global_id: added enum

• plant.damage_flags: added is_dead

• plot_role_type: new enum type

• plot_strategy_type: new enum type

• poetic_form_action: added Beseech

• region_weather: new struct type

• relationship_event_supplement: new struct type

• relationship_event: new struct type

• setup_character_info: expanded significantly in 0.47

• specific_ref: moved union data to data field

• squad_order_cause_trouble_for_entityst: identified fields

• text_system: added layout for struct

• tile_occupancy: added varied_heavy_aquifer

• tool_uses: added items: PLACE_OFFERING, DIVINATION, GAMES_OF_CHANCE

• ui_look_list: moved union fields to data and renamed to match type enum

8.4. Changelog 799

DFHack Documentation, Release 50.11-r4

• ui_sidebar_menus.location: added new profession-related fields, renamed and fixed types of deity-related
fields

• ui_sidebar_mode: added ZonesLocationInfo

• unit_action: rearranged as tagged union with new sub-types; existing code should be compatible

• unit_thought_type: added several new thought types

• vague_relationship_type: new enum type

• vermin_flags: identified is_roaming_colony

• viewscreen_counterintelligencest: new class (only layout identified so far)

• viewscreen_justicest: identified interrogation-related fields

• viewscreen_workquota_detailsst: identified fields

• world_data.field_battles: identified and named several fields

8.4.28 DFHack 0.44.12-r3

New Plugins

• autoclothing: automatically manage clothing work orders

• autofarm: replaces the previous Ruby script of the same name, with some fixes

• map-render: allows programmatically rendering sections of the map that are off-screen

• tailor: automatically manages keeping your dorfs clothed

New Scripts

• assign-attributes: changes the attributes of a unit

• assign-beliefs: changes the beliefs of a unit

• assign-facets: changes the facets (traits) of a unit

• assign-goals: changes the goals of a unit

• assign-preferences: changes the preferences of a unit

• assign-profile: sets a dwarf’s characteristics according to a predefined profile

• assign-skills: changes the skills of a unit

• combat-harden: sets a unit’s combat-hardened value to a given percent

• deep-embark: allows embarking underground

• devel/find-twbt: finds a TWBT-related offset needed by the new map-render plugin

• dwarf-op: optimizes dwarves for fort-mode work; makes managing labors easier

• forget-dead-body: removes emotions associated with seeing a dead body

• gui/create-tree: creates a tree at the selected tile

• linger: takes over your killer in adventure mode

• modtools/create-tree: creates a tree

• modtools/pref-edit: add, remove, or edit the preferences of a unit

800 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• modtools/set-belief : changes the beliefs (values) of units

• modtools/set-need: sets and edits unit needs

• modtools/set-personality: changes the personality of units

• modtools/spawn-liquid: spawns water or lava at the specified coordinates

• set-orientation: edits a unit’s orientation

• unretire-anyone: turns any historical figure into a playable adventurer

Fixes

• Fixed a crash in the macOS/Linux console when the prompt was wider than the screen width

• Fixed inconsistent results from Units::isGay for asexual units

• Fixed some cases where Lua filtered lists would not properly intercept keys, potentially triggering other actions
on the same screen

• autofarm:

– fixed biome detection to properly determine crop assignments on surface farms

– reimplemented as a C++ plugin to make proper biome detection possible

• bodyswap: fixed companion list not being updated often enough

• cxxrandom: removed some extraneous debug information

• digfort: now accounts for z-level changes when calculating maximum y dimension

• embark-assistant:

– fixed bug causing crash on worlds without generated metals (as well as pruning vectors as originally
intended).

– fixed bug causing mineral matching to fail to cut off at the magma sea, reporting presence of things
that aren’t (like DF does currently).

– fixed bug causing half of the river tiles not to be recognized.

– added logic to detect some river tiles DF doesn’t generate data for (but are definitely present).

• eventful: fixed invalid building ID in some building events

• exportlegends: now escapes special characters in names properly

• getplants: fixed designation of plants out of season (note that picked plants are still designated incorrectly)

• gui/autogems: fixed error when no world is loaded

• gui/companion-order:

– fixed error when resetting group leaders

– leave now properly removes companion links

• gui/create-item: fixed module support - can now be used from other scripts

• gui/stamper:

– stopped “invert” from resetting the designation type

– switched to using DF’s designation keybindings instead of custom bindings

– fixed some typos and text overlapping

8.4. Changelog 801

DFHack Documentation, Release 50.11-r4

• modtools/create-unit:

– fixed an error associating historical entities with units

– stopped recalculating health to avoid newly-created citizens triggering a “recover wounded” job

– fixed units created in arena mode having blank names

– fixed units created in arena mode having the wrong race and/or interaction effects applied after creating
units manually in-game

– stopped units from spawning with extra items or skills previously selected in the arena

– stopped setting some unneeded flags that could result in glowing creature tiles

– set units created in adventure mode to have no family, instead of being related to the first creature in
the world

• modtools/reaction-product-trigger:

– fixed an error dealing with reactions in adventure mode

– blocked \\BUILDING_ID for adventure mode reactions

– fixed -clear to work without passing other unneeded arguments

• modtools/reaction-trigger:

– fixed a bug when determining whether a command was run

– fixed handling of -resetPolicy

• mousequery: fixed calculation of map dimensions, which was sometimes preventing scrolling the map with the
mouse when TWBT was enabled

• RemoteFortressReader: fixed a crash when a unit’s path has a length of 0

• stonesense: fixed crash due to wagons and other soul-less creatures

• tame: now sets the civ ID of tamed animals (fixes compatibility with autobutcher)

• title-folder: silenced error when PRINT_MODE is set to TEXT

Misc Improvements

• Added a note to dfhack-run when called with no arguments (which is usually unintentional)

• On macOS, the launcher now attempts to un-quarantine the rest of DFHack

• bodyswap: added arena mode support

• combine-drinks: added more default output, similar to combine-plants

• createitem: added a list of valid castes to the “invalid caste” error message, for convenience

• devel/export-dt-ini: added more size information needed by newer Dwarf Therapist versions

• dwarfmonitor: enabled widgets to access other scripts and plugins by switching to the core Lua context

• embark-assistant:

– added an in-game option to activate on the embark screen

– changed waterfall detection to look for level drop rather than just presence

– changed matching to take incursions, i.e. parts of other biomes, into consideration when evaluating
tiles. This allows for e.g. finding multiple biomes on single tile embarks.

802 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– changed overlay display to show when incursion surveying is incomplete

– changed overlay display to show evil weather

– added optional parameter “fileresult” for crude external harness automated match support

– improved focus movement logic to go to only required world tiles, increasing speed of subsequent
searches considerably

• exportlegends: added rivers to custom XML export

• exterminate: added support for a special enemy caste

• gui/gm-unit:

– added support for editing:

– added attribute editor

– added orientation editor

– added editor for bodies and body parts

– added color editor

– added belief editor

– added personality editor

• modtools/create-item: documented already-existing -quality option

• modtools/create-unit:

– added the ability to specify \\LOCAL for the fort group entity

– now enables the default labours for adult units with CAN_LEARN.

– now sets historical figure orientation.

– improved speed of creating multiple units at once

– made the script usable as a module (from other scripts)

• modtools/reaction-trigger:

– added -ignoreWorker: ignores the worker when selecting the targets

– changed the default behavior to skip inactive/dead units; added -dontSkipInactive to include crea-
tures that are inactive

– added -range: controls how far elligible targets can be from the workshop

– syndromes now are applied before commands are run, not after

– if both a command and a syndrome are given, the command only runs if the syndrome could be applied

• mousequery: made it more clear when features are enabled

• RemoteFortressReader:

– added a basic framework for controlling and reading the menus in DF (currently only supports the
building menu)

– added support for reading item raws

– added a check for whether or not the game is currently saving or loading, for utilities to check if it’s
safe to read from DF

– added unit facing direction estimate and position within tiles

8.4. Changelog 803

DFHack Documentation, Release 50.11-r4

– added unit age

– added unit wounds

– added tree information

– added check for units’ current jobs when calculating the direction they are facing

API

• Added new plugin_load_data and plugin_save_data events for plugins to load/save persistent data

• Added Maps::GetBiomeType and Maps::GetBiomeTypeByRef to infer biome types properly

• Added Units::getPhysicalDescription (note that this depends on the
unit_get_physical_description offset, which is not yet available for all DF builds)

Internals

• Added new Persistence module

• Cut down on internal DFHack dependencies to improve build times

• Improved concurrency in event and server handlers

• Persistent data is now stored in JSON files instead of historical figures - existing data will be migrated when
saving

• stonesense: fixed some OpenGL build issues on Linux

Lua

• Exposed gui.dwarfmode.get_movement_delta and gui.dwarfmode.get_hotkey_target

• dfhack.run_command now returns the command’s return code

Ruby

• Made unit_ishostile consistently return a boolean

Structures

• Added unit_get_physical_description function offset on some platforms

• Added/identified types:

– assume_identity_mode

– musical_form_purpose

– musical_form_style

– musical_form_pitch_style

– musical_form_feature

– musical_form_vocals

– musical_form_melodies

804 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

– musical_form_interval

– unit_emotion_memory

• need_type: fixed PrayOrMeditate typo

• personality_facet_type, value_type: added NONE values

• twbt_render_map: added for 64-bit 0.44.12 (for map-render)

8.4.29 DFHack 0.44.12-r2

New Plugins

• debug: manages runtime debug print category filtering

• nestboxes: automatically scan for and forbid fertile eggs incubating in a nestbox

New Scripts

• devel/query: searches for field names in DF objects

• extinguish: puts out fires

• tame: sets tamed/trained status of animals

Fixes

• building-hacks: fixed error when dealing with custom animation tables

• devel/test-perlin: fixed Lua error (math.pow())

• embark-assistant: fixed crash when entering finder with a 16x16 embark selected, and added 16 to dimension
choices

• embark-skills: fixed missing skill_points_remaining field

• full-heal:

– stopped wagon resurrection

– fixed a minor issue with post-resurrection hostility

• gui/companion-order:

– fixed issues with printing coordinates

– fixed issues with move command

– fixed cheat commands (and removed “Power up”, which was broken)

• gui/gm-editor: fixed reinterpret cast (r)

• gui/pathable: fixed error when sidebar is hidden with Tab

• labormanager:

– stopped assigning labors to ineligible dwarves, pets, etc.

– stopped assigning invalid labors

– added support for crafting jobs that use pearl

8.4. Changelog 805

DFHack Documentation, Release 50.11-r4

– fixed issues causing cleaning jobs to not be assigned

– added support for disabling management of specific labors

• prospector: (also affected embark-tools) - fixed a crash when prospecting an unusable site (ocean, mountains,
etc.) with a large default embark size in d_init.txt (e.g. 16x16)

• siege-engine: fixed a few Lua errors (math.pow(), unit.relationship_ids)

• tweak: fixed hotkey-clear

Misc Improvements

• armoks-blessing: improved documentation to list all available arguments

• devel/export-dt-ini:

– added viewscreen offsets for DT 40.1.2

– added item base flags offset

– added needs offsets

• embark-assistant:

– added match indicator display on the right (“World”) map

– changed ‘c’ancel to abort find if it’s under way and clear results if not, allowing use of partial surveys.

– added Coal as a search criterion, as well as a coal indication as current embark selection info.

• full-heal:

– added -all, -all_civ and -all_citizens arguments

– added module support

– now removes historical figure death dates and ghost data

• growcrops: added all argument to grow all crops

• gui/load-screen: improved documentation

• labormanager: now takes nature value into account when assigning jobs

• open-legends: added warning about risk of save corruption and improved related documentation

• points: added support when in viewscreen_setupdwarfgamest and improved error messages

• siren: removed break handling (relevant misc_trait_type was no longer used - see “Structures” section)

API

• New debug features related to debug plugin:

– Classes (C++ only): Signal<Signature, type_tag>, DebugCategory, DebugManager

– Macros: TRACE, DEBUG, INFO, WARN, ERR, DBG_DECLARE, DBG_EXTERN

806 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Internals

• Added a usable unit test framework for basic tests, and a few basic tests

• Added CMakeSettings.json with intellisense support

• Changed plugins/CMakeLists.custom.txt to be ignored by git and created (if needed) at build time instead

• Core: various thread safety and memory management improvements

• Fixed CMake build dependencies for generated header files

• Fixed custom CMAKE_CXX_FLAGS not being passed to plugins

• Linux/macOS: changed recommended build backend from Make to Ninja (Make builds will be significantly
slower now)

Lua

• utils: new OrderedTable class

Structures

• Win32: added missing vtables for viewscreen_storesst and squad_order_rescue_hfst

• activity_event_performancest: renamed poem as written_content_id

• body_part_status: identified gelded

• dance_form: named musical_form_id and musical_written_content_id

• incident_sub6_performance.participants: named performance_event and role_index

• incident_sub6_performance:

– made performance_event an enum

– named poetic_form_id, musical_form_id, and dance_form_id

• misc_trait_type: removed LikesOutdoors, Hardened, TimeSinceBreak, OnBreak (all unused by DF)

• musical_form_instruments: named minimum_required and maximum_permitted

• musical_form: named voices field

• plant_tree_info: identified extent_east, etc.

• plant_tree_tile: gave connection bits more meaningful names (e.g. connection_east instead of
thick_branches_1)

• poetic_form: identified many fields and related enum/bitfield types

• setup_character_info: identified skill_points_remaining (for embark-skills)

• ui.main: identified fortress_site

• ui.squads: identified kill_rect_targets_scroll

• ui: fixed alignment of main and squads (fixes tweak hotkey-clear and DF-AI)

• unit_action.attack:

– identified attack_skill

– added lightly_tap and spar_report flags

8.4. Changelog 807

DFHack Documentation, Release 50.11-r4

• unit_flags3: identified marked_for_gelding

• unit_personality: identified stress_drain, stress_boost, likes_outdoors, combat_hardened

• unit_storage_status: newly identified type, stores noble holdings information (used in
viewscreen_layer_noblelistst)

• unit_thought_type: added new expulsion thoughts from 0.44.12

• viewscreen_layer_arena_creaturest: identified item- and name-related fields

• viewscreen_layer_militaryst: identified equip.assigned.assigned_items

• viewscreen_layer_noblelistst: identified storage_status (see unit_storage_status type)

• viewscreen_new_regionst:

– identified rejection_msg, raw_folder, load_world_params

– changed many int8_t fields to bool

• viewscreen_setupadventurest: identified some nemesis and personality fields, and page.ChooseHistfig

• world_data: added mountain_peak_flags type, including is_volcano

• world_history: identified names and/or types of some fields

• world_site: identified names and/or types of some fields

• written_content: named poetic_form

8.4.30 DFHack 0.44.12-r1

Fixes

• Fixed displayed names (from Units::getVisibleName) for units with identities

• Fixed potential memory leak in Screen::show()

• Fixed special characters in command-prompt and other non-console in-game outputs on Linux/macOS (in tools
using df2console)

• command-prompt: added support for commands that require a specific screen to be visible, e.g. cleaners

• die: fixed Windows crash in exit handling

• dwarfmonitor, manipulator: fixed stress cutoffs

• fix/dead-units: fixed script trying to use missing isDiplomat function

• gui/workflow: fixed advanced constraint menu for crafts

• modtools/force: fixed a bug where the help text would always be displayed and nothing useful would happen

• ruby: fixed calling conventions for vmethods that return strings (currently enabler.GetKeyDisplay())

• startdwarf : fixed on 64-bit Linux

• stonesense: fixed PLANT:DESERT_LIME:LEAF typo

808 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Misc Improvements

• Console:

– added support for multibyte characters on Linux/macOS

– made the console exit properly when an interactive command is active (liquids, mode, tiletypes)

• Linux: added automatic support for GCC sanitizers in dfhack script

• Made the DFHACK_PORT environment variable take priority over remote-server.json

• Reduced time for designation jobs from tools like dig to be assigned workers

• dfhack-run: added support for port specified in remote-server.json, to match DFHack’s behavior

• digfort: added better map bounds checking

• embark-assistant:

– Switched to standard scrolling keys, improved spacing slightly

– Introduced scrolling of Finder search criteria, removing requirement for 46 lines to work properly
(Help/Info still formatted for 46 lines).

– Added Freezing search criterion, allowing searches for NA/Frozen/At_Least_Partial/Partial/At_Most_Partial/Never
Freezing embarks.

• rejuvenate:

– Added -all argument to apply to all citizens

– Added -force to include units under 20 years old

– Clarified documentation

• remove-stress:

– added support for -all as an alternative to the existing all argument for consistency

– sped up significantly

– improved output/error messages

– now removes tantrums, depression, and obliviousness

• ruby: sped up handling of onupdate events

API

• Added C++-style linked list interface for DF linked lists

• Added to Units module:

– getStressCategory(unit)

– getStressCategoryRaw(level)

– stress_cutoffs (Lua: getStressCutoffs())

• Added Screen::Hide to temporarily hide screens, like command-prompt

• Exposed Screen::zoom() to C++ (was Lua-only)

• New functions: Units::isDiplomat(unit)

8.4. Changelog 809

DFHack Documentation, Release 50.11-r4

Internals

• Added documentation for all RPC functions and a build-time check

• Added support for build IDs to development builds

• Changed default build architecture to 64-bit

• jsoncpp: updated to version 1.8.4 and switched to using a git submodule

• Use dlsym(3) to find vtables from libgraphics.so

Lua

• Added printall_recurse to print tables and DF references recursively. It can be also used with ^ from the
lua interpreter.

• gui.widgets: List:setChoices clones choices for internal table changes

Structures

• Added support for automatically sizing arrays indexed with an enum

• Added start_dwarf_count on 64-bit Linux again and fixed scanning script

• Dropped 0.44.10 support

• Dropped 0.44.11 support

• Removed stale generated CSV files and DT layouts from pre-0.43.05

• announcement_type: new in 0.44.11: NEW_HOLDING, NEW_MARKET_LINK

• army_controller: added new vector from 0.44.11

• belief_system: new type, few fields identified

• breath_attack_type: added OTHER

• historical_figure_info.relationships.list: added unk_3a-unk_3c fields at end

• history_event_entity_expels_hfst: added (new in 0.44.11)

• history_event_site_surrenderedst: added (new in 0.44.11)

• history_event_type: added SITE_SURRENDERED, ENTITY_EXPELS_HF (new in 0.44.11)

• interface_key: added bindings new in 0.44.11

• mental_picture: new type, some fields identified

• mission_report:

– new type (renamed, was mission before)

– identified some fields

• mission: new type (used in viewscreen_civlistst)

• occupation_type: new in 0.44.11: MESSENGER

• profession: new in 0.44.11: MESSENGER

• spoils_report: new type, most fields identified

• syndrome: identified a few fields

810 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• ui.squads: Added fields new in 0.44.12

• ui_sidebar_menus:

– unit.in_squad: renamed to unit.squad_list_opened, fixed location

– unit: added expel_error and other unknown fields new in 0.44.11

– hospital: added, new in 0.44.11

– num_speech_tokens, unk_17d8: moved out of command_line to fix layout on x64

• viewscreen_civlistst:

– identified new pages

– identified new messenger-related fields

– fixed layout and identified many fields

• viewscreen_image_creatorst:

– fixed layout

– identified many fields

• viewscreen_locationsst: identified edit_input

• viewscreen_reportlistst: added new mission and spoils report-related fields (fixed layout)

• world.languages: identified (minimal information; whole languages stored elsewhere)

• world.status:

– mission_reports: renamed, was missions

– spoils_reports: identified

• world.unk_131ec0, world.unk_131ef0: researched layout

• world.worldgen_status: identified many fields

• world: belief_systems: identified

8.4.31 DFHack 0.44.10-r2

New Plugins

• cxxrandom: exposes some features of the C++11 random number library to Lua

New Scripts

• add-recipe: adds unknown crafting recipes to the player’s civ

• gui/stamper: allows manipulation of designations by transforms such as translations, reflections, rotations, and
inversion

8.4. Changelog 811

DFHack Documentation, Release 50.11-r4

Fixes

• Fixed many tools incorrectly using the dead unit flag (they should generally check flags2.killed instead)

• Fixed many tools passing incorrect arguments to printf-style functions, including a few possible crashes (change-
layer, follow, forceequip, generated-creature-renamer)

• Fixed several bugs in Lua scripts found by static analysis (df-luacheck)

• Fixed -g flag (GDB) in Linux dfhack script (particularly on x64)

• autochop, autodump, autogems, automelt, autotrade, buildingplan, dwarfmonitor, fix-unit-occupancy, fortplan,
stockflow: fix issues with periodic tasks not working for some time after save/load cycles

• autogems:

– stop running repeatedly when paused

– fixed crash when furnaces are linked to same stockpiles as jeweler’s workshops

• autogems, fix-unit-occupancy: stopped running when a fort isn’t loaded (e.g. while embarking)

• autounsuspend: now skips planned buildings

• ban-cooking: fixed errors introduced by kitchen structure changes in 0.44.10-r1

• buildingplan, fortplan: stopped running before a world has fully loaded

• deramp: fixed deramp to find designations that already have jobs posted

• dig: fixed “Inappropriate dig square” announcements if digging job has been posted

• fixnaked: fixed errors due to emotion changes in 0.44

• remove-stress: fixed an error when running on soul-less units (e.g. with -all)

• reveal: stopped revealing tiles adjacent to tiles above open space inappropriately

• stockpiles: loadstock now sets usable and unusable weapon and armor settings

• stocks: stopped listing carried items under stockpiles where they were picked up from

Misc Improvements

• Added script name to messages produced by qerror() in Lua scripts

• Fixed an issue in around 30 scripts that could prevent edits to the files (adding valid arguments) from taking effect

• Linux: Added several new options to dfhack script: --remotegdb, --gdbserver, --strace

• bodyswap: improved error handling

• buildingplan: added max quality setting

• caravan: documented (new in 0.44.10-alpha1)

• deathcause: added “slaughtered” to descriptions

• embark-assistant:

– changed region interaction matching to search for evil rain, syndrome rain, and reanimation rather than
interaction presence (misleadingly called evil weather), reanimation, and thralling

– gave syndrome rain and reanimation wider ranges of criterion values

• fix/dead-units: added a delay of around 1 month before removing units

• fix/retrieve-units: now re-adds units to active list to counteract fix/dead-units

812 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• modtools/create-unit:

– added quantity argument

– now selects a caste at random if none is specified

• mousequery:

– migrated several features from TWBT’s fork

– added ability to drag with left/right buttons

– added depth display for TWBT (when multilevel is enabled)

– made shift+click jump to lower levels visible with TWBT

• title-version: added version to options screen too

• item-descriptions: fixed several grammatical errors

API

• New functions (also exposed to Lua):

– Units::isKilled()

– Units::isActive()

– Units::isGhost()

• Removed Vermin module (unused and obsolete)

Internals

• Added build option to generate symbols for large generated files containing df-structures metadata

• Added fallback for YouCompleteMe database lookup failures (e.g. for newly-created files)

• Improved efficiency and error handling in stl_vsprintf and related functions

• jsoncpp: fixed constructor with long on Linux

Lua

• Added profiler module to measure lua performance

• Enabled shift+cursor movement in WorkshopOverlay-derived screens

Structures

• incident_sub6_performance: identified some fields

• item_body_component: fixed location of corpse_flags

• job_handler: fixed static array layout

• job_type: added is_designation attribute

• unit_flags1: renamed dead to inactive to better reflect its use

• unit_personality: fixed location of current_focus and undistracted_focus

• unit_thought_type: added SawDeadBody (new in 0.44.10)

8.4. Changelog 813

DFHack Documentation, Release 50.11-r4

8.4.32 DFHack 0.44.10-r1

New Scripts

• bodyswap: shifts player control over to another unit in adventure mode

• caravan: adjusts properties of caravans

• devel/find-primitive: finds a primitive variable in memory

• gui/autogems: a configuration UI for the autogems plugin

New Tweaks

• tweak kitchen-prefs-all: adds an option to toggle cook/brew for all visible items in kitchen preferences

• tweak stone-status-all: adds an option to toggle the economic status of all stones

Fixes

• Fixed uninitialized pointer being returned from Gui::getAnyUnit() in rare cases

• Lua: registered dfhack.constructions.designateRemove() correctly

• Units::getAnyUnit(): fixed a couple problematic conditions and potential segfaults if global addresses are missing

• autohauler, autolabor, labormanager: fixed fencepost error and potential crash

• dwarfvet: fixed infinite loop if an animal is not accepted at a hospital

• exterminate: fixed documentation of this option

• full-heal:

– units no longer have a tendency to melt after being healed

– healed units are no longer treated as patients by hospital staff

– healed units no longer attempt to clean themselves unsuccessfully

– wounded fliers now regain the ability to fly upon being healing

– now heals suffocation, numbness, infection, spilled guts and gelding

• liquids: fixed “range” command to default to 1 for dimensions consistently

• modtools/create-unit:

– creatures of the appropriate age are now spawned as babies or children where applicable

– fix: civ_id is now properly assigned to historical_figure, resolving several hostility issues (spawned
pets are no longer attacked by fortress military!)

– fix: unnamed creatures are no longer spawned with a string of numbers as a first name

• prospector: fixed crash due to invalid vein materials

• search: fixed 4/6 keys in unit screen search

• stockpiles: stopped sidebar option from overlapping with autodump

• tweak block-labors: fixed two causes of crashes related in the v-p-l menu

• tweak max-wheelbarrow: fixed conflict with building renaming

814 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

• view-item-info:

– stopped appending extra newlines permanently to descriptions

– fixed an error with some armor

Misc Improvements

• Added logo to documentation

• Documented several missing dfhack.gui Lua functions

• adv-rumors: bound to Ctrl-A

• autogems: can now blacklist arbitrary gem types (see gui/autogems)

• blueprint: added a basic Lua API

• command-prompt: added support for Gui::getSelectedPlant()

• devel/export-dt-ini: added tool offsets for DT 40

• devel/save-version: added current DF version to output

• exterminate: added more words for current unit, removed warning

• fpause: now pauses worldgen as well

• gui/advfort: bound to Ctrl-T

• gui/room-list: added support for Gui::getSelectedBuilding()

• gui/unit-info-viewer: bound to Alt-I

• install-info: added information on tweaks

• modtools/create-unit: made functions available to other scripts

• search:

– added support for stone restrictions screen (under z: Status)

– added support for kitchen preferences (also under z)

API

• New functions (all available to Lua as well):

– Buildings::getRoomDescription()

– Items::checkMandates()

– Items::canTrade()

– Items::canTradeWithContents()

– Items::isRouteVehicle()

– Items::isSquadEquipment()

– Kitchen::addExclusion()

– Kitchen::findExclusion()

– Kitchen::removeExclusion()

• syndrome-util: added eraseSyndromeData()

8.4. Changelog 815

DFHack Documentation, Release 50.11-r4

Internals

• Added function names to DFHack’s NullPointer and InvalidArgument exceptions

• Added some build scripts for Sublime Text

• Added Gui::inRenameBuilding()

• Changed submodule URLs to relative URLs so that they can be cloned consistently over different protocols (e.g.
SSH)

• Fixed compiler warnings on all supported build configurations

• Linux: required plugins to have symbols resolved at link time, for consistency with other platforms

• Windows build scripts now work with non-C system drives

Structures

• dfhack_room_quality_level: new enum

• glowing_barrier: identified triggered, added comments

• item_flags2: renamed has_written_content to unk_book

• kitchen_exc_type: new enum (for ui.kitchen)

• mandate.mode: now an enum

• unit_personality.emotions.flags.memory: identified

• viewscreen_kitchenprefst.forbidden, possible: now a bitfield, kitchen_pref_flag

• world_data.feature_map: added extensive documentation (in XML)

8.4.33 DFHack 0.44.09-r1

Fixes

• Fixed some CMake warnings (CMP0022)

• Support for building on Ubuntu 18.04

• dig: stopped designating non-vein tiles (open space, trees, etc.)

• embark-assistant: fixed detection of reanimating biomes

• fix/dead-units: fixed a bug that could remove some arriving (not dead) units

• labormanager: fixed crash due to dig jobs targeting some unrevealed map blocks

• modtools/item-trigger: fixed token format in help text

816 Chapter 8. About DFHack

DFHack Documentation, Release 50.11-r4

Misc Improvements

• Reorganized changelogs and improved changelog editing process

• embark-assistant:

– Added search for adamantine

– Now supports saving/loading profiles

• fillneeds: added -all option to apply to all units

• modtools/item-trigger:

– added support for multiple type/material/contaminant conditions

– added the ability to specify inventory mode(s) to trigger on

• RemoteFortressReader: added flows, instruments, tool names, campfires, ocean waves, spiderwebs

Internals

• OS X: Can now build with GCC 7 (or older)

Structures

• Several new names in instrument raw structures

• army: added vector new in 0.44.07

• building_type: added human-readable name attribute

• furnace_type: added human-readable name attribute

• identity: identified profession, civ

• manager_order_template: fixed last field type

• site_reputation_report: named reports vector

• viewscreen_createquotast: fixed layout

• workshop_type: added human-readable name attribute

• world.language: moved colors, shapes, patterns to world.descriptors

• world.reactions, world.reaction_categories: moved to new compound, world.reactions. Requires renaming:

– world.reactions to world.reactions.reactions

– world.reaction_categories to world.reactions.reaction_categories

8.4. Changelog 817

DFHack Documentation, Release 50.11-r4

8.4.34 DFHack 0.44.05-r2

New Plugins

• embark-assistant: adds more information and features to embark screen

New Scripts

• adv-fix-sleepers: fixes units in adventure mode who refuse to wake up (Bug 6798)

• hermit: blocks caravans, migrants, diplomats (for hermit challenge)

New Features

• With PRINT_MODE:TEXT, setting the DFHACK_HEADLESS environment variable will hide DF’s display and allow
the console to be used normally. (Note that this is intended for testing and is not very useful for actual gameplay.)

Fixes

• devel/export-dt-ini: fix language_name offsets for DT 39.2+

• devel/inject-raws: fixed gloves and shoes (old typo causing errors)

• RemoteFortressReader: fixed an issue with not all engravings being included

• view-item-info: fixed an error with some shields

Misc Improvements

• adv-rumors: added more keywords, including names

• autochop: can now exclude trees that produce fruit, food, or cookable items

• RemoteFortressReader: added plant type support

8.4.35 DFHack 0.44.05-r1

New Scripts

• break-dance: Breaks up a stuck dance activity

• devel/check-other-ids: Checks the validity of “other” vectors in the world global

• devel/dump-offsets: prints an XML version of the global table included in in DF

• fillneeds: Use with a unit selected to make them focused and unstressed

• firestarter: Lights things on fire: items, locations, entire inventories even!

• flashstep: Teleports adventurer to cursor

• ghostly: Turns an adventurer into a ghost or back

• gui/cp437-table: An in-game CP437 table

• questport: Sends your adventurer to the location of your quest log cursor

818 Chapter 8. About DFHack

https://www.bay12games.com/dwarves/mantisbt/view.php?id=6798

DFHack Documentation, Release 50.11-r4

• view-unit-reports: opens the reports screen with combat reports for the selected unit

Fixes

• Fixed a crash that could occur if a symbol table in symbols.xml had no content

• Fixed issues with the console output color affecting the prompt on Windows

• autolabor, autohauler, labormanager: added support for “put item on display” jobs and building/destroying
display furniture

• createitem: stopped items from teleporting away in some forts

• devel/inject-raws:

– now recognizes spaces in reaction names

– now recognizes spaces in reaction names

• dig: added support for designation priorities - fixes issues with designations from digv and related commands
having extremely high priority

• dwarfmonitor:

– fixed display of creatures and poetic/music/dance forms on prefs screen

– added “view unit” option

– now exposes the selected unit to other tools

• exportlegends: fixed an error that could occur when exporting empty lists

• gui/gm-editor: fixed an error when editing primitives in Lua tables

• gui/gm-unit: can now edit mining skill

• gui/quickcmd: stopped error from adding too many commands

• modtools/create-unit: fixed error when domesticating units

• names: fixed many errors

• quicksave: fixed an issue where the “Saving. . . ” indicator often wouldn’t appear

Misc Improvements

• The console now provides suggestions for built-in commands

• binpatch: now reports errors for empty patch files

• devel/export-dt-ini: avoid hardcoding flags

• exportlegends:

– reordered some tags to match DF’s order

– added progress indicators for exporting long lists

• force: now provides useful help

• full-heal:

– can now select corpses to resurrect

– now resets body part temperatures upon resurrection to prevent creatures from freezing/melting again

8.4. Changelog 819

DFHack Documentation, Release 50.11-r4

– now resets units’ vanish countdown to reverse effects of exterminate

• gui/gm-editor: added enum names to enum edit dialogs

• gui/gm-unit:

– added a profession editor

– misc. layout improvements

– made skill search case-insensitive

• gui/liquids: added more keybindings: 0-7 to change liquid level, P/B to cycle backwards

• gui/pathable: added tile types to sidebar

• gui/rename: added “clear” and “special characters” options

• launch: can now ride creatures

• modtools/skill-change:

– now updates skill levels appropriately

– only prints output if -loud is passed

• names: can now edit names of units

• RemoteFortressReader:

– support for moving adventurers

– support for vehicles, gem shapes, item volume, art images, item improvements

– includes item stack sizes

– some performance improvements

Removed

• tweak: kitchen-keys: Bug 614 fixed in DF 0.44.04

• warn-stuck-trees: Bug 9252 fixed in DF 0.44.01

Internals

• Gui::getAnyUnit() supports many more screens/menus

Lua

• Added a new dfhack.console API

• API can now wrap functions with 12 or 13 parameters

• Exposed get_vector() (from C++) for all types that support find(), e.g. df.unit.get_vector() == df.
global.world.units.all

• Improved json I/O error messages

• Stopped a crash when trying to create instances of classes whose vtable addresses are not available

820 Chapter 8. About DFHack

https://www.bay12games.com/dwarves/mantisbt/view.php?id=614
https://www.bay12games.com/dwarves/mantisbt/view.php?id=9252

DFHack Documentation, Release 50.11-r4

Structures

• Added buildings_other_id.DISPLAY_CASE

• Added job_type.PutItemOnDisplay

• Added twbt_render_map code offset on x64

• Fixed an issue preventing enabler from being allocated by DFHack

• Fixed unit alignment

• Fixed viewscreen_titlest.start_savegames alignment

• Found renderer vtable on osx64

• Identified historical_entity.unknown1b.deities (deity IDs)

• Located start_dwarf_count offset for all builds except 64-bit Linux; startdwarf should work now

• New globals:

– soul_next_id

– version

– min_load_version

– movie_version

– basic_seed

– title

– title_spaced

– ui_building_resize_radius

• The former announcements global is now a field in d_init

• The ui_menu_width global is now a 2-byte array; the second item is the former ui_area_map_width global,
which is now removed

• adventure_movement_optionst, adventure_movement_hold_tilest, adventure_movement_climbst:
named coordinate fields

• artifact_record: fixed layout (changed in 0.44.04)

• incident: fixed layout (changed in 0.44.01) - note that many fields have moved

• mission: added type

• unit: added 3 new vmethods: getCreatureTile, getCorpseTile, getGlowTile

• viewscreen_assign_display_itemst: fixed layout on x64 and identified many fields

• viewscreen_reportlistst: fixed layout, added mission_id vector

• world.status: named missions vector

• world fields formerly beginning with job_ are now fields of world.jobs, e.g. world.job_list is now
world.jobs.list

8.4. Changelog 821

DFHack Documentation, Release 50.11-r4

8.4.36 Older Changelogs

Are kept in a separate file: History

822 Chapter 8. About DFHack

INDEX OF DFHACK TOOLS

3
3dveins (Rewrite layer veins to expand in 3D space.), 29

a
add-recipe (Add crafting recipes to a civ.), 30
add-spatter (plugin) (Add poisons and magical ef-

fects to weapons.), 31
alias (Configure helper aliases for other DFHack com-

mands.), 33
allneeds (Show the cumulative needs of all citizens.), 34
animal-control (Quickly view, butcher, or geld groups

of animals.), 34
armoks-blessing (Bless units with superior stats and

traits.), 36
assign-attributes (Adjust physical and mental at-

tributes.), 37
assign-beliefs (Adjust a unit's beliefs and values.), 38
assign-facets (Adjust a unit's facets and traits.), 39
assign-goals (Adjust a unit's goals and dreams.), 40
assign-minecarts (Assign minecarts to hauling

routes.), 41
assign-preferences (Adjust a unit's preferences.), 42
assign-skills (Adjust a unit's skills.), 45
autobutcher (Automatically butcher excess livestock.),

46
autochop (Auto-harvest trees when low on stockpiled

logs.), 48
autoclothing (Automatically manage clothing work or-

ders.), 49
autodump (Instantly gather or destroy items marked for

dumping.), 50
autodump-destroy-here (Destroy items marked for

dumping under the keyboard cursor.), 50
autofarm (Automatically manage farm crop selection.),

51
autofish (Auto-manage fishing labors to control your

stock of fish.), 52
autolabor (Automatically manage dwarf labors.), 53
autonestbox (Auto-assign egg-laying female pets to

nestbox zones.), 56
autonick (Give dwarves random unique nicknames.), 56

autoslab (plugin) (Automatically engrave slabs for
ghostly citizens.), 57

alltraffic (Set traffic designations for every single tile
of the map.), 115

b
ban-cooking (Protect useful items from being cooked.),

57
blueprint (Record a live game map in a quickfort

blueprint.), 59
brainwash (Set the personality of a dwarf to an ideal.),

62
build-now (Instantly completes building construction

jobs.), 63
buildingplan (Plan building layouts with or without

materials.), 64
burial (Create tomb zones for unzoned coffins.), 67
burrow (Quickly adjust burrow tiles and units.), 67
bprobe (Display low-level properties of the selected

building.), 176

c
caravan (Adjust properties of caravans on the map.), 70
catsplosion (Cause pregnancies.), 72
changeitem (Change item material, quality, and sub-

type.), 72
changelayer (Change the material of an entire geology

layer.), 73
changevein (Change the material of a mineral inclu-

sion.), 74
channel-safely (Auto-manage channel designations to

keep dwarves safe.), 75
cleanconst (Cleans up construction materials.), 76
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
cleanowned (Confiscates and dumps garbage owned by

dwarves.), 78
clear-smoke (Removes all smoke from the map.), 79
clear-webs (Removes all webs from the map.), 79
cls (Clear the terminal screen.), 80
colonies (Manipulate vermin colonies and hives.), 80

823

DFHack Documentation, Release 50.11-r4

combine (Combine items that can be stacked together.),
83

confirm (Adds confirmation dialogs for destructive ac-
tions.), 85

createitem (Create arbitrary items.), 85
cursecheck (Check for cursed creatures.), 86
cxxrandom (plugin) (Provides a Lua API for random

distributions.), 87
cprobe (Display low-level properties of the selected

unit.), 176

d
deathcause (Find out the cause of death for a creature.),

87
debug (plugin) (Provides commands for controlling

debug log verbosity.), 88
debugfilter (Configure verbosity of DFHack debug out-

put.), 88
deep-embark (Start a fort deep underground.), 89
deramp (Removes all ramps designated for removal from

the map.), 90
design (plugin) (Draws designations in shapes.), 90
devel/all-bob (Changes the first name of all units to

"Bob"..), 253
devel/annc-monitor (Track announcements and re-

ports and echo them to the console.), 253
devel/check-other-ids (Verify that game entities are

referenced by the correct vectors.), 254
devel/check-release (Perform basic checks for

DFHack release readiness.), 255
devel/clear-script-env (Clear a lua script environ-

ment.), 255
devel/click-monitor (Displays the grid coordinates of

mouse clicks in the console.), 255
devel/dump-offsets (Dump the contents of the table of

global addresses.), 256
devel/dump-rpc (Dump RPC endpoint info.), 257
devel/eventful-client (Simple client for testing

event callbacks.), 257
devel/export-dt-ini (Export memory addresses for

Dwarf Therapist configuration.), 258
devel/find-primitive (Discover memory offsets for

new variables.), 259
devel/hello-world (A basic GUI example script.), 260
devel/inspect-screen (Show glyph, color, and texture

info for screen and map tiles.), 261
devel/lsmem (Print memory ranges of the DF process.),

263
devel/modstate-monitor (Display changes in key

modifier state.), 265
devel/pop-screen (Forcibly closes the current screen.),

265
devel/print-args (Echo parameters to the output.),

266

devel/print-args2 (Echo parameters to the output.),
267

devel/query (Search/print data algorithmically.), 267
devel/save-version (Display what DF version has

handled the current save.), 269
devel/sc (Scan DF structures for errors.), 270
devel/scan-vtables (Scan for and print likely vtable

addresses.), 270
devel/scanitemother (Display the item lists that the

selected item is part of.), 271
devel/send-key (Deliver key input to a viewscreen.),

271
devel/spawn-unit-helper (Prepares the game for

spawning creatures by switching to arena.), 272
devel/tile-browser (Browse graphical tile textures by

their texpos values.), 273
devel/visualize-structure (Display raw memory of

a DF data structure.), 274
die (Instantly exit DF without saving.), 92
dig (plugin) (Provides commands for designating tiles

for digging.), 92
digv (Designate all of the selected vein for digging.), 92
digvx (Dig a vein across z-levels, digging stairs as

needed.), 92
digl (Dig all of the selected layer stone.), 92
diglx (Dig layer stone across z-levels, digging stairs as

needed.), 92
digcircle (Designate circles.), 92
digtype (Designate all vein tiles of the same type as the

selected tile.), 92
digexp (Designate dig patterns for exploratory mining.),

92
dig-now (Instantly complete dig designations.), 95
diplomacy (View or alter diplomatic relationships.), 98
disable (Deactivate a DFHack tool that has some per-

sistent effect.), 99
drain-aquifer (Remove some or all aquifers on the

map.), 100
dwarfvet (Allow animals to be treated at hospitals.), 105

e
elevate-mental (Set mental attributes of a dwarf to an

ideal.), 105
elevate-physical (Set physical attributes of a dwarf to

an ideal.), 106
emigration (Allow dwarves to emigrate from the fortress

when stressed.), 108
empty-bin (Empty the contents of containers onto the

floor.), 109
enable (Activate a DFHack tool that has some persistent

effect.), 109
eventful (plugin) (Provides a Lua API for reacting to

in-game events.), 110

824 Index of DFHack tools

DFHack Documentation, Release 50.11-r4

exportlegends (Exports extended legends data for ex-
ternal viewing.), 110

exterminate (Kill things.), 111
extinguish (Put out fires.), 112

f
fastdwarf (Dwarves teleport and/or finish jobs in-

stantly.), 113
faststart (plugin) (Makes the main menu appear

sooner.), 114
feature (Control discovery flags for map features.), 114
fillneeds (Temporarily satisfy the needs of a unit.), 115
filltraffic (Set traffic designations using flood-fill

starting at the cursor.), 115
firestarter (Lights things on fire.), 116
fix/blood-del (Removes unusable liquids from caravan

manifests.), 275
fix/civil-war (Removes a civil war.), 275
fix/corrupt-jobs (Removes jobs with an id of -1 from

units.), 276
fix/dead-units (Remove dead units from the list so mi-

grants can arrive again.), 277
fix/drop-webs (Make floating webs drop to the

ground.), 277
fix/dry-buckets (Allow discarded water buckets to be

used again.), 278
fix/empty-wheelbarrows (Empties stuck items from

wheelbarrows.), 278
fix/general-strike (Prevent dwarves from getting

stuck and refusing to work.), 279
fix/loyaltycascade (Halts loyalty cascades where

dwarves are fighting dwarves.), 280
fix/protect-nicks (Fix nicknames being erased or not

displayed), 281
fix/retrieve-units (Allow stuck offscreen units to en-

ter the map.), 282
fix/stable-temp (Solve FPS issues caused by fluctuat-

ing temperature.), 282
fix/stuck-instruments (Allow bugged instruments to

be interacted with again.), 283
fix/stuck-merchants (Dismiss merchants that are

stuck off the edge of the map.), 283
fix/stuckdoors (Allow doors that are stuck open to

close.), 284
flows (Counts map blocks with flowing liquids.), 119
forbid (Forbid and list forbidden items on the map.), 120
force (Trigger in-game events.), 121
fpause (Forces DF to pause.), 125
full-heal (Fully heal the selected unit.), 125

g
gaydar (Shows the sexual orientation of units.), 126
geld (Geld and ungeld animals.), 127

getplants (Designate trees for chopping and shrubs for
gathering.), 128

gui/autobutcher (Automatically butcher excess live-
stock.), 286

gui/autochop (Auto-harvest trees when low on stock-
piled logs.), 286

gui/autodump (Teleport or destroy items.), 287
gui/autofish (Auto-manage fishing labors to control

your stock of fish.), 287
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/civ-alert (Quickly get your civilians to safety.),

290
gui/confirm (Configure which confirmation dialogs are

enabled.), 293
gui/control-panel (Configure DFHack.), 293
gui/cp437-table (Virtual keyboard for typing with the

mouse.), 295
gui/create-item (Summon items from the aether.), 295
gui/design (Design designation utility with shapes.),

297
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/launcher (In-game DFHack command launcher

with integrated help.), 302
gui/liquids (Interactively paint liquids onto the map.),

304
gui/mass-remove (Mass select buildings and construc-

tions to suspend or remove.), 305
gui/masspit (Designate creatures for pitting.), 306
gui/mod-manager (Save and restore lists of active

mods.), 306
gui/overlay (Reposition DFHack overlay widgets.), 307
gui/pathable (Highlights tiles reachable from the se-

lected tile.), 307
gui/prerelease-warning (Shows a warning if you are

using a pre-release build of DFHack.), 309
gui/quickcmd (Quickly run saved commands.), 311
gui/quickfort (Apply layout blueprints to your fort.),

311
gui/sandbox (Create units, trees, or items.), 314
gui/seedwatch (Manages seed and plant cooking based

on seed stock levels.), 315
gui/suspendmanager (Intelligently suspend and unsus-

pend jobs.), 317
gui/unit-syndromes (Inspect syndrome details.), 319

h
help (Display help about a command or plugin.), 130
hermit (Go it alone in your fortress and attempt the her-

mit challenge.), 130
hfs-pit (Creates a pit straight to the underworld.), 131
hide (Hide the DFHack terminal window.), 131
hide-interface (Hide the interface layer.), 132

Index of DFHack tools 825

DFHack Documentation, Release 50.11-r4

hide-tutorials (Hide new fort tutorial popups.), 132
hotkeys (Show all DFHack keybindings for the current

context.), 133

i
install-info (Exports information about DFHack for

bug reports.), 135

k
keybinding (Create hotkeys that will run DFHack com-

mands.), 136
kill-lua (Gracefully stop any currently-running Lua

scripts.), 137

l
load-art-image-chunk (Gets an art image chunk by in-

dex.), 29
lair (Mark the map as a monster lair.), 140
lever (Inspect and pull levers.), 141
light-aquifers-only (Change heavy and varied

aquifers to light aquifers.), 141
liquids (Place magma, water or obsidian.), 142
liquids-here (Spawn liquids on the selected tile.), 142
list-agreements (List guildhall and temple agree-

ments.), 144
load (Load and register a plugin library.), 145
locate-ore (Scan the map for metal ores.), 147
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147
ls (List available DFHack commands.), 149
lua (Run Lua script commands.), 149
luasocket (plugin) (Provides a Lua API for accessing

network sockets.), 150

m
make-monarch (Crown the selected unit as a monarch.),

151
makeown (Converts the selected unit to be a fortress citi-

zen.), 151
migrants-now (Trigger a migrant wave.), 157
misery (Make citizens more miserable.), 157
modtools/add-syndrome (Add and remove syndromes

from units.), 323
modtools/create-item (Create arbitrary items.), 327
modtools/force (Trigger game events.), 334
modtools/skill-change (Modify unit skills.), 349
modtools/spawn-liquid (Spawn a liquid at a given po-

sition.), 350
multicmd (Run multiple DFHack commands.), 160

n
necronomicon (Find books that contain the secrets of life

and death.), 161

nestboxes (plugin) (Protect fertile eggs incubating in
a nestbox.), 161

nopause (Disable pausing.), 190

o
on-new-fortress (Run commands when a fortress is

first started.), 162
once-per-save (Run commands only if they haven't been

run before in this world.), 162
orders (Manage manager orders.), 163
overlay (Manage on-screen overlay widgets.), 167

p
pathable (plugin) (Marks tiles that are reachable

from the cursor.), 168
plug (List available plugins and whether they are en-

abled.), 169
points (Sets available points at the embark screen.), 170
position (Report cursor and mouse position, along with

other info.), 171
pref-adjust (Set the preferences of a dwarf to an ideal.),

171
preserve-tombs (Preserve tomb assignments when as-

signed units die.), 173
prioritize (Automatically boost the priority of selected

job types.), 174
probe (Display low-level properties of the selected tile.),

176
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

q
quickfort (Apply layout blueprints to your fort.), 179
quicksave (Immediately autosave the game.), 182
quickstart-guide (In-game quickstart guide for new

users of DFHack.), 183

r
RemoteFortressReader (plugin) (Backend for

Armok Vision.), 29
RemoteFortressReader_version (Print the loaded

RemoteFortressReader version.), 29
restrictice (Restrict traffic on all tiles on top of visible

ice.), 115
restrictliquids (Restrict traffic on all visible tiles with

liquid.), 115
region-pops (Change regional animal populations.),

183
regrass (Regrow all the grass.), 184
rejuvenate (Resets unit age.), 184
reload (Reload a loaded plugin.), 185

826 Index of DFHack tools

DFHack Documentation, Release 50.11-r4

remove-stress (Reduce stress values for fortress
dwarves.), 186

remove-wear (Remove wear from items in your fort.), 186
repeat (Call a DFHack command at a periodic interval.),

188
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190
revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190
reveal-hidden-sites (Reveal all sites in the world.),

191
reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
sc-script (Run commands when game state changes oc-

cur.), 192
script (Execute a batch file of DFHack commands.), 193
seedwatch (Manages seed and plant cooking based on

seed stock levels.), 194
set-orientation (Alter a unit's romantic inclinations.),

195
set-timeskip-duration (Modify the duration of the

pre-game world update.), 196
setfps (Set the graphics FPS cap.), 197
show (Unhides the DFHack terminal window.), 198
showmood (Shows all items needed for the active strange

mood.), 198
sort (plugin) (Search and sort lists shown in the DF

interface.), 199
source (Create an infinite magma or water source.), 202
spectate (Automatically follow productive dwarves.),

203
startdwarf (Change the number of dwarves you embark

with.), 204
starvingdead (Prevent infinite accumulation of roaming

undead.), 205
stockpiles (Import, export, or modify stockpile set-

tings.), 208
stonesense (A 3D isometric visualizer.), 218
ssense (An alias for stonesense.), 218
strangemood (Trigger a strange mood.), 221
stripcaged (Remove items from caged prisoners.), 222
superdwarf (Make a dwarf supernaturally speedy.), 223
suspend (Suspends building construction jobs.), 224
suspendmanager (Intelligently suspend and unsuspend

jobs.), 225
sync-windmills (Synchronize or randomize windmill

movement.), 225

t
tags (List the categories of DFHack tools or the tools with

those tags.), 226
tailor (Automatically keep your dwarves in fresh cloth-

ing.), 227
tame (Tame and train animals.), 228
teleport (Teleport a unit anywhere.), 229
tiletypes (Paints tiles of specified types onto the map.),

230
tiletypes-command (Run tiletypes commands.), 230
tiletypes-here (Paint map tiles starting from the cur-

sor.), 230
tiletypes-here-point (Paint the map tile under the

cursor.), 230
toggle-kbd-cursor (Toggles the keyboard cursor.), 234
trackstop (Add dynamic configuration options for track

stops.), 234
troubleshoot-item (Inspect properties of the selected

item.), 235
tubefill (Replenishes mined-out adamantine.), 235
twaterlvl (Show/hide numeric liquid depth on the map.),

235
type (Describe how a command is implemented.), 238

u
unreveal (Hides previously hidden tiles again.), 190
unforbid (Unforbid all items.), 238
ungeld (Undo gelding for an animal.), 239
unload (Unload a plugin from memory.), 240
unsuspend (Unsuspends building construction jobs.),

241

w
warn-starving (Report units that are dangerously hun-

gry, thirsty, or drowsy.), 243
warn-stranded (Reports citizens that are stranded and

can't reach any other citizens.), 244
weather (Change the weather.), 245
work-now (Reduce the time that dwarves idle after com-

pleting a job.), 246
workorder (Create manager workorders.), 248

x
xlsxreader (plugin) (Provides a Lua API for reading

xlsx files.), 250

Index of DFHack tools 827

DFHack Documentation, Release 50.11-r4

828 Index of DFHack tools

"ADVENTURE" TAG INDEX - TOOLS THAT ARE USEFUL WHILE IN
ADVENTURE MODE. NOTE THAT SOME TOOLS ONLY TAGGED

WITH "FORT" MIGHT ALSO WORK IN ADVENTURE MODE, BUT NOT
ALWAYS IN EXPECTED WAYS. FEEL FREE TO EXPERIMENT,

THOUGH!

a
add-recipe (Add crafting recipes to a civ.), 30
add-spatter (plugin) (Add poisons and magical ef-

fects to weapons.), 31

b
bprobe (Display low-level properties of the selected

building.), 176

c
changeitem (Change item material, quality, and sub-

type.), 72
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
clear-webs (Removes all webs from the map.), 79
createitem (Create arbitrary items.), 85
cprobe (Display low-level properties of the selected

unit.), 176

l
liquids (Place magma, water or obsidian.), 142
liquids-here (Spawn liquids on the selected tile.), 142

n
nopause (Disable pausing.), 190

p
probe (Display low-level properties of the selected tile.),

176

r
regrass (Regrow all the grass.), 184
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190

revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190
reveal-hidden-sites (Reveal all sites in the world.),

191
reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
set-timeskip-duration (Modify the duration of the

pre-game world update.), 196
stonesense (A 3D isometric visualizer.), 218
ssense (An alias for stonesense.), 218

t
tiletypes (Paints tiles of specified types onto the map.),

230
tiletypes-command (Run tiletypes commands.), 230
tiletypes-here (Paint map tiles starting from the cur-

sor.), 230
tiletypes-here-point (Paint the map tile under the

cursor.), 230

u
unreveal (Hides previously hidden tiles again.), 190

829

DFHack Documentation, Release 50.11-r4

830"adventure" tag index - Tools that are useful while in adventure mode. Note that some tools only
tagged with "fort" might also work in adventure mode, but not always in expected ways. Feel free

to experiment, though!

"DFHACK" TAG INDEX - TOOLS THAT YOU USE TO RUN DFHACK
COMMANDS OR INTERACT WITH THE DFHACK LIBRARY. THIS TAG
ALSO INCLUDES TOOLS THAT HELP YOU MANAGE THE DF GAME

ITSELF (E.G. QUICKSAVE, ETC.)

a
alias (Configure helper aliases for other DFHack com-

mands.), 33

c
cls (Clear the terminal screen.), 80

d
die (Instantly exit DF without saving.), 92
disable (Deactivate a DFHack tool that has some per-

sistent effect.), 99

e
enable (Activate a DFHack tool that has some persistent

effect.), 109

f
faststart (plugin) (Makes the main menu appear

sooner.), 114
fpause (Forces DF to pause.), 125

g
gui/control-panel (Configure DFHack.), 293
gui/cp437-table (Virtual keyboard for typing with the

mouse.), 295
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/launcher (In-game DFHack command launcher

with integrated help.), 302
gui/mod-manager (Save and restore lists of active

mods.), 306
gui/overlay (Reposition DFHack overlay widgets.), 307
gui/prerelease-warning (Shows a warning if you are

using a pre-release build of DFHack.), 309
gui/quickcmd (Quickly run saved commands.), 311

h
help (Display help about a command or plugin.), 130

hide (Hide the DFHack terminal window.), 131
hotkeys (Show all DFHack keybindings for the current

context.), 133

i
install-info (Exports information about DFHack for

bug reports.), 135

k
keybinding (Create hotkeys that will run DFHack com-

mands.), 136
kill-lua (Gracefully stop any currently-running Lua

scripts.), 137

l
load (Load and register a plugin library.), 145
ls (List available DFHack commands.), 149
lua (Run Lua script commands.), 149

m
multicmd (Run multiple DFHack commands.), 160

o
on-new-fortress (Run commands when a fortress is

first started.), 162
once-per-save (Run commands only if they haven't been

run before in this world.), 162
overlay (Manage on-screen overlay widgets.), 167

p
plug (List available plugins and whether they are en-

abled.), 169

q
quicksave (Immediately autosave the game.), 182

r
reload (Reload a loaded plugin.), 185

831

DFHack Documentation, Release 50.11-r4

repeat (Call a DFHack command at a periodic interval.),
188

s
sc-script (Run commands when game state changes oc-

cur.), 192
script (Execute a batch file of DFHack commands.), 193
setfps (Set the graphics FPS cap.), 197
show (Unhides the DFHack terminal window.), 198

t
tags (List the categories of DFHack tools or the tools with

those tags.), 226
type (Describe how a command is implemented.), 238

u
unload (Unload a plugin from memory.), 240

832 "dfhack" tag index - Tools that you use to run DFHack commands or interact with the DFHack
library. This tag also includes tools that help you manage the DF game itself (e.g. quicksave, etc.)

"EMBARK" TAG INDEX - TOOLS THAT ARE USEFUL WHILE ON THE
FORT EMBARK SCREEN OR WHILE CREATING AN ADVENTURER.

d
deep-embark (Start a fort deep underground.), 89

l
light-aquifers-only (Change heavy and varied

aquifers to light aquifers.), 141

p
points (Sets available points at the embark screen.), 170
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

s
set-timeskip-duration (Modify the duration of the

pre-game world update.), 196
startdwarf (Change the number of dwarves you embark

with.), 204

833

DFHack Documentation, Release 50.11-r4

834 "embark" tag index - Tools that are useful while on the fort embark screen or while creating an
adventurer.

"FORT" TAG INDEX - TOOLS THAT ARE USEFUL WHILE IN FORT
MODE.

3
3dveins (Rewrite layer veins to expand in 3D space.), 29

a
add-recipe (Add crafting recipes to a civ.), 30
add-spatter (plugin) (Add poisons and magical ef-

fects to weapons.), 31
allneeds (Show the cumulative needs of all citizens.), 34
animal-control (Quickly view, butcher, or geld groups

of animals.), 34
armoks-blessing (Bless units with superior stats and

traits.), 36
assign-attributes (Adjust physical and mental at-

tributes.), 37
assign-beliefs (Adjust a unit's beliefs and values.), 38
assign-facets (Adjust a unit's facets and traits.), 39
assign-goals (Adjust a unit's goals and dreams.), 40
assign-minecarts (Assign minecarts to hauling

routes.), 41
assign-preferences (Adjust a unit's preferences.), 42
assign-skills (Adjust a unit's skills.), 45
autobutcher (Automatically butcher excess livestock.),

46
autochop (Auto-harvest trees when low on stockpiled

logs.), 48
autoclothing (Automatically manage clothing work or-

ders.), 49
autodump (Instantly gather or destroy items marked for

dumping.), 50
autodump-destroy-here (Destroy items marked for

dumping under the keyboard cursor.), 50
autofarm (Automatically manage farm crop selection.),

51
autofish (Auto-manage fishing labors to control your

stock of fish.), 52
autolabor (Automatically manage dwarf labors.), 53
autonestbox (Auto-assign egg-laying female pets to

nestbox zones.), 56
autonick (Give dwarves random unique nicknames.), 56
autoslab (plugin) (Automatically engrave slabs for

ghostly citizens.), 57

alltraffic (Set traffic designations for every single tile
of the map.), 115

b
ban-cooking (Protect useful items from being cooked.),

57
blueprint (Record a live game map in a quickfort

blueprint.), 59
brainwash (Set the personality of a dwarf to an ideal.),

62
build-now (Instantly completes building construction

jobs.), 63
buildingplan (Plan building layouts with or without

materials.), 64
burial (Create tomb zones for unzoned coffins.), 67
burrow (Quickly adjust burrow tiles and units.), 67
bprobe (Display low-level properties of the selected

building.), 176

c
caravan (Adjust properties of caravans on the map.), 70
catsplosion (Cause pregnancies.), 72
changeitem (Change item material, quality, and sub-

type.), 72
changelayer (Change the material of an entire geology

layer.), 73
changevein (Change the material of a mineral inclu-

sion.), 74
channel-safely (Auto-manage channel designations to

keep dwarves safe.), 75
cleanconst (Cleans up construction materials.), 76
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
cleanowned (Confiscates and dumps garbage owned by

dwarves.), 78
clear-smoke (Removes all smoke from the map.), 79
clear-webs (Removes all webs from the map.), 79
colonies (Manipulate vermin colonies and hives.), 80
combine (Combine items that can be stacked together.),

83

835

DFHack Documentation, Release 50.11-r4

confirm (Adds confirmation dialogs for destructive ac-
tions.), 85

createitem (Create arbitrary items.), 85
cursecheck (Check for cursed creatures.), 86
cprobe (Display low-level properties of the selected

unit.), 176

d
deathcause (Find out the cause of death for a creature.),

87
deep-embark (Start a fort deep underground.), 89
deramp (Removes all ramps designated for removal from

the map.), 90
design (plugin) (Draws designations in shapes.), 90
dig (plugin) (Provides commands for designating tiles

for digging.), 92
digv (Designate all of the selected vein for digging.), 92
digvx (Dig a vein across z-levels, digging stairs as

needed.), 92
digl (Dig all of the selected layer stone.), 92
diglx (Dig layer stone across z-levels, digging stairs as

needed.), 92
digcircle (Designate circles.), 92
digtype (Designate all vein tiles of the same type as the

selected tile.), 92
digexp (Designate dig patterns for exploratory mining.),

92
dig-now (Instantly complete dig designations.), 95
diplomacy (View or alter diplomatic relationships.), 98
drain-aquifer (Remove some or all aquifers on the

map.), 100
dwarfvet (Allow animals to be treated at hospitals.), 105

e
elevate-mental (Set mental attributes of a dwarf to an

ideal.), 105
elevate-physical (Set physical attributes of a dwarf to

an ideal.), 106
emigration (Allow dwarves to emigrate from the fortress

when stressed.), 108
empty-bin (Empty the contents of containers onto the

floor.), 109
exterminate (Kill things.), 111
extinguish (Put out fires.), 112

f
fastdwarf (Dwarves teleport and/or finish jobs in-

stantly.), 113
feature (Control discovery flags for map features.), 114
fillneeds (Temporarily satisfy the needs of a unit.), 115
filltraffic (Set traffic designations using flood-fill

starting at the cursor.), 115
firestarter (Lights things on fire.), 116

fix/blood-del (Removes unusable liquids from caravan
manifests.), 275

fix/civil-war (Removes a civil war.), 275
fix/corrupt-jobs (Removes jobs with an id of -1 from

units.), 276
fix/dead-units (Remove dead units from the list so mi-

grants can arrive again.), 277
fix/drop-webs (Make floating webs drop to the

ground.), 277
fix/dry-buckets (Allow discarded water buckets to be

used again.), 278
fix/empty-wheelbarrows (Empties stuck items from

wheelbarrows.), 278
fix/general-strike (Prevent dwarves from getting

stuck and refusing to work.), 279
fix/loyaltycascade (Halts loyalty cascades where

dwarves are fighting dwarves.), 280
fix/protect-nicks (Fix nicknames being erased or not

displayed), 281
fix/retrieve-units (Allow stuck offscreen units to en-

ter the map.), 282
fix/stable-temp (Solve FPS issues caused by fluctuat-

ing temperature.), 282
fix/stuck-instruments (Allow bugged instruments to

be interacted with again.), 283
fix/stuck-merchants (Dismiss merchants that are

stuck off the edge of the map.), 283
fix/stuckdoors (Allow doors that are stuck open to

close.), 284
flows (Counts map blocks with flowing liquids.), 119
forbid (Forbid and list forbidden items on the map.), 120
force (Trigger in-game events.), 121
full-heal (Fully heal the selected unit.), 125

g
gaydar (Shows the sexual orientation of units.), 126
geld (Geld and ungeld animals.), 127
getplants (Designate trees for chopping and shrubs for

gathering.), 128
gui/autobutcher (Automatically butcher excess live-

stock.), 286
gui/autochop (Auto-harvest trees when low on stock-

piled logs.), 286
gui/autodump (Teleport or destroy items.), 287
gui/autofish (Auto-manage fishing labors to control

your stock of fish.), 287
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/civ-alert (Quickly get your civilians to safety.),

290
gui/confirm (Configure which confirmation dialogs are

enabled.), 293
gui/create-item (Summon items from the aether.), 295

836 "fort" tag index - Tools that are useful while in fort mode.

DFHack Documentation, Release 50.11-r4

gui/design (Design designation utility with shapes.),
297

gui/liquids (Interactively paint liquids onto the map.),
304

gui/mass-remove (Mass select buildings and construc-
tions to suspend or remove.), 305

gui/masspit (Designate creatures for pitting.), 306
gui/pathable (Highlights tiles reachable from the se-

lected tile.), 307
gui/quickfort (Apply layout blueprints to your fort.),

311
gui/sandbox (Create units, trees, or items.), 314
gui/seedwatch (Manages seed and plant cooking based

on seed stock levels.), 315
gui/suspendmanager (Intelligently suspend and unsus-

pend jobs.), 317
gui/unit-syndromes (Inspect syndrome details.), 319
gui/workorder-details (Adjust input materials and

traits for workorders.), 321
gui/workshop-job (Adjust the input materials used for

a job at a workshop.), 322

h
hermit (Go it alone in your fortress and attempt the her-

mit challenge.), 130
hfs-pit (Creates a pit straight to the underworld.), 131
hide-tutorials (Hide new fort tutorial popups.), 132

l
lair (Mark the map as a monster lair.), 140
lever (Inspect and pull levers.), 141
light-aquifers-only (Change heavy and varied

aquifers to light aquifers.), 141
liquids (Place magma, water or obsidian.), 142
liquids-here (Spawn liquids on the selected tile.), 142
list-agreements (List guildhall and temple agree-

ments.), 144
locate-ore (Scan the map for metal ores.), 147
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147

m
make-monarch (Crown the selected unit as a monarch.),

151
makeown (Converts the selected unit to be a fortress citi-

zen.), 151
migrants-now (Trigger a migrant wave.), 157
misery (Make citizens more miserable.), 157

n
necronomicon (Find books that contain the secrets of life

and death.), 161
nestboxes (plugin) (Protect fertile eggs incubating in

a nestbox.), 161

nopause (Disable pausing.), 190

o
orders (Manage manager orders.), 163

p
points (Sets available points at the embark screen.), 170
position (Report cursor and mouse position, along with

other info.), 171
pref-adjust (Set the preferences of a dwarf to an ideal.),

171
preserve-tombs (Preserve tomb assignments when as-

signed units die.), 173
prioritize (Automatically boost the priority of selected

job types.), 174
probe (Display low-level properties of the selected tile.),

176
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

q
quickfort (Apply layout blueprints to your fort.), 179
quicksave (Immediately autosave the game.), 182

r
restrictice (Restrict traffic on all tiles on top of visible

ice.), 115
restrictliquids (Restrict traffic on all visible tiles with

liquid.), 115
region-pops (Change regional animal populations.),

183
regrass (Regrow all the grass.), 184
rejuvenate (Resets unit age.), 184
remove-stress (Reduce stress values for fortress

dwarves.), 186
remove-wear (Remove wear from items in your fort.), 186
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190
revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190
reveal-hidden-sites (Reveal all sites in the world.),

191
reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
seedwatch (Manages seed and plant cooking based on

seed stock levels.), 194

"fort" tag index - Tools that are useful while in fort mode. 837

DFHack Documentation, Release 50.11-r4

set-orientation (Alter a unit's romantic inclinations.),
195

set-timeskip-duration (Modify the duration of the
pre-game world update.), 196

showmood (Shows all items needed for the active strange
mood.), 198

sort (plugin) (Search and sort lists shown in the DF
interface.), 199

source (Create an infinite magma or water source.), 202
spectate (Automatically follow productive dwarves.),

203
startdwarf (Change the number of dwarves you embark

with.), 204
starvingdead (Prevent infinite accumulation of roaming

undead.), 205
stockpiles (Import, export, or modify stockpile set-

tings.), 208
stonesense (A 3D isometric visualizer.), 218
ssense (An alias for stonesense.), 218
strangemood (Trigger a strange mood.), 221
stripcaged (Remove items from caged prisoners.), 222
superdwarf (Make a dwarf supernaturally speedy.), 223
suspend (Suspends building construction jobs.), 224
suspendmanager (Intelligently suspend and unsuspend

jobs.), 225
sync-windmills (Synchronize or randomize windmill

movement.), 225

t
tailor (Automatically keep your dwarves in fresh cloth-

ing.), 227
tame (Tame and train animals.), 228
teleport (Teleport a unit anywhere.), 229
tiletypes (Paints tiles of specified types onto the map.),

230
tiletypes-command (Run tiletypes commands.), 230
tiletypes-here (Paint map tiles starting from the cur-

sor.), 230
tiletypes-here-point (Paint the map tile under the

cursor.), 230
trackstop (Add dynamic configuration options for track

stops.), 234
troubleshoot-item (Inspect properties of the selected

item.), 235
tubefill (Replenishes mined-out adamantine.), 235

u
unreveal (Hides previously hidden tiles again.), 190
unforbid (Unforbid all items.), 238
ungeld (Undo gelding for an animal.), 239
unsuspend (Unsuspends building construction jobs.),

241

w
warn-starving (Report units that are dangerously hun-

gry, thirsty, or drowsy.), 243
warn-stranded (Reports citizens that are stranded and

can't reach any other citizens.), 244
weather (Change the weather.), 245
work-now (Reduce the time that dwarves idle after com-

pleting a job.), 246
workorder (Create manager workorders.), 248

838 "fort" tag index - Tools that are useful while in fort mode.

"LEGENDS" TAG INDEX - TOOLS THAT ARE USEFUL WHILE IN
LEGENDS MODE.

e
exportlegends (Exports extended legends data for ex-

ternal viewing.), 110

839

DFHack Documentation, Release 50.11-r4

840 "legends" tag index - Tools that are useful while in legends mode.

"ARMOK" TAG INDEX - TOOLS WHICH GIVE THE PLAYER GOD-LIKE
POWERS OF ANY VARIETY, SUCH AS CONTROL OVER GAME

EVENTS, CREATING ITEMS FROM THIN AIR, OR VIEWING
INFORMATION THE GAME INTENTIONALLY KEEPS HIDDEN.

PLAYERS THAT DO NOT WISH TO SEE THESE TOOLS LISTED IN
DFHACK COMMAND LISTS CAN HIDE THEM IN THE
“PREFERENCES“ TAB OF ‘GUI/CONTROL-PANEL‘.

a
armoks-blessing (Bless units with superior stats and

traits.), 36
assign-attributes (Adjust physical and mental at-

tributes.), 37
assign-beliefs (Adjust a unit's beliefs and values.), 38
assign-facets (Adjust a unit's facets and traits.), 39
assign-goals (Adjust a unit's goals and dreams.), 40
assign-preferences (Adjust a unit's preferences.), 42
assign-skills (Adjust a unit's skills.), 45
autodump (Instantly gather or destroy items marked for

dumping.), 50
autodump-destroy-here (Destroy items marked for

dumping under the keyboard cursor.), 50

b
brainwash (Set the personality of a dwarf to an ideal.),

62
build-now (Instantly completes building construction

jobs.), 63

c
caravan (Adjust properties of caravans on the map.), 70
catsplosion (Cause pregnancies.), 72
changeitem (Change item material, quality, and sub-

type.), 72
changelayer (Change the material of an entire geology

layer.), 73
changevein (Change the material of a mineral inclu-

sion.), 74
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77

clear-smoke (Removes all smoke from the map.), 79
clear-webs (Removes all webs from the map.), 79
colonies (Manipulate vermin colonies and hives.), 80
createitem (Create arbitrary items.), 85
cursecheck (Check for cursed creatures.), 86

d
deramp (Removes all ramps designated for removal from

the map.), 90
dig-now (Instantly complete dig designations.), 95
diplomacy (View or alter diplomatic relationships.), 98
drain-aquifer (Remove some or all aquifers on the

map.), 100

e
elevate-mental (Set mental attributes of a dwarf to an

ideal.), 105
elevate-physical (Set physical attributes of a dwarf to

an ideal.), 106
exterminate (Kill things.), 111
extinguish (Put out fires.), 112

f
fastdwarf (Dwarves teleport and/or finish jobs in-

stantly.), 113
feature (Control discovery flags for map features.), 114
fillneeds (Temporarily satisfy the needs of a unit.), 115
firestarter (Lights things on fire.), 116
force (Trigger in-game events.), 121
full-heal (Fully heal the selected unit.), 125

g
geld (Geld and ungeld animals.), 127

841

DFHack Documentation, Release 50.11-r4

gui/autodump (Teleport or destroy items.), 287
gui/create-item (Summon items from the aether.), 295
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/liquids (Interactively paint liquids onto the map.),

304
gui/sandbox (Create units, trees, or items.), 314

h
hfs-pit (Creates a pit straight to the underworld.), 131

l
lair (Mark the map as a monster lair.), 140
lever (Inspect and pull levers.), 141
light-aquifers-only (Change heavy and varied

aquifers to light aquifers.), 141
liquids (Place magma, water or obsidian.), 142
liquids-here (Spawn liquids on the selected tile.), 142
locate-ore (Scan the map for metal ores.), 147

m
make-monarch (Crown the selected unit as a monarch.),

151
makeown (Converts the selected unit to be a fortress citi-

zen.), 151
migrants-now (Trigger a migrant wave.), 157

n
nopause (Disable pausing.), 190

p
points (Sets available points at the embark screen.), 170
pref-adjust (Set the preferences of a dwarf to an ideal.),

171
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

r
regrass (Regrow all the grass.), 184
rejuvenate (Resets unit age.), 184
remove-stress (Reduce stress values for fortress

dwarves.), 186
remove-wear (Remove wear from items in your fort.), 186
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190
revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190
reveal-hidden-sites (Reveal all sites in the world.),

191
reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
set-orientation (Alter a unit's romantic inclinations.),

195
set-timeskip-duration (Modify the duration of the

pre-game world update.), 196
showmood (Shows all items needed for the active strange

mood.), 198
source (Create an infinite magma or water source.), 202
startdwarf (Change the number of dwarves you embark

with.), 204
strangemood (Trigger a strange mood.), 221
superdwarf (Make a dwarf supernaturally speedy.), 223

t
tame (Tame and train animals.), 228
teleport (Teleport a unit anywhere.), 229
tiletypes (Paints tiles of specified types onto the map.),

230
tiletypes-command (Run tiletypes commands.), 230
tiletypes-here (Paint map tiles starting from the cur-

sor.), 230
tiletypes-here-point (Paint the map tile under the

cursor.), 230
tubefill (Replenishes mined-out adamantine.), 235

u
unreveal (Hides previously hidden tiles again.), 190
ungeld (Undo gelding for an animal.), 239

w
weather (Change the weather.), 245

842"armok" tag index - Tools which give the player god-like powers of any variety, such as control over
game events, creating items from thin air, or viewing information the game intentionally keeps

hidden. Players that do not wish to see these tools listed in DFHack command lists can hide them
in the “Preferences“ tab of ‘gui/control-panel‘.

"AUTO" TAG INDEX - TOOLS THAT RUN IN THE BACKGROUND AND
AUTOMATICALLY MANAGE ROUTINE, TOILSOME ASPECTS OF

YOUR FORTRESS.

a
autobutcher (Automatically butcher excess livestock.),

46
autochop (Auto-harvest trees when low on stockpiled

logs.), 48
autoclothing (Automatically manage clothing work or-

ders.), 49
autofarm (Automatically manage farm crop selection.),

51
autofish (Auto-manage fishing labors to control your

stock of fish.), 52
autolabor (Automatically manage dwarf labors.), 53
autonestbox (Auto-assign egg-laying female pets to

nestbox zones.), 56
autoslab (plugin) (Automatically engrave slabs for

ghostly citizens.), 57

b
burrow (Quickly adjust burrow tiles and units.), 67

c
channel-safely (Auto-manage channel designations to

keep dwarves safe.), 75

g
gui/autobutcher (Automatically butcher excess live-

stock.), 286
gui/autochop (Auto-harvest trees when low on stock-

piled logs.), 286
gui/autofish (Auto-manage fishing labors to control

your stock of fish.), 287
gui/seedwatch (Manages seed and plant cooking based

on seed stock levels.), 315

l
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147

n
nestboxes (plugin) (Protect fertile eggs incubating in

a nestbox.), 161

p
prioritize (Automatically boost the priority of selected

job types.), 174

s
seedwatch (Manages seed and plant cooking based on

seed stock levels.), 194
suspendmanager (Intelligently suspend and unsuspend

jobs.), 225

t
tailor (Automatically keep your dwarves in fresh cloth-

ing.), 227

w
work-now (Reduce the time that dwarves idle after com-

pleting a job.), 246

843

DFHack Documentation, Release 50.11-r4

844"auto" tag index - Tools that run in the background and automatically manage routine, toilsome
aspects of your fortress.

"BUGFIX" TAG INDEX - TOOLS THAT FIX SPECIFIC BUGS, EITHER
PERMANENTLY OR ON-DEMAND.

c
caravan (Adjust properties of caravans on the map.), 70

f
fix/blood-del (Removes unusable liquids from caravan

manifests.), 275
fix/civil-war (Removes a civil war.), 275
fix/corrupt-jobs (Removes jobs with an id of -1 from

units.), 276
fix/dead-units (Remove dead units from the list so mi-

grants can arrive again.), 277
fix/drop-webs (Make floating webs drop to the

ground.), 277
fix/dry-buckets (Allow discarded water buckets to be

used again.), 278
fix/empty-wheelbarrows (Empties stuck items from

wheelbarrows.), 278
fix/general-strike (Prevent dwarves from getting

stuck and refusing to work.), 279
fix/loyaltycascade (Halts loyalty cascades where

dwarves are fighting dwarves.), 280
fix/protect-nicks (Fix nicknames being erased or not

displayed), 281
fix/retrieve-units (Allow stuck offscreen units to en-

ter the map.), 282
fix/stable-temp (Solve FPS issues caused by fluctuat-

ing temperature.), 282
fix/stuck-instruments (Allow bugged instruments to

be interacted with again.), 283
fix/stuck-merchants (Dismiss merchants that are

stuck off the edge of the map.), 283
fix/stuckdoors (Allow doors that are stuck open to

close.), 284

p
preserve-tombs (Preserve tomb assignments when as-

signed units die.), 173

845

DFHack Documentation, Release 50.11-r4

846 "bugfix" tag index - Tools that fix specific bugs, either permanently or on-demand.

"DESIGN" TAG INDEX - TOOLS THAT HELP YOU DESIGN YOUR
FORT.

a
alltraffic (Set traffic designations for every single tile

of the map.), 115

b
blueprint (Record a live game map in a quickfort

blueprint.), 59
buildingplan (Plan building layouts with or without

materials.), 64
burrow (Quickly adjust burrow tiles and units.), 67

d
design (plugin) (Draws designations in shapes.), 90
dig (plugin) (Provides commands for designating tiles

for digging.), 92
digv (Designate all of the selected vein for digging.), 92
digvx (Dig a vein across z-levels, digging stairs as

needed.), 92
digl (Dig all of the selected layer stone.), 92
diglx (Dig layer stone across z-levels, digging stairs as

needed.), 92
digcircle (Designate circles.), 92
digtype (Designate all vein tiles of the same type as the

selected tile.), 92
digexp (Designate dig patterns for exploratory mining.),

92

f
filltraffic (Set traffic designations using flood-fill

starting at the cursor.), 115

g
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/design (Design designation utility with shapes.),

297
gui/mass-remove (Mass select buildings and construc-

tions to suspend or remove.), 305
gui/quickfort (Apply layout blueprints to your fort.),

311

q
quickfort (Apply layout blueprints to your fort.), 179

r
restrictice (Restrict traffic on all tiles on top of visible

ice.), 115
restrictliquids (Restrict traffic on all visible tiles with

liquid.), 115

s
stockpiles (Import, export, or modify stockpile set-

tings.), 208

847

DFHack Documentation, Release 50.11-r4

848 "design" tag index - Tools that help you design your fort.

"DEV" TAG INDEX - TOOLS THAT ARE USEFUL WHEN DEVELOPING
SCRIPTS OR MODS.

c
cxxrandom (plugin) (Provides a Lua API for random

distributions.), 87

d
debug (plugin) (Provides commands for controlling

debug log verbosity.), 88
debugfilter (Configure verbosity of DFHack debug out-

put.), 88
design (plugin) (Draws designations in shapes.), 90
devel/all-bob (Changes the first name of all units to

"Bob"..), 253
devel/annc-monitor (Track announcements and re-

ports and echo them to the console.), 253
devel/check-other-ids (Verify that game entities are

referenced by the correct vectors.), 254
devel/check-release (Perform basic checks for

DFHack release readiness.), 255
devel/clear-script-env (Clear a lua script environ-

ment.), 255
devel/click-monitor (Displays the grid coordinates of

mouse clicks in the console.), 255
devel/dump-offsets (Dump the contents of the table of

global addresses.), 256
devel/dump-rpc (Dump RPC endpoint info.), 257
devel/eventful-client (Simple client for testing

event callbacks.), 257
devel/export-dt-ini (Export memory addresses for

Dwarf Therapist configuration.), 258
devel/find-primitive (Discover memory offsets for

new variables.), 259
devel/hello-world (A basic GUI example script.), 260
devel/inspect-screen (Show glyph, color, and texture

info for screen and map tiles.), 261
devel/lsmem (Print memory ranges of the DF process.),

263
devel/modstate-monitor (Display changes in key

modifier state.), 265
devel/pop-screen (Forcibly closes the current screen.),

265

devel/print-args (Echo parameters to the output.),
266

devel/print-args2 (Echo parameters to the output.),
267

devel/query (Search/print data algorithmically.), 267
devel/save-version (Display what DF version has

handled the current save.), 269
devel/sc (Scan DF structures for errors.), 270
devel/scan-vtables (Scan for and print likely vtable

addresses.), 270
devel/scanitemother (Display the item lists that the

selected item is part of.), 271
devel/send-key (Deliver key input to a viewscreen.),

271
devel/spawn-unit-helper (Prepares the game for

spawning creatures by switching to arena.), 272
devel/tile-browser (Browse graphical tile textures by

their texpos values.), 273
devel/visualize-structure (Display raw memory of

a DF data structure.), 274

e
eventful (plugin) (Provides a Lua API for reacting to

in-game events.), 110

l
load-art-image-chunk (Gets an art image chunk by in-

dex.), 29
lua (Run Lua script commands.), 149
luasocket (plugin) (Provides a Lua API for accessing

network sockets.), 150

m
modtools/add-syndrome (Add and remove syndromes

from units.), 323
modtools/create-item (Create arbitrary items.), 327
modtools/force (Trigger game events.), 334
modtools/skill-change (Modify unit skills.), 349
modtools/spawn-liquid (Spawn a liquid at a given po-

sition.), 350

849

DFHack Documentation, Release 50.11-r4

p
pathable (plugin) (Marks tiles that are reachable

from the cursor.), 168

r
RemoteFortressReader (plugin) (Backend for

Armok Vision.), 29
RemoteFortressReader_version (Print the loaded

RemoteFortressReader version.), 29

x
xlsxreader (plugin) (Provides a Lua API for reading

xlsx files.), 250

850 "dev" tag index - Tools that are useful when developing scripts or mods.

"FPS" TAG INDEX - TOOLS THAT HELP YOU MANAGE FPS DROP.

a
autobutcher (Automatically butcher excess livestock.),

46
autodump (Instantly gather or destroy items marked for

dumping.), 50
autodump-destroy-here (Destroy items marked for

dumping under the keyboard cursor.), 50

c
cleanconst (Cleans up construction materials.), 76
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
clear-smoke (Removes all smoke from the map.), 79

f
fix/stable-temp (Solve FPS issues caused by fluctuat-

ing temperature.), 282

g
gui/autobutcher (Automatically butcher excess live-

stock.), 286

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
setfps (Set the graphics FPS cap.), 197
starvingdead (Prevent infinite accumulation of roaming

undead.), 205

851

DFHack Documentation, Release 50.11-r4

852 "fps" tag index - Tools that help you manage FPS drop.

"GAMEPLAY" TAG INDEX - TOOLS THAT INTRODUCE NEW
GAMEPLAY ELEMENTS.

3
3dveins (Rewrite layer veins to expand in 3D space.), 29

a
add-recipe (Add crafting recipes to a civ.), 30
add-spatter (plugin) (Add poisons and magical ef-

fects to weapons.), 31

d
deep-embark (Start a fort deep underground.), 89
dwarfvet (Allow animals to be treated at hospitals.), 105

e
emigration (Allow dwarves to emigrate from the fortress

when stressed.), 108

f
force (Trigger in-game events.), 121

g
gui/civ-alert (Quickly get your civilians to safety.),

290

h
hermit (Go it alone in your fortress and attempt the her-

mit challenge.), 130

m
misery (Make citizens more miserable.), 157

s
starvingdead (Prevent infinite accumulation of roaming

undead.), 205

853

DFHack Documentation, Release 50.11-r4

854 "gameplay" tag index - Tools that introduce new gameplay elements.

"INSPECTION" TAG INDEX - TOOLS THAT LET YOU VIEW
INFORMATION THAT IS OTHERWISE DIFFICULT TO FIND.

b
bprobe (Display low-level properties of the selected

building.), 176

c
cursecheck (Check for cursed creatures.), 86
cprobe (Display low-level properties of the selected

unit.), 176

d
deathcause (Find out the cause of death for a creature.),

87
devel/query (Search/print data algorithmically.), 267
diplomacy (View or alter diplomatic relationships.), 98

e
exportlegends (Exports extended legends data for ex-

ternal viewing.), 110

f
flows (Counts map blocks with flowing liquids.), 119

g
gaydar (Shows the sexual orientation of units.), 126
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/pathable (Highlights tiles reachable from the se-

lected tile.), 307
gui/unit-syndromes (Inspect syndrome details.), 319
gui/workorder-details (Adjust input materials and

traits for workorders.), 321
gui/workshop-job (Adjust the input materials used for

a job at a workshop.), 322

l
lever (Inspect and pull levers.), 141
list-agreements (List guildhall and temple agree-

ments.), 144

n
necronomicon (Find books that contain the secrets of life

and death.), 161
nopause (Disable pausing.), 190

p
pathable (plugin) (Marks tiles that are reachable

from the cursor.), 168
position (Report cursor and mouse position, along with

other info.), 171
probe (Display low-level properties of the selected tile.),

176
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

r
region-pops (Change regional animal populations.),

183
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190
revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190

s
showmood (Shows all items needed for the active strange

mood.), 198

t
troubleshoot-item (Inspect properties of the selected

item.), 235

u
unreveal (Hides previously hidden tiles again.), 190

w
weather (Change the weather.), 245

855

DFHack Documentation, Release 50.11-r4

856 "inspection" tag index - Tools that let you view information that is otherwise difficult to find.

"PRODUCTIVITY" TAG INDEX - TOOLS THAT HELP YOU DO THINGS
THAT YOU COULD DO MANUALLY, BUT USING THE TOOL IS

BETTER AND FASTER.

a
animal-control (Quickly view, butcher, or geld groups

of animals.), 34
assign-minecarts (Assign minecarts to hauling

routes.), 41
autonick (Give dwarves random unique nicknames.), 56
alltraffic (Set traffic designations for every single tile

of the map.), 115

b
ban-cooking (Protect useful items from being cooked.),

57
buildingplan (Plan building layouts with or without

materials.), 64
burial (Create tomb zones for unzoned coffins.), 67
burrow (Quickly adjust burrow tiles and units.), 67

c
cleanowned (Confiscates and dumps garbage owned by

dwarves.), 78
combine (Combine items that can be stacked together.),

83

d
dig (plugin) (Provides commands for designating tiles

for digging.), 92
digv (Designate all of the selected vein for digging.), 92
digvx (Dig a vein across z-levels, digging stairs as

needed.), 92
digl (Dig all of the selected layer stone.), 92
diglx (Dig layer stone across z-levels, digging stairs as

needed.), 92
digcircle (Designate circles.), 92
digtype (Designate all vein tiles of the same type as the

selected tile.), 92
digexp (Designate dig patterns for exploratory mining.),

92

e
empty-bin (Empty the contents of containers onto the

floor.), 109

f
filltraffic (Set traffic designations using flood-fill

starting at the cursor.), 115
forbid (Forbid and list forbidden items on the map.), 120

g
getplants (Designate trees for chopping and shrubs for

gathering.), 128
gui/design (Design designation utility with shapes.),

297
gui/mass-remove (Mass select buildings and construc-

tions to suspend or remove.), 305
gui/masspit (Designate creatures for pitting.), 306
gui/quickfort (Apply layout blueprints to your fort.),

311

l
lever (Inspect and pull levers.), 141
locate-ore (Scan the map for metal ores.), 147

n
necronomicon (Find books that contain the secrets of life

and death.), 161

o
orders (Manage manager orders.), 163

q
quickfort (Apply layout blueprints to your fort.), 179

r
restrictice (Restrict traffic on all tiles on top of visible

ice.), 115
restrictliquids (Restrict traffic on all visible tiles with

liquid.), 115

857

DFHack Documentation, Release 50.11-r4

s
sort (plugin) (Search and sort lists shown in the DF

interface.), 199
stockpiles (Import, export, or modify stockpile set-

tings.), 208
stripcaged (Remove items from caged prisoners.), 222
suspend (Suspends building construction jobs.), 224

u
unforbid (Unforbid all items.), 238
unsuspend (Unsuspends building construction jobs.),

241

w
workorder (Create manager workorders.), 248

858"productivity" tag index - Tools that help you do things that you could do manually, but using the
tool is better and faster.

"ANIMALS" TAG INDEX - TOOLS THAT INTERACT WITH ANIMALS.

a
animal-control (Quickly view, butcher, or geld groups

of animals.), 34
autobutcher (Automatically butcher excess livestock.),

46
autonestbox (Auto-assign egg-laying female pets to

nestbox zones.), 56

c
catsplosion (Cause pregnancies.), 72

d
dwarfvet (Allow animals to be treated at hospitals.), 105

g
gaydar (Shows the sexual orientation of units.), 126
geld (Geld and ungeld animals.), 127
gui/autobutcher (Automatically butcher excess live-

stock.), 286
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/masspit (Designate creatures for pitting.), 306
gui/sandbox (Create units, trees, or items.), 314

l
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147

n
nestboxes (plugin) (Protect fertile eggs incubating in

a nestbox.), 161

r
region-pops (Change regional animal populations.),

183
regrass (Regrow all the grass.), 184

t
tame (Tame and train animals.), 228

u
ungeld (Undo gelding for an animal.), 239

w
warn-starving (Report units that are dangerously hun-

gry, thirsty, or drowsy.), 243

859

DFHack Documentation, Release 50.11-r4

860 "animals" tag index - Tools that interact with animals.

"BUILDINGS" TAG INDEX - TOOLS THAT INTERACT WITH
BUILDINGS AND FURNITURE.

b
blueprint (Record a live game map in a quickfort

blueprint.), 59
build-now (Instantly completes building construction

jobs.), 63
buildingplan (Plan building layouts with or without

materials.), 64
burial (Create tomb zones for unzoned coffins.), 67
bprobe (Display low-level properties of the selected

building.), 176

c
cleanconst (Cleans up construction materials.), 76
cprobe (Display low-level properties of the selected

unit.), 176

e
extinguish (Put out fires.), 112

f
fix/stuckdoors (Allow doors that are stuck open to

close.), 284

g
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/gm-editor (Inspect and edit DF game data.), 299
gui/mass-remove (Mass select buildings and construc-

tions to suspend or remove.), 305
gui/quickfort (Apply layout blueprints to your fort.),

311

l
lever (Inspect and pull levers.), 141

p
probe (Display low-level properties of the selected tile.),

176

q
quickfort (Apply layout blueprints to your fort.), 179

s
sync-windmills (Synchronize or randomize windmill

movement.), 225

t
trackstop (Add dynamic configuration options for track

stops.), 234

861

DFHack Documentation, Release 50.11-r4

862 "buildings" tag index - Tools that interact with buildings and furniture.

"GRAPHICS" TAG INDEX - TOOLS THAT INTERACT WITH GAME
GRAPHICS.

l
load-art-image-chunk (Gets an art image chunk by in-

dex.), 29

r
RemoteFortressReader (plugin) (Backend for

Armok Vision.), 29
RemoteFortressReader_version (Print the loaded

RemoteFortressReader version.), 29

s
stonesense (A 3D isometric visualizer.), 218
ssense (An alias for stonesense.), 218

863

DFHack Documentation, Release 50.11-r4

864 "graphics" tag index - Tools that interact with game graphics.

"INTERFACE" TAG INDEX - TOOLS THAT INTERACT WITH OR
EXTEND THE DF USER INTERFACE.

c
confirm (Adds confirmation dialogs for destructive ac-

tions.), 85

d
devel/pop-screen (Forcibly closes the current screen.),

265
devel/send-key (Deliver key input to a viewscreen.),

271

f
faststart (plugin) (Makes the main menu appear

sooner.), 114

g
gui/civ-alert (Quickly get your civilians to safety.),

290
gui/confirm (Configure which confirmation dialogs are

enabled.), 293
gui/mod-manager (Save and restore lists of active

mods.), 306
gui/overlay (Reposition DFHack overlay widgets.), 307

h
hide-interface (Hide the interface layer.), 132
hide-tutorials (Hide new fort tutorial popups.), 132

o
overlay (Manage on-screen overlay widgets.), 167

s
sort (plugin) (Search and sort lists shown in the DF

interface.), 199
spectate (Automatically follow productive dwarves.),

203

t
toggle-kbd-cursor (Toggles the keyboard cursor.), 234
trackstop (Add dynamic configuration options for track

stops.), 234

twaterlvl (Show/hide numeric liquid depth on the map.),
235

865

DFHack Documentation, Release 50.11-r4

866 "interface" tag index - Tools that interact with or extend the DF user interface.

"ITEMS" TAG INDEX - TOOLS THAT INTERACT WITH IN-GAME
ITEMS.

a
add-spatter (plugin) (Add poisons and magical ef-

fects to weapons.), 31
autodump (Instantly gather or destroy items marked for

dumping.), 50
autodump-destroy-here (Destroy items marked for

dumping under the keyboard cursor.), 50

b
ban-cooking (Protect useful items from being cooked.),

57

c
changeitem (Change item material, quality, and sub-

type.), 72
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
cleanowned (Confiscates and dumps garbage owned by

dwarves.), 78
combine (Combine items that can be stacked together.),

83
createitem (Create arbitrary items.), 85

e
empty-bin (Empty the contents of containers onto the

floor.), 109
extinguish (Put out fires.), 112

f
firestarter (Lights things on fire.), 116
fix/drop-webs (Make floating webs drop to the

ground.), 277
fix/dry-buckets (Allow discarded water buckets to be

used again.), 278
fix/empty-wheelbarrows (Empties stuck items from

wheelbarrows.), 278
fix/stuck-instruments (Allow bugged instruments to

be interacted with again.), 283
forbid (Forbid and list forbidden items on the map.), 120

g
gui/autodump (Teleport or destroy items.), 287
gui/create-item (Summon items from the aether.), 295
gui/gm-editor (Inspect and edit DF game data.), 299
gui/sandbox (Create units, trees, or items.), 314

l
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147

n
necronomicon (Find books that contain the secrets of life

and death.), 161

r
remove-wear (Remove wear from items in your fort.), 186

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
stripcaged (Remove items from caged prisoners.), 222

t
troubleshoot-item (Inspect properties of the selected

item.), 235

u
unforbid (Unforbid all items.), 238

867

DFHack Documentation, Release 50.11-r4

868 "items" tag index - Tools that interact with in-game items.

"JOBS" TAG INDEX - TOOLS THAT INTERACT WITH JOBS.

g
gui/gm-editor (Inspect and edit DF game data.), 299
gui/suspendmanager (Intelligently suspend and unsus-

pend jobs.), 317
gui/workshop-job (Adjust the input materials used for

a job at a workshop.), 322

p
prioritize (Automatically boost the priority of selected

job types.), 174

s
showmood (Shows all items needed for the active strange

mood.), 198
suspend (Suspends building construction jobs.), 224
suspendmanager (Intelligently suspend and unsuspend

jobs.), 225

u
unsuspend (Unsuspends building construction jobs.),

241

w
work-now (Reduce the time that dwarves idle after com-

pleting a job.), 246

869

DFHack Documentation, Release 50.11-r4

870 "jobs" tag index - Tools that interact with jobs.

"LABORS" TAG INDEX - TOOLS THAT DEAL WITH LABOR
ASSIGNMENT.

a
autofish (Auto-manage fishing labors to control your

stock of fish.), 52
autolabor (Automatically manage dwarf labors.), 53

g
gui/autofish (Auto-manage fishing labors to control

your stock of fish.), 287

871

DFHack Documentation, Release 50.11-r4

872 "labors" tag index - Tools that deal with labor assignment.

"MAP" TAG INDEX - TOOLS THAT INTERACT WITH THE GAME MAP.

3
3dveins (Rewrite layer veins to expand in 3D space.), 29

a
alltraffic (Set traffic designations for every single tile

of the map.), 115

b
blueprint (Record a live game map in a quickfort

blueprint.), 59
bprobe (Display low-level properties of the selected

building.), 176

c
changelayer (Change the material of an entire geology

layer.), 73
changevein (Change the material of a mineral inclu-

sion.), 74
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
clear-smoke (Removes all smoke from the map.), 79
clear-webs (Removes all webs from the map.), 79
colonies (Manipulate vermin colonies and hives.), 80
cprobe (Display low-level properties of the selected

unit.), 176

d
deramp (Removes all ramps designated for removal from

the map.), 90
design (plugin) (Draws designations in shapes.), 90
dig (plugin) (Provides commands for designating tiles

for digging.), 92
digv (Designate all of the selected vein for digging.), 92
digvx (Dig a vein across z-levels, digging stairs as

needed.), 92
digl (Dig all of the selected layer stone.), 92
diglx (Dig layer stone across z-levels, digging stairs as

needed.), 92
digcircle (Designate circles.), 92
digtype (Designate all vein tiles of the same type as the

selected tile.), 92

digexp (Designate dig patterns for exploratory mining.),
92

dig-now (Instantly complete dig designations.), 95
drain-aquifer (Remove some or all aquifers on the

map.), 100

e
extinguish (Put out fires.), 112

f
feature (Control discovery flags for map features.), 114
filltraffic (Set traffic designations using flood-fill

starting at the cursor.), 115
firestarter (Lights things on fire.), 116
fix/stable-temp (Solve FPS issues caused by fluctuat-

ing temperature.), 282
flows (Counts map blocks with flowing liquids.), 119

g
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/design (Design designation utility with shapes.),

297
gui/gm-editor (Inspect and edit DF game data.), 299
gui/liquids (Interactively paint liquids onto the map.),

304
gui/pathable (Highlights tiles reachable from the se-

lected tile.), 307
gui/quickfort (Apply layout blueprints to your fort.),

311
gui/sandbox (Create units, trees, or items.), 314

h
hfs-pit (Creates a pit straight to the underworld.), 131

l
lair (Mark the map as a monster lair.), 140
light-aquifers-only (Change heavy and varied

aquifers to light aquifers.), 141
liquids (Place magma, water or obsidian.), 142
liquids-here (Spawn liquids on the selected tile.), 142
locate-ore (Scan the map for metal ores.), 147

873

DFHack Documentation, Release 50.11-r4

n
nopause (Disable pausing.), 190

p
pathable (plugin) (Marks tiles that are reachable

from the cursor.), 168
position (Report cursor and mouse position, along with

other info.), 171
probe (Display low-level properties of the selected tile.),

176
prospector (plugin) (Provides commands that help

you analyze natural resources.), 177
prospect (Shows a summary of resources that exist on

the map.), 177

q
quickfort (Apply layout blueprints to your fort.), 179

r
restrictice (Restrict traffic on all tiles on top of visible

ice.), 115
restrictliquids (Restrict traffic on all visible tiles with

liquid.), 115
regrass (Regrow all the grass.), 184
reveal (Reveals the map.), 190
revforget (Discard records about what was visible be-

fore revealing the map.), 190
revtoggle (Switch between reveal and unreveal.), 190
revflood (Hide everything, then reveal tiles with a path

to a unit.), 190
reveal-hidden-sites (Reveal all sites in the world.),

191
reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
source (Create an infinite magma or water source.), 202
stonesense (A 3D isometric visualizer.), 218
ssense (An alias for stonesense.), 218

t
tiletypes (Paints tiles of specified types onto the map.),

230
tiletypes-command (Run tiletypes commands.), 230
tiletypes-here (Paint map tiles starting from the cur-

sor.), 230
tiletypes-here-point (Paint the map tile under the

cursor.), 230
tubefill (Replenishes mined-out adamantine.), 235

u
unreveal (Hides previously hidden tiles again.), 190

w
weather (Change the weather.), 245

874 "map" tag index - Tools that interact with the game map.

"MILITARY" TAG INDEX - TOOLS THAT INTERACT WITH THE
MILITARY.

d
diplomacy (View or alter diplomatic relationships.), 98

g
gui/civ-alert (Quickly get your civilians to safety.),

290

875

DFHack Documentation, Release 50.11-r4

876 "military" tag index - Tools that interact with the military.

"PLANTS" TAG INDEX - TOOLS THAT INTERACT WITH TREES,
SHRUBS, AND CROPS.

a
autochop (Auto-harvest trees when low on stockpiled

logs.), 48
autofarm (Automatically manage farm crop selection.),

51

b
ban-cooking (Protect useful items from being cooked.),

57

c
combine (Combine items that can be stacked together.),

83

g
getplants (Designate trees for chopping and shrubs for

gathering.), 128
gui/autochop (Auto-harvest trees when low on stock-

piled logs.), 286
gui/gm-editor (Inspect and edit DF game data.), 299
gui/sandbox (Create units, trees, or items.), 314
gui/seedwatch (Manages seed and plant cooking based

on seed stock levels.), 315

s
seedwatch (Manages seed and plant cooking based on

seed stock levels.), 194

877

DFHack Documentation, Release 50.11-r4

878 "plants" tag index - Tools that interact with trees, shrubs, and crops.

"STOCKPILES" TAG INDEX - TOOLS THAT INTERACT WITH
STOCKPILES.

b
blueprint (Record a live game map in a quickfort

blueprint.), 59

c
combine (Combine items that can be stacked together.),

83

g
gui/blueprint (Record a live game map in a quickfort

blueprint.), 288
gui/gm-editor (Inspect and edit DF game data.), 299
gui/mass-remove (Mass select buildings and construc-

tions to suspend or remove.), 305
gui/quickfort (Apply layout blueprints to your fort.),

311

l
logistics (Automatically mark and route items in mon-

itored stockpiles.), 147

q
quickfort (Apply layout blueprints to your fort.), 179

s
stockpiles (Import, export, or modify stockpile set-

tings.), 208

879

DFHack Documentation, Release 50.11-r4

880 "stockpiles" tag index - Tools that interact with stockpiles.

"UNITS" TAG INDEX - TOOLS THAT INTERACT WITH UNITS.

a
allneeds (Show the cumulative needs of all citizens.), 34
armoks-blessing (Bless units with superior stats and

traits.), 36
assign-attributes (Adjust physical and mental at-

tributes.), 37
assign-beliefs (Adjust a unit's beliefs and values.), 38
assign-facets (Adjust a unit's facets and traits.), 39
assign-goals (Adjust a unit's goals and dreams.), 40
assign-preferences (Adjust a unit's preferences.), 42
assign-skills (Adjust a unit's skills.), 45
autonick (Give dwarves random unique nicknames.), 56

b
brainwash (Set the personality of a dwarf to an ideal.),

62
burrow (Quickly adjust burrow tiles and units.), 67
bprobe (Display low-level properties of the selected

building.), 176

c
cleaners (plugin) (Provides commands for cleaning

spatter from the map.), 77
clean (Removes contaminants.), 77
clear-webs (Removes all webs from the map.), 79
cursecheck (Check for cursed creatures.), 86
cprobe (Display low-level properties of the selected

unit.), 176

d
deathcause (Find out the cause of death for a creature.),

87

e
elevate-mental (Set mental attributes of a dwarf to an

ideal.), 105
elevate-physical (Set physical attributes of a dwarf to

an ideal.), 106
emigration (Allow dwarves to emigrate from the fortress

when stressed.), 108
exterminate (Kill things.), 111
extinguish (Put out fires.), 112

f
fastdwarf (Dwarves teleport and/or finish jobs in-

stantly.), 113
fillneeds (Temporarily satisfy the needs of a unit.), 115
firestarter (Lights things on fire.), 116
fix/dead-units (Remove dead units from the list so mi-

grants can arrive again.), 277
fix/loyaltycascade (Halts loyalty cascades where

dwarves are fighting dwarves.), 280
fix/protect-nicks (Fix nicknames being erased or not

displayed), 281
fix/retrieve-units (Allow stuck offscreen units to en-

ter the map.), 282
fix/stuck-merchants (Dismiss merchants that are

stuck off the edge of the map.), 283
full-heal (Fully heal the selected unit.), 125

g
gaydar (Shows the sexual orientation of units.), 126
gui/civ-alert (Quickly get your civilians to safety.),

290
gui/gm-editor (Inspect and edit DF game data.), 299
gui/gm-unit (Inspect and edit unit attributes.), 300
gui/sandbox (Create units, trees, or items.), 314
gui/unit-syndromes (Inspect syndrome details.), 319

m
make-monarch (Crown the selected unit as a monarch.),

151
makeown (Converts the selected unit to be a fortress citi-

zen.), 151
migrants-now (Trigger a migrant wave.), 157
misery (Make citizens more miserable.), 157

p
pref-adjust (Set the preferences of a dwarf to an ideal.),

171
probe (Display low-level properties of the selected tile.),

176

r
rejuvenate (Resets unit age.), 184

881

DFHack Documentation, Release 50.11-r4

remove-stress (Reduce stress values for fortress
dwarves.), 186

reveal-hidden-units (Reveal sneaking units.), 192

s
spotclean (Remove all contaminants from the tile under

the cursor.), 77
set-orientation (Alter a unit's romantic inclinations.),

195
showmood (Shows all items needed for the active strange

mood.), 198
starvingdead (Prevent infinite accumulation of roaming

undead.), 205
strangemood (Trigger a strange mood.), 221
superdwarf (Make a dwarf supernaturally speedy.), 223

t
teleport (Teleport a unit anywhere.), 229

w
warn-starving (Report units that are dangerously hun-

gry, thirsty, or drowsy.), 243
warn-stranded (Reports citizens that are stranded and

can't reach any other citizens.), 244

882 "units" tag index - Tools that interact with units.

"WORKORDERS" TAG INDEX - TOOLS THAT INTERACT WITH
WORKORDERS.

a
autoclothing (Automatically manage clothing work or-

ders.), 49
autoslab (plugin) (Automatically engrave slabs for

ghostly citizens.), 57

g
gui/gm-editor (Inspect and edit DF game data.), 299
gui/workorder-details (Adjust input materials and

traits for workorders.), 321

o
orders (Manage manager orders.), 163

t
tailor (Automatically keep your dwarves in fresh cloth-

ing.), 227

w
workorder (Create manager workorders.), 248

883

DFHack Documentation, Release 50.11-r4

884 "workorders" tag index - Tools that interact with workorders.

"UNAVAILABLE" TAG INDEX - TOOLS THAT ARE NOT YET
AVAILABLE FOR THE CURRENT RELEASE.

a
adaptation (Adjust a unit's cave adaptation level.), 30
add-thought (Adds a thought to the selected unit.), 31
adv-fix-sleepers (Fix units who refuse to awaken in

adventure mode.), 32
adv-max-skills (Raises adventurer stats to max.), 33
adv-rumors (Improves the rumors menu in adventure

mode.), 33
assign-profile (Adjust characteristics of a unit ac-

cording to saved profiles.), 44
autogems (plugin) (Automatically cut rough gems.),

53
autogems-reload (Reloads the autogems configuration

file.), 53
autolabor-artisans (Configures autolabor to produce

artisan dwarves.), 55

b
binpatch (Applies or removes binary patches.), 58
bodyswap (Take direct control of any visible unit.), 61
break-dance (Fixes buggy tavern dances.), 62
building-hacks (plugin) (Provides a Lua API for

creating powered workshops.), 63

c
cannibalism (Allows a player character to consume

sapient corpses.), 69
color-schemes (Modify the colors used by the DF UI.),

81
combat-harden (Set the combat-hardened value on a

unit.), 82

d
deteriorate (Cause corpses, clothes, and/or food to rot

away over time.), 90
devel/block-borders (Outline map blocks on the map

screen.), 254
devel/cmptiles (List or compare two tiletype material

groups.), 256
devel/find-offsets (Find memory offsets of DF data

structures.), 258

devel/find-twbt (Display the memory offsets of some
important TWBT functions.), 259

devel/inject-raws (Add objects and reactions into an
existing world.), 260

devel/kill-hf (Kill a historical figure.), 261
devel/light (Experiment with lighting overlays.), 262
devel/list-filters (List input items for the selected

building type.), 262
devel/lua-example (An example lua script.), 263
devel/luacov (Lua script coverage report generator.),

264
devel/nuke-items (Deletes all free items in the game.),

265
devel/prepare-save (Set internal game state to known

values for memory analysis.), 266
devel/print-event (Show historical events.), 267
devel/test-perlin (Generate an image based on per-

lin noise.), 272
devel/unit-path (Inspect where a unit is going and

how it's getting there.), 273
devel/watch-minecarts (Inspect minecart coordi-

nates and speeds.), 274
digFlood (Digs out veins as they are discovered.), 97
diggingInvaders (Invaders dig and destroy to get to

your dwarves.), 97
do-job-now (Mark the job related to what you're looking

at as high priority.), 99
dwarf-op (Tune units to perform underrepresented job

roles in your fortress.), 100
dwarfmonitor (Report on dwarf preferences and effi-

ciency.), 103

e
embark-assistant (Embark site selection support.),

106
embark-skills (Adjust dwarves' skills when embark-

ing.), 107
embark-tools (Extend the embark screen functionality.),

107

885

DFHack Documentation, Release 50.11-r4

f
fix-ster (Toggle infertility for units.), 117
fix-unit-occupancy (Fix phantom unit occupancy is-

sues.), 117
fix/corrupt-equipment (Fixes some game crashes

caused by corrupt military equipment.), 275
fix/item-occupancy (Fixes errors with phantom items

occupying site.), 280
fix/population-cap (Ensure the population cap is re-

spected.), 281
fix/tile-occupancy (Fix tile occupancy flags.), 284
fixnaked (Removes all unhappy thoughts due to lack of

clothing.), 118
fixveins (Restore missing mineral inclusions.), 119
flashstep (Teleport your adventurer to the cursor.), 119
follow (Make the screen follow the selected unit.), 120
forceequip (Move items into a unit's inventory.), 122
forget-dead-body (Removes emotions associated with

seeing a dead body.), 123
forum-dwarves (Exports the text you see on the screen

for posting to the forums.), 124

g
generated-creature-renamer (plugin) (Automati-

cally renames generated creatures.), 127
ghostly (Toggles an adventurer's ghost status.), 129
growcrops (Instantly grow planted seeds into crops.), 129
gui/advfort (Perform fort-like jobs in adventure mode.),

285
gui/autogems (Automatically cut rough gems.), 288
gui/choose-weapons (Ensure military dwarves choose

appropriate weapons.), 289
gui/clone-uniform (Duplicate an existing military uni-

form.), 291
gui/color-schemes (Modify the colors in the DF UI.),

291
gui/companion-order (Issue orders to companions.),

292
gui/create-tree (Create a tree.), 296
gui/dfstatus (Show a quick overview of critical stock

quantities.), 297
gui/extended-status (Add information on beds and

bedrooms to the status screen.), 298
gui/family-affairs (Inspect or meddle with romantic

relationships.), 298
gui/guide-path (Visualize minecart guide paths.), 301
gui/kitchen-info (Show food item uses in the kitchen

status screen.), 302
gui/load-screen (Replace DF's continue game screen

with a searchable list.), 304
gui/manager-quantity (Set the quantity of the selected

manager workorder.), 305
gui/petitions (Show information about your fort's pe-

titions.), 308

gui/power-meter (Allow pressure plates to measure
power.), 308

gui/quantum (Quickly and easily create quantum stock-
piles.), 310

gui/rename (Give buildings and units new names, op-
tionally with special chars.), 312

gui/room-list (Manage rooms owned by a dwarf.), 313
gui/settings-manager (Dynamically adjust global DF

settings.), 315
gui/siege-engine (Extend the functionality and usabil-

ity of siege engines.), 316
gui/stamper (Copy, paste, and transform dig designa-

tions.), 317
gui/stockpiles (Import and export stockpile settings.),

317
gui/teleport (Teleport a unit anywhere.), 318
gui/unit-info-viewer (Display detailed information

about a unit.), 318
gui/workflow (Manage automated item production

rules.), 319
gui/workorder-details (Adjust input materials and

traits for workorders.), 321
gui/workshop-job (Adjust the input materials used for

a job at a workshop.), 322

h
hotkey-notes (Show info on DF map location hotkeys.),

133

i
infiniteSky (Automatically allocate new z-levels of

sky), 134
isoworldremote (plugin) (Provides a remote API

used by Isoworld.), 135

j
jobutils (plugin) (Provides commands for interact-

ing with jobs.), 135
job (Inspect or modify details of workshop jobs.), 135
job-duplicate (Duplicates the highlighted job.), 135
job-material (Alters the material of the selected job.),

135

l
list-generated (List the token names of all generated

creatures.), 127
labormanager (Automatically manage dwarf labors.),

138
launch (Thrash your enemies with a flying suplex.), 140
linger (Take control of your adventurer's killer.), 142
list-waves (Show migration wave information for your

dwarves.), 145
load-save (Load a savegame.), 146

886 "unavailable" tag index - Tools that are not yet available for the current release.

DFHack Documentation, Release 50.11-r4

m
make-legendary (Boost skills of the selected dwarf.),

150
manipulator (plugin) (An in-game labor manage-

ment interface.), 152
map-render (plugin) (Provides a Lua API for re-

rendering portions of the map.), 155
markdown (Exports the text you see on the screen for post-

ing online.), 155
max-wave (Dynamically limit the next immigration

wave.), 156
mode (See and change the game mode.), 158
modtools/anonymous-script (Run dynamically gener-

ated script code.), 324
modtools/change-build-menu (Add or remove items

from the build sidebar menus.), 325
modtools/create-tree (Spawn trees.), 328
modtools/create-unit (Create arbitrary units.), 329
modtools/equip-item (Force a unit to equip an item.),

333
modtools/extra-gamelog (Write info to the gamelog

for Soundsense.), 333
modtools/fire-rate (Alter the fire rate of ranged

weapons.), 333
modtools/if-entity (Run DFHack commands based

on current civ id.), 335
modtools/interaction-trigger (Run DFHack com-

mands when a unit attacks or defends.), 336
modtools/invader-item-destroyer (Destroy in-

vader items when they die.), 337
modtools/item-trigger (Run DFHack commands

when a unit uses an item.), 337
modtools/moddable-gods (Create deities.), 339
modtools/outside-only (Set building inside/outside

restrictions.), 339
modtools/pref-edit (Modify unit preferences.), 340
modtools/projectile-trigger (Run DFHack com-

mands when projectiles hit their targets.), 341
modtools/random-trigger (Randomly select DFHack

scripts to run.), 341
modtools/raw-lint (Check for errors in raw files.), 343
modtools/reaction-product-trigger (Call

DFHack commands when reaction products are
produced.), 343

modtools/reaction-trigger (Run DFHack com-
mands when custom reactions complete.),
344

modtools/reaction-trigger-transition (Help
create reaction triggers.), 345

modtools/set-belief (Change the beliefs/values of a
unit.), 345

modtools/set-need (Change the needs of a unit.), 346
modtools/set-personality (Change a unit's person-

ality.), 347

modtools/spawn-flow (Creates flows at the specified lo-
cation.), 349

modtools/syndrome-trigger (Trigger DFHack com-
mands when units acquire syndromes.), 351

modtools/transform-unit (Transform a unit into an-
other unit type.), 352

mousequery (Adds mouse controls to the DF interface.),
159

n
names (Rename units or items with the DF name genera-

tor.), 160

o
open-legends (Open a legends screen from fort or ad-

venture mode.), 163

p
petcapRemover (Modify the pet population cap.), 168
plants (plugin) (Provides commands that interact

with plants.), 169
plant (Create a plant or make an existing plant grow up.),

169
pop-control (Controls population and migration caps

persistently per-fort.), 170
power-meter (plugin) (Allow pressure plates to mea-

sure power.), 171
prefchange (Set strange mood preferences.), 172
putontable (Make an item appear on a table.), 178

q
questport (Teleport to your quest log map cursor.), 178

r
rename (Easily rename things.), 187
rendermax (Modify the map lighting.), 187
resurrect-adv (Bring a dead adventurer back to life.),

189
reveal-adv-map (Reveal or hide the world map.), 191

s
save-generated-raws (Export a creature graphics file

for modding.), 127
season-palette (Swap color palettes when the seasons

change.), 193
siege-engine (plugin) (Extend the functionality and

usability of siege engines.), 198
siren (Wake up sleeping units and stop parties.), 199
spawnunit (Create a unit.), 202
steam-engine (plugin) (Allow modded steam engine

buildings to function.), 206
stockflow (Queue manager jobs based on free space in

stockpiles.), 207

"unavailable" tag index - Tools that are not yet available for the current release. 887

DFHack Documentation, Release 50.11-r4

stocks (Enhanced fortress stock management interface.),
217

t
tidlers (Change where the idlers count is displayed.),

230
timestream (Fix FPS death.), 233
title-folder (plugin) (Displays the DF folder name

in the window title bar.), 234
tweak (A collection of tweaks and bugfixes.), 236

u
undump-buildings (Undesignate building base materi-

als for dumping.), 238
uniform-unstick (Make military units reevaluate their

uniforms.), 239
unretire-anyone (Adventure as any living historical

figure.), 241

v
view-item-info (Extend item and unit descriptions with

more information.), 242
view-unit-reports (Show combat reports for a unit.),

243

w
warn-stealers (Watch for and warn about units that like

to steal your stuff.), 244
workflow (Manage automated item production rules.),

246

z
zone (Manage activity zones, cages, and the animals

therein.), 250

888 "unavailable" tag index - Tools that are not yet available for the current release.

	I Quick Links
	II User Manual
	Introduction and overview
	Getting started
	Getting help

	Quickstart guide
	What is DFHack?
	What can I do with DFHack tools?
	How can I figure out which commands to run?
	How do DFHack in-game windows work?
	Where do I go next?

	Installing DFHack
	Requirements
	Downloading DFHack
	Beta releases
	Development builds

	Installing DFHack
	Uninstalling DFHack
	Upgrading DFHack

	DFHack Core
	Command implementation
	Using DFHack commands
	The DFHack console
	Using an OS terminal
	dfhack-run

	Configuration files
	Init files
	dfhack*.init
	onLoad*.init
	onMapLoad*.init
	onMapUnload*.init and onUnload*.init
	init.d/*.lua

	Script paths
	Scripts in installed mods
	Custom script paths

	Commandline options
	Environment variables
	Core preferences
	Miscellaneous notes

	DFHack tools
	What tools are and how they work
	Finding the tool you need
	DFHack tools by game mode
	DFHack tools by theme
	DFHack tools by what they affect
	All DFHack tools alphabetically
	3dveins
	Usage
	Example

	RemoteFortressReader
	Usage

	adaptation
	Usage
	Examples

	add-recipe
	Usage
	Examples

	add-spatter
	add-thought
	Usage
	Examples
	Options

	adv-fix-sleepers
	Usage

	adv-max-skills
	Usage

	adv-rumors
	Usage

	alias
	Usage
	Example

	allneeds
	Usage

	animal-control
	Usage
	Examples
	Selection options
	Command options
	Column abbreviations

	armoks-blessing
	Usage
	Examples

	assign-attributes
	Usage
	Example
	Options
	Tiers

	assign-beliefs
	Usage
	Example
	Options
	Belief strengths

	assign-facets
	Usage
	Example
	Options
	Facet strengths

	assign-goals
	Usage
	Example
	Options

	assign-minecarts
	Usage
	Example

	assign-preferences
	Usage
	Examples
	Options

	assign-profile
	Usage
	Examples
	Options

	assign-skills
	Usage
	Example
	Options
	Skill ranks

	autobutcher
	Usage
	Examples

	autochop
	Usage
	Examples
	Commands

	autoclothing
	Usage
	Examples

	autodump
	Usage
	Options
	Examples

	autofarm
	Usage
	Examples

	autofish
	Usage
	Positional Parameters
	Options
	Examples

	autogems
	Usage

	autolabor
	Usage
	Examples
	Advanced usage

	autolabor-artisans
	Usage

	autonestbox
	Usage

	autonick
	Usage
	Options
	Config file format

	autoslab
	Usage

	ban-cooking
	Usage
	Options

	binpatch
	Usage

	blueprint
	Usage
	Examples
	Positional parameters
	Phases
	Options
	Output formats
	Splitting output into multiple files

	bodyswap
	Usage
	Examples

	brainwash
	Usage
	Examples
	Types

	break-dance
	Usage

	build-now
	Usage
	Examples
	Options

	building-hacks
	buildingplan
	Usage
	Examples
	Global settings
	Building placement
	Setting quality and material filters
	Choosing specific items

	Building status
	Lever linking

	burial
	Usage
	Examples
	Options

	burrow
	Usage
	Examples
	Options
	Note
	Overlay

	cannibalism
	Usage

	caravan
	Usage
	Examples
	Overlays
	Trade screen
	Bring item to depot
	Trade agreement
	Display furniture

	catsplosion
	Usage
	Examples

	changeitem
	Usage
	Examples
	Options

	changelayer
	Usage
	Examples
	Options

	changevein
	Usage
	Example

	channel-safely
	Usage
	Examples
	Commands
	Features
	Settings
	Troubleshooting

	cleanconst
	Usage

	cleaners
	Usage
	Examples
	Options

	cleanowned
	Usage
	Example

	clear-smoke
	Usage

	clear-webs
	Usage
	Examples
	Options

	cls
	Usage

	colonies
	Usage
	Examples

	color-schemes
	Usage
	Examples
	Options
	API

	combat-harden
	Usage
	Examples
	Unit options
	Hardness options

	combine
	Usage
	Examples
	Commands
	Options
	Notes

	confirm
	Usage

	createitem
	Usage
	Examples

	cursecheck
	Usage
	Examples
	Options

	cxxrandom
	deathcause
	Usage

	debug
	Usage
	Example

	deep-embark
	Usage
	Example
	Options
	Deep embarks for mods

	deramp
	Usage

	design
	deteriorate
	Usage
	Examples
	Options
	Types

	die
	Usage

	dig
	Usage
	Examples
	digcircle
	digtype
	digexp
	Overlay

	dig-now
	Usage
	Examples
	Options

	digFlood
	Usage
	Examples

	diggingInvaders
	Usage
	Example

	diplomacy
	Usage
	Examples

	disable
	Usage

	do-job-now
	Usage

	drain-aquifer
	Usage
	Examples
	Options

	dwarf-op
	Usage
	Examples
	Selection criteria
	Options
	Command options

	Data tables

	dwarfmonitor
	Usage
	Widget configuration

	dwarfvet
	Usage
	Examples

	elevate-mental
	Usage
	Examples

	elevate-physical
	Usage
	Examples

	embark-assistant
	Usage

	embark-skills
	Usage
	Examples

	embark-tools
	Usage
	Example

	emigration
	Usage

	empty-bin
	Usage

	enable
	Usage
	Examples

	eventful
	exportlegends
	Usage
	Overlay

	exterminate
	Usage
	Examples
	Options
	Methods
	Technical details

	extinguish
	Usage
	Examples

	fastdwarf
	Usage
	Examples
	Options

	faststart
	Usage

	feature
	Usage

	fillneeds
	Usage

	filltraffic
	Usage
	Examples
	Options

	firestarter
	Usage

	fix-ster
	Usage
	Options
	Examples

	fix-unit-occupancy
	Usage
	Examples
	Options

	fixnaked
	Usage

	fixveins
	Usage

	flashstep
	Usage

	flows
	Usage

	follow
	Usage

	forbid
	Usage

	force
	Usage
	Event types

	forceequip
	Usage
	Examples
	Options

	forget-dead-body
	Usage

	forum-dwarves
	Usage

	fpause
	Usage

	full-heal
	Usage
	Examples

	gaydar
	Usage
	Examples
	Target options
	Filter options

	geld
	Usage
	Examples
	Options

	generated-creature-renamer
	Usage

	getplants
	Usage
	Examples
	Options

	ghostly
	Usage

	growcrops
	Usage
	Example

	help
	Usage
	Examples

	hermit
	Usage

	hfs-pit
	Usage
	Examples

	hide
	Usage

	hide-interface
	Usage

	hide-tutorials
	Usage

	hotkey-notes
	Usage

	hotkeys
	Usage
	Menu overlay widget

	infiniteSky
	Usage

	install-info
	Usage

	isoworldremote
	jobutils
	Usage
	Examples

	keybinding
	Usage
	Examples

	kill-lua
	Usage

	labormanager
	Usage
	Examples
	Advanced usage

	lair
	Usage

	launch
	Usage

	lever
	Usage
	Examples
	Options

	light-aquifers-only
	Usage
	Technical details

	linger
	Usage

	liquids
	Usage
	Interactive interpreter

	list-agreements
	Usage
	Examples

	list-waves
	Usage
	Examples
	Options

	load
	Usage

	load-save
	Usage
	Examples
	Autoloading a game on DF start

	locate-ore
	Usage
	Options
	Examples

	logistics
	Usage
	Examples
	Options

	ls
	Usage
	Examples
	Options

	lua
	Usage
	Examples

	luasocket
	make-legendary
	Usage
	Examples

	make-monarch
	Usage

	makeown
	Usage

	manipulator
	Usage
	Professions
	The professions library
	A note on autohauler

	map-render
	markdown
	Usage
	Examples
	Options

	max-wave
	Usage
	Examples

	migrants-now
	Usage

	misery
	Usage
	Examples

	mode
	Usage
	Examples

	mousequery
	Usage
	Examples

	multicmd
	Usage
	Example

	names
	Usage

	necronomicon
	Usage
	Options

	nestboxes
	Usage

	on-new-fortress
	Usage
	Example

	once-per-save
	Usage

	open-legends
	Usage

	orders
	Usage
	Examples
	Overlay
	The orders library
	library/basic
	library/furnace
	library/military
	library/smelting
	library/rockstock
	library/glassstock

	overlay
	Usage
	Examples
	Widget position
	Overlay

	pathable
	petcapRemover
	Usage

	plants
	Usage
	Example

	plug
	Usage

	points
	Usage
	Examples

	pop-control
	Usage

	position
	Usage

	power-meter
	pref-adjust
	Usage
	Examples
	Goth mode

	prefchange
	Usage
	Examples
	Commands

	preserve-tombs
	Usage

	prioritize
	Usage
	Examples
	Options
	Which job types should I prioritize?
	Default list of job types to prioritize

	probe
	Usage

	prospector
	Usage
	Examples
	Options
	Pre-embark estimate

	putontable
	Usage
	Example
	Options

	questport
	Usage

	quickfort
	Usage
	Examples
	Command options
	Transformations
	Configuration
	API

	quicksave
	Usage

	quickstart-guide
	Usage

	region-pops
	Usage
	Examples

	regrass
	Usage

	rejuvenate
	Usage
	Examples
	Options

	reload
	Usage

	remove-stress
	Usage
	Examples
	Options

	remove-wear
	Usage

	rename
	Usage
	Example

	rendermax
	Usage

	repeat
	Usage
	Examples
	Options
	Registering commands

	resurrect-adv
	Usage

	reveal
	Usage

	reveal-adv-map
	Usage

	reveal-hidden-sites
	Usage

	reveal-hidden-units
	Usage

	sc-script
	Usage
	Example

	script
	Usage
	Example

	season-palette
	Usage
	API

	seedwatch
	Usage
	Examples

	set-orientation
	Usage
	Examples
	Interest options

	set-timeskip-duration
	Usage
	Examples
	Options

	setfps
	Usage

	show
	Usage

	showmood
	Usage

	siege-engine
	Usage

	siren
	Usage
	Examples

	sort
	Squad assignment overlay
	Info tabs overlay
	Work animals overlay
	Interrogation overlay
	Candidates overlay
	Location selection overlay
	Slab engraving overlay
	World overlay

	source
	Usage
	Examples

	spawnunit
	Usage
	Examples

	spectate
	Usage
	Examples
	Features
	Settings

	startdwarf
	Usage
	Examples
	Overlay

	starvingdead
	Usage
	Examples
	Options

	steam-engine
	Rationale
	Construction
	Operation
	Explosions
	Save files

	stockflow
	Usage

	stockpiles
	Usage
	Examples
	Options
	Configuration elements
	Overlay
	The stockpiles settings library
	Top-level categories
	Cross-category stockpile adjustments
	Ammo stockpile adjustments
	Animal stockpile adjustments
	Armor stockpile adjustments
	Bar stockpile adjustments
	Cloth stockpile adjustments
	Corpse stockpile adjustments
	Finished goods stockpile adjustments
	Food stockpile adjustments
	Furniture stockpile adjustments
	Gem stockpile adjustments
	Refuse stockpile adjustments
	Sheet stockpile adjustments
	Stone stockpile adjustments
	Weapon stockpile adjustments

	stocks
	Usage

	stonesense
	Usage
	Controls
	Known Issues
	Useful links

	strangemood
	Usage
	Example
	Options

	stripcaged
	Usage
	Examples
	Options

	superdwarf
	Usage

	suspend
	Usage
	Options

	suspendmanager
	Usage

	sync-windmills
	Usage
	Examples
	Options

	tags
	Usage
	Examples

	tailor
	Usage
	Examples
	Note

	tame
	Usage
	Examples
	Levels

	teleport
	Usage
	Examples

	tidlers
	Usage

	tiletypes
	Usage
	Examples
	Options
	Commands
	Brush commands
	Filter and paint commands

	timestream
	Usage
	Examples

	title-folder
	Usage

	toggle-kbd-cursor
	Usage

	trackstop
	troubleshoot-item
	Usage

	tubefill
	Usage

	twaterlvl
	Usage

	tweak
	Usage

	type
	Usage

	undump-buildings
	Usage

	unforbid
	Usage
	Options

	ungeld
	Usage
	Options

	uniform-unstick
	Usage
	Examples
	Strategy options

	unload
	Usage

	unretire-anyone
	Usage
	Options

	unsuspend
	Usage
	Options
	Overlay

	view-item-info
	Usage
	Info for modded items

	view-unit-reports
	Usage

	warn-starving
	Usage
	Examples
	Options

	warn-stealers
	Usage

	warn-stranded
	Usage
	Examples

	weather
	Usage
	Examples

	work-now
	Usage

	workflow
	Usage
	Examples
	Constraint format

	workorder
	Usage
	Examples
	JSON string specification

	xlsxreader
	zone
	Usage
	Examples
	Filters
	Usage with single units
	Matching with filters
	Mass-renaming
	Cage zones
	Overlay

	devel/all-bob
	Usage

	devel/annc-monitor
	Usage

	devel/block-borders
	Usage

	devel/check-other-ids
	Usage

	devel/check-release
	Usage

	devel/clear-script-env
	Usage
	Example

	devel/click-monitor
	Usage

	devel/cmptiles
	Usage

	devel/dump-offsets
	Usage

	devel/dump-rpc
	Usage

	devel/eventful-client
	Usage

	devel/export-dt-ini
	Usage

	devel/find-offsets
	Usage

	devel/find-primitive
	Usage

	devel/find-twbt
	Usage

	devel/hello-world
	Usage

	devel/inject-raws
	Usage
	Example

	devel/inspect-screen
	Usage

	devel/kill-hf
	Usage
	Options

	devel/light
	Usage

	devel/list-filters
	Usage

	devel/lsmem
	Usage
	Examples

	devel/lua-example
	devel/luacov
	Usage
	Examples
	Options

	devel/modstate-monitor
	Usage

	devel/nuke-items
	Usage

	devel/pop-screen
	Usage

	devel/prepare-save
	Usage

	devel/print-args
	Usage

	devel/print-args2
	Usage

	devel/print-event
	Usage

	devel/query
	Usage
	Examples
	Source options
	Query options
	General options

	devel/save-version
	Usage

	devel/sc
	Usage

	devel/scan-vtables
	Usage

	devel/scanitemother
	Usage

	devel/send-key
	Usage

	devel/spawn-unit-helper
	Usage

	devel/test-perlin
	Usage

	devel/tile-browser
	Usage

	devel/unit-path
	Usage

	devel/visualize-structure
	Usage
	Example

	devel/watch-minecarts
	Usage

	fix/blood-del
	Usage

	fix/civil-war
	Usage

	fix/corrupt-equipment
	Usage
	Examples
	Technical details

	fix/corrupt-jobs
	Usage

	fix/dead-units
	Usage
	Options

	fix/drop-webs
	Usage

	fix/dry-buckets
	Usage

	fix/empty-wheelbarrows
	Usage
	Examples
	Options

	fix/general-strike
	Usage
	Options

	fix/item-occupancy
	Usage
	Technical details

	fix/loyaltycascade
	Usage

	fix/population-cap
	Usage
	Examples

	fix/protect-nicks
	Usage

	fix/retrieve-units
	Usage

	fix/stable-temp
	Usage

	fix/stuck-instruments
	Usage

	fix/stuck-merchants
	Usage

	fix/stuckdoors
	Usage

	fix/tile-occupancy
	Usage

	gui/advfort
	Usage
	Examples
	Options
	Screenshot

	gui/autobutcher
	Usage

	gui/autochop
	Usage

	gui/autodump
	Usage
	Destroying items

	gui/autofish
	Usage

	gui/autogems
	Usage

	gui/blueprint
	Usage
	Examples

	gui/choose-weapons
	Usage

	gui/civ-alert
	Usage
	How to set up and use a civilian alert
	Overlay
	Technical notes

	gui/clone-uniform
	Usage

	gui/color-schemes
	Usage

	gui/companion-order
	Usage
	Orders
	Screenshot

	gui/confirm
	Usage

	gui/control-panel
	Fort Services
	New Fort Autostart Commands
	Periodic Maintenance Operations
	System Services
	Overlays
	Preferences
	Usage

	gui/cp437-table
	Usage

	gui/create-item
	Usage
	Examples
	Options

	gui/create-tree
	Usage

	gui/design
	Usage
	Overlay

	gui/dfstatus
	Usage

	gui/extended-status
	Usage

	gui/family-affairs
	Usage
	Screenshot

	gui/gm-editor
	Usage
	Examples
	Options
	Screenshot

	gui/gm-unit
	Usage

	gui/guide-path
	Usage
	Screenshot

	gui/kitchen-info
	Usage

	gui/launcher
	Usage
	Examples
	Editing and running commands
	Autocomplete
	Context-sensitive help and command output
	Command history
	Dev mode

	gui/liquids
	Usage

	gui/load-screen
	Usage

	gui/manager-quantity
	Usage

	gui/mass-remove
	Usage

	gui/masspit
	Usage

	gui/mod-manager
	Usage

	gui/overlay
	Usage

	gui/pathable
	Usage

	gui/petitions
	Usage

	gui/power-meter
	Usage
	Screenshot

	gui/prerelease-warning
	Usage

	gui/quantum
	Usage

	gui/quickcmd
	Usage

	gui/quickfort
	Usage
	Examples

	gui/rename
	Usage
	Screenshots

	gui/room-list
	Usage
	Screenshot

	gui/sandbox
	Usage

	gui/seedwatch
	Usage

	gui/settings-manager
	Usage

	gui/siege-engine
	Usage
	Screenshot

	gui/stamper
	Usage

	gui/stockpiles
	Usage

	gui/suspendmanager
	Usage

	gui/teleport
	Usage

	gui/unit-info-viewer
	Usage

	gui/unit-syndromes
	Usage

	gui/workflow
	Usage

	gui/workorder-details
	Usage

	gui/workshop-job
	Usage

	modtools/add-syndrome
	Usage
	Examples
	Options

	modtools/anonymous-script
	modtools/change-build-menu
	Usage
	Module Usage

	modtools/create-item
	Usage
	Examples
	Options

	modtools/create-tree
	Usage

	modtools/create-unit
	Usage

	modtools/equip-item
	modtools/extra-gamelog
	Usage

	modtools/fire-rate
	modtools/force
	Usage

	modtools/if-entity
	Usage
	Example

	modtools/interaction-trigger
	Usage

	modtools/invader-item-destroyer
	modtools/item-trigger
	modtools/moddable-gods
	modtools/outside-only
	modtools/pref-edit
	modtools/projectile-trigger
	Usage

	modtools/random-trigger
	modtools/raw-lint
	modtools/reaction-product-trigger
	Usage

	modtools/reaction-trigger
	modtools/reaction-trigger-transition
	modtools/set-belief
	modtools/set-need
	modtools/set-personality
	Usage
	Target options
	Trait options
	Modifier options
	Other options

	modtools/skill-change
	Usage
	Options

	modtools/spawn-flow
	Usage
	Options

	modtools/spawn-liquid
	Usage
	Options
	Examples

	modtools/syndrome-trigger
	Usage
	Options
	Examples

	modtools/transform-unit
	Usage
	Options

	User guides
	DFHack modding guide
	What is the difference between a script and a mod?
	Why not just mod the raws?
	The structure of a mod
	What if I just want to distribute a simple script?
	A mod-maker’s development environment
	The structure of the game
	Your first script
	Exploring DF state
	Reacting to events
	Custom raw tokens
	Putting it all together

	Quickfort blueprint library
	Whole fort blueprint sets
	Dreamfort
	Surface level
	Farming level
	Industry level
	Services levels (4 deep)
	Guildhall level
	Noble suites
	Apartments
	Crypt

	The Quick Fortress

	Layout helpers
	Bedrooms
	Tombs
	Exploratory mining
	Miscellaneous
	Light aquifer tap
	Post-embark
	Pump stack

	Quickfort blueprint creation guide
	Feature summary
	Introduction to blueprints
	Area expansion syntax
	Property syntax
	Label syntax
	Automatic area expansion
	Multilevel blueprints

	#dig mode
	Dig priorities
	Marker mode
	Carved minecart tracks

	#zone mode
	Zone designation syntax
	Locations, locations, locations

	#place mode
	Stockpile designation syntax
	Stockpile types
	Bins, barrels, and wheelbarrows
	Stockpile configuration

	#build mode
	Building designation syntax
	Hauling route definitions

	#burrow mode
	Burrow designation syntax

	Modeline markers
	Blueprint labels
	Start positions
	Hiding blueprints
	Messages

	Other blueprint modes
	#notes mode
	#ignore mode
	#meta mode
	Scripting blueprints together
	Meta markers

	Packaging a set of blueprints
	Buildingplan integration
	Generating manager orders
	Extra Manager Orders

	Tips and tricks
	Caveats and limitations
	Dreamfort case study: a practical guide to advanced blueprint design
	Dreamfort organization and packaging
	The surface level: how to manage complexity
	The farming level: fun with stockpiles
	The industry level: advanced linking
	The services level: handling multi-level dig blueprints
	The guildhall level: avoiding smoothing issues
	The suites level: balance of flexibility
	The beds and crypt levels: copy and paste and repeat

	Links
	Appendix: Symbols and properties
	#dig mode reference
	#zone mode reference
	#place mode reference
	#build mode reference
	#burrow mode reference

	DFHack development guide
	DFHack development overview
	Architecture diagrams
	Plugins
	Scripts
	Core
	Modules
	Remote access interface

	Building DFHack
	Dependencies
	Build Dependencies
	Installing
	Linux
	Building 32-bit Binaries
	Incompatible libstdc++

	Windows
	With Choco
	Manually
	CMake
	Perl / Strawberry Perl
	Python
	Sphinx
	Visual Studio
	Build Tools [Without Visual Studio]

	macOS

	Compilation
	How to get the code
	All Platforms
	Linux
	Build

	Windows
	Visual Studio IDE
	Command Line

	macOS
	Building
	Notes for GCC 8+ or OS X 10.10+ users
	Notes for M1 users

	Windows cross compiling from Linux (running DF inside docker)
	Step 1: prepare a build container
	Step 2: build DFHack
	Step 3: copy Dwarf Fortress to the container
	Step 4: install DFHack and run DF
	Other notes

	Cross-compiling windows files for running DF in Steam for Linux
	Step 1: Get dfhack, and run the build script
	Step 2: install dfhack to your Steam DF install

	Building DFHack Offline

	Build Options
	Generator
	Visual Studio
	Ninja

	Install Location
	Build type
	Target architecture (32/64-bit)
	Library
	Testing
	Plugins
	Documentation

	How to contribute to DFHack
	Contributing Code
	General contribution guidelines
	Code format
	Pull request guidelines

	Other ways to help

	DFHack documentation system
	Concepts and general guidance
	Short descriptions
	Tags
	Links

	Documentation standards
	Where do I add the help text?
	Header format
	Usage help
	Examples
	Options

	External scripts and plugins
	Required dependencies
	Linux
	macOS
	Windows

	Building the documentation
	Using CMake
	Running Sphinx manually
	Building a PDF version

	Building the changelogs
	Changelog syntax

	GitHub Actions

	DFHack API concepts
	Maps API
	Tiles

	DFHack Lua API Reference
	DF data structure wrapper
	Typed object references
	Primitive references
	Struct references
	Container references
	Bitfield references

	Named types
	Global functions
	Recursive table assignment

	DFHack API
	Native utilities
	Input & Output
	Exception handling
	Miscellaneous
	Locking and finalization
	Persistent configuration storage
	Material info lookup
	Random number generation

	C++ function wrappers
	Gui module
	Screens
	General-purpose selections
	Fortress mode
	Announcements
	Other

	Job module
	Units module
	Military module
	Action Timer API

	Items module
	World module
	Maps module
	Burrows module
	Buildings module
	General
	Low-level
	High-level

	Constructions module
	Kitchen module
	Screen API
	Basic painting functions
	Pen API
	Screen management

	PenArray class
	Textures module
	Filesystem module
	Console API
	Internal API

	Core interpreter context
	Event type

	Lua Modules
	Global environment
	String class extensions

	utils
	argparse
	dumper
	helpdb
	profiler
	Examples

	class
	custom-raw-tokens

	In-game UI Library
	gui
	Misc
	ViewRect class
	Painter class
	View class
	Screen class
	ZScreen class
	ZScreenModal class
	FramedScreen class

	gui.widgets
	Widget class
	Panel class
	Window class
	ResizingPanel class
	Pages class
	EditField class
	Scrollbar class
	Label class
	WrappedLabel class
	TooltipLabel class
	HotkeyLabel class
	CycleHotkeyLabel class
	ToggleHotkeyLabel class
	HelpButton class
	ConfigureButton class
	BannerPanel class
	TextButton class
	List class
	FilteredList class
	TabBar class
	Tab class
	RangeSlider class

	gui.textures

	Plugins
	blueprint
	building-hacks
	Functions
	Examples

	buildingplan
	cxxrandom
	Native functions (exported to Lua)
	Lua plugin functions
	Lua plugin classes
	crng
	normal_distribution
	real_distribution
	int_distribution
	bool_distribution
	num_sequence

	Usage

	dig-now
	eventful
	List of events
	Events from EventManager
	Functions
	Examples

	luasocket
	Socket class
	Client class
	Server class
	Tcp class

	map-render
	Functions

	pathable
	reveal
	sort
	tiletypes
	xlsxreader

	Scripts
	General script API
	Importing scripts
	Enabling and disabling scripts
	Save init script

	DFHack overlay dev guide
	Why would I want to create an overlay widget?
	Overlay widget API
	Widget attributes
	Registering a widget with the overlay framework

	Development workflows
	Scripts
	Plugins

	Troubleshooting
	Widget example 1: adding text to a DF screen
	Widget example 2: highlighting artifacts on the live game map
	Widget example 3: corner hotspot

	DF data definitions (DF-structures)
	Data Structure Definition Syntax
	General Background
	XML file format
	Enum type definition
	Enum item attributes

	Bitfield type definition
	Structure type definition
	Common field properties
	Primitive fields
	Substructure fields
	Tagged unions
	Enum fields
	Nested bitfields
	Container fields
	Abstract container
	Pointer fields
	Abstract sequence
	Standard containers
	DF-specific containers

	Class type definition
	Virtual method definition

	Global object definition
	Symbol table definition

	Lisp Integration
	Reference expressions
	Dereference syntax
	Basic properties

	Reference objects
	Primitive types
	Enums
	Pointers
	Compounds
	Sequences

	Code helpers
	Examples

	Updating DF-structures for a new DF version
	General Process
	Running Dwarf Fortress
	Available Scripts
	new-release.pl
	make-scans.sh
	make-csv.sh
	start.sh
	make-keybindings.pl
	match-ctors.pl
	match-vtables.pl

	STAGE 1. Linux compound globals
	STAGE 2. Old way to find Linux compound globals
	STAGE 3. Linux primitive globals
	[A] The ‘cur_year’ area.
	[B] The ui_look_cursor area.
	[C] The window_x/y/z area.
	[D] Random positions.

	STAGE 4. Primary windows compound globals
	1. world
	2. plotinfo
	3. buildreq
	4. game
	5. ui_look_list
	6. adventure
	7. enabler
	8. map_renderer
	9. texture

	STAGE 5. Secondary windows compound globals
	1. timed_events
	2. ui_building_assign_*
	3. gview
	4. Init files
	5. gps
	6. created_item_*

	STAGE 6. Windows primitive globals

	Memory research
	Cross-platform tools
	Ghidra
	IDA Freeware 7.0
	Hopper
	DFHack tools
	Plugins
	Scripts
	Sizecheck
	Legacy tools

	Linux-specific tools
	GDB
	Other analysis tools
	df-structures GUI
	EDB (Evan’s debugger)

	Windows-specific tools

	Patching the DF binary
	Getting a patch
	Using a patch
	Patching at runtime
	Patching on disk

	Tools reliant on binpatches
	fix-armory
	gui/assign-rack

	DFHack remote interface
	Server configuration
	Developing with the remote API
	Examples
	Client libraries

	Protocol description
	Built-in messages
	Conversation flow
	Raw message types
	handshake request
	handshake reply
	header
	request
	text
	result
	failure
	quit

	Development changelog
	DFHack 50.11-r4
	New Tools
	Fixes
	Misc Improvements

	DFHack 50.11-r3
	New Tools
	New Features
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 50.11-r2
	New Tools
	New Scripts
	New Features
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 50.11-r1
	New Tools
	New Features
	Fixes
	Misc Improvements
	Lua
	Structures

	DFHack 50.10-r1
	Fixes
	Misc Improvements

	DFHack 50.09-r4
	New Features
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 50.09-r3
	New Tools
	New Features
	Fixes
	Misc Improvements
	API
	Lua
	Structures

	DFHack 50.09-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 50.09-r1
	Misc Improvements
	Internals
	Structures

	DFHack 50.08-r4
	New Plugins
	Fixes
	Misc Improvements
	Removed
	Structures
	Documentation

	DFHack 50.08-r3
	Fixes

	DFHack 50.08-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Internals
	Lua
	Structures

	DFHack 50.08-r1
	Fixes
	Misc Improvements
	Removed
	Lua
	Structures

	DFHack 50.07-r1
	New Plugins
	Fixes
	Misc Improvements
	Lua
	Structures
	Documentation

	DFHack 50.07-beta2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Lua
	Structures
	Documentation

	DFHack 50.07-beta1
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Structures

	DFHack 50.07-alpha3
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 50.07-alpha2
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 50.07-alpha1
	New Scripts
	Fixes
	Misc Improvements
	Lua
	Structures

	DFHack 50.05-alpha3.1
	Fixes

	DFHack 50.05-alpha3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 50.05-alpha2
	Fixes
	Removed
	Structures

	DFHack 50.05-alpha1
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r8
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r7
	New Plugins
	New Scripts
	New Internal Commands
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r6
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 0.47.05-r5
	New Plugins
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r4
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 0.47.05-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r2
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r1
	Fixes
	Misc Improvements
	Structures
	Documentation

	DFHack 0.47.05-beta1
	Fixes
	Misc Improvements
	Structures

	DFHack 0.47.04-r5
	New Scripts
	Fixes
	Misc Improvements
	Lua
	Structures
	Documentation

	DFHack 0.47.04-r4
	New Scripts
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.04-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Structures
	Documentation

	DFHack 0.47.04-r2
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Ruby
	Structures
	Documentation

	DFHack 0.47.04-r1
	Fixes
	Misc Improvements
	API
	Lua
	Structures

	DFHack 0.47.04-beta1
	New Scripts
	Fixes
	Misc Improvements
	Internals
	Structures

	DFHack 0.47.03-beta1
	New Scripts
	Fixes
	Misc Improvements
	Structures

	DFHack 0.44.12-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Ruby
	Structures

	DFHack 0.44.12-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.12-r1
	Fixes
	Misc Improvements
	API
	Internals
	Structures

	DFHack 0.44.12-alpha1
	Fixes
	API
	Structures

	DFHack 0.44.11-beta2.1
	Internals

	DFHack 0.44.11-beta2
	Fixes
	API

	DFHack 0.44.11-beta1
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.11-alpha1
	Structures

	DFHack 0.44.10-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.10-r1
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Internals
	Structures

	DFHack 0.44.10-beta1
	New Scripts
	Fixes
	Misc Improvements
	Internals

	DFHack 0.44.10-alpha1
	New Scripts
	Fixes
	Misc Improvements
	Internals

	DFHack 0.44.09-r1
	Fixes
	Misc Improvements
	Internals
	Structures

	DFHack 0.44.09-alpha1
	Fixes

	DFHack 0.44.08-alpha1
	Fixes

	DFHack 0.44.07-beta1
	Misc Improvements
	Structures

	DFHack 0.44.07-alpha1
	Fixes
	Misc Improvements
	Structures

	DFHack 0.44.05-r2
	New Plugins
	New Scripts
	New Features
	Fixes
	Misc Improvements

	DFHack 0.44.05-r1
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Internals
	Structures

	DFHack 0.44.05-alpha1
	Misc Improvements
	Structures

	DFHack 0.44.04-alpha1
	Fixes
	Structures

	DFHack 0.44.03-beta1
	Fixes
	Misc Improvements
	Structures

	DFHack 0.44.03-alpha1
	Lua

	DFHack 0.44.02-beta1
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Lua
	Structures

	DFHack 0.44.02-alpha1
	New Scripts
	Fixes
	Lua
	Structures

	About DFHack
	List of authors
	Licenses
	Zlib License
	MIT License
	BSD Licenses

	Removed tools
	workorder-recheck
	autohauler
	automaterial
	automelt
	autotrade
	autounsuspend
	combine-drinks
	combine-plants
	command-prompt
	create-items
	deteriorateclothes
	deterioratecorpses
	deterioratefood
	devel/unforbidall
	digfort
	fix-armory
	fix/build-location
	fix/diplomats
	fix/fat-dwarves
	fix/feeding-timers
	fix/merchants
	fortplan
	gui/assign-rack
	gui/automelt
	gui/dig
	gui/hack-wish
	gui/mechanisms
	gui/no-dfhack-init
	masspit
	resume
	ruby
	search
	show-unit-syndromes
	stocksettings
	title-version
	warn-stuck-trees

	Changelog
	DFHack 50.11-r4
	New Tools
	Fixes
	Misc Improvements

	DFHack 50.11-r3
	New Tools
	New Features
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 50.11-r2
	New Tools
	New Scripts
	New Features
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 50.11-r1
	New Tools
	New Features
	Fixes
	Misc Improvements
	Lua
	Structures

	DFHack 50.10-r1
	Fixes
	Misc Improvements

	DFHack 50.09-r4
	New Features
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 50.09-r3
	New Tools
	New Features
	Fixes
	Misc Improvements
	API
	Lua
	Structures

	DFHack 50.09-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 50.09-r1
	Misc Improvements
	Internals
	Structures

	DFHack 50.08-r4
	New Plugins
	Fixes
	Misc Improvements
	Removed
	Structures
	Documentation

	DFHack 50.08-r3
	Fixes

	DFHack 50.08-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Internals
	Lua
	Structures

	DFHack 50.08-r1
	Fixes
	Misc Improvements
	Removed
	Lua
	Structures

	DFHack 50.07-r1
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r8
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r7
	New Plugins
	New Scripts
	New Internal Commands
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r6
	New Scripts
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 0.47.05-r5
	New Plugins
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r4
	Fixes
	Misc Improvements
	Removed
	API
	Lua
	Structures

	DFHack 0.47.05-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r2
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures
	Documentation

	DFHack 0.47.05-r1
	Fixes
	Misc Improvements
	Structures
	Documentation

	DFHack 0.47.04-r5
	New Scripts
	Fixes
	Misc Improvements
	Lua
	Structures
	Documentation

	DFHack 0.47.04-r4
	New Scripts
	Fixes
	Misc Improvements
	API
	Lua
	Structures
	Documentation

	DFHack 0.47.04-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Structures
	Documentation

	DFHack 0.47.04-r2
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Ruby
	Structures
	Documentation

	DFHack 0.47.04-r1
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.12-r3
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Ruby
	Structures

	DFHack 0.44.12-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.12-r1
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.10-r2
	New Plugins
	New Scripts
	Fixes
	Misc Improvements
	API
	Internals
	Lua
	Structures

	DFHack 0.44.10-r1
	New Scripts
	New Tweaks
	Fixes
	Misc Improvements
	API
	Internals
	Structures

	DFHack 0.44.09-r1
	Fixes
	Misc Improvements
	Internals
	Structures

	DFHack 0.44.05-r2
	New Plugins
	New Scripts
	New Features
	Fixes
	Misc Improvements

	DFHack 0.44.05-r1
	New Scripts
	Fixes
	Misc Improvements
	Removed
	Internals
	Lua
	Structures

	Older Changelogs

	Index of DFHack tools
	"adventure" tag index - Tools that are useful while in adventure mode. Note that some tools only tagged with "fort" might also work in adventure mode, but not always in expected ways. Feel free to experiment, though!
	"dfhack" tag index - Tools that you use to run DFHack commands or interact with the DFHack library. This tag also includes tools that help you manage the DF game itself (e.g. quicksave, etc.)
	"embark" tag index - Tools that are useful while on the fort embark screen or while creating an adventurer.
	"fort" tag index - Tools that are useful while in fort mode.
	"legends" tag index - Tools that are useful while in legends mode.
	"armok" tag index - Tools which give the player god-like powers of any variety, such as control over game events, creating items from thin air, or viewing information the game intentionally keeps hidden. Players that do not wish to see these tools listed in DFHack command lists can hide them in the ``Preferences`` tab of `gui/control-panel`.
	"auto" tag index - Tools that run in the background and automatically manage routine, toilsome aspects of your fortress.
	"bugfix" tag index - Tools that fix specific bugs, either permanently or on-demand.
	"design" tag index - Tools that help you design your fort.
	"dev" tag index - Tools that are useful when developing scripts or mods.
	"fps" tag index - Tools that help you manage FPS drop.
	"gameplay" tag index - Tools that introduce new gameplay elements.
	"inspection" tag index - Tools that let you view information that is otherwise difficult to find.
	"productivity" tag index - Tools that help you do things that you could do manually, but using the tool is better and faster.
	"animals" tag index - Tools that interact with animals.
	"buildings" tag index - Tools that interact with buildings and furniture.
	"graphics" tag index - Tools that interact with game graphics.
	"interface" tag index - Tools that interact with or extend the DF user interface.
	"items" tag index - Tools that interact with in-game items.
	"jobs" tag index - Tools that interact with jobs.
	"labors" tag index - Tools that deal with labor assignment.
	"map" tag index - Tools that interact with the game map.
	"military" tag index - Tools that interact with the military.
	"plants" tag index - Tools that interact with trees, shrubs, and crops.
	"stockpiles" tag index - Tools that interact with stockpiles.
	"units" tag index - Tools that interact with units.
	"workorders" tag index - Tools that interact with workorders.
	"unavailable" tag index - Tools that are not yet available for the current release.

