

Welcome to DFHack’s documentation!

Introduction

DFHack is a Dwarf Fortress memory access library, distributed with
a wide variety of useful scripts and plugins.

The project is currently hosted at https://www.github.com/DFHack/dfhack,
and can be downloaded from the releases page [http://github.com/DFHack/dfhack/releases].

All new releases are announced in the bay12 forums thread [http://www.bay12forums.com/smf/index.php?topic=139553],
which is also a good place for discussion and questions.

For users, it provides a significant suite of bugfixes and interface
enhancements by default, and more can be enabled. There are also many tools
(such as workflow or autodump) which can make life easier.
You can even add third-party scripts and plugins to do almost anything!

For modders, DFHack makes many things possible. Custom reactions, new
interactions, magic creature abilities, and more can be set through Scripts for Modders
and custom raws. Non-standard DFHack scripts and inits can be stored in the
raw directory, making raws or saves fully self-contained for distribution -
or for coexistence in a single DF install, even with incompatible components.

For developers, DFHack unites the various ways tools access DF memory and
allows easier development of new tools. As an open-source project under
various copyleft licences, contributions are welcome.

User Manual

	Introduction and Overview
	Installing DFHack

	Getting started

	Troubleshooting

	DFHack Core
	Command Implementation

	Using DFHack Commands

	Built-in Commands

	Init Files

	Miscellaneous Notes

	DFHack Plugins
	Data inspection and visualizers

	Bugfixes

	UI Upgrades

	Job and Fortress management

	Map modification

	Mods and Cheating

	DFHack Scripts
	Basic Scripts

	Development Scripts

	Bugfixing Scripts

	GUI Scripts

	Scripts for Modders

Other Contents

	List of Authors

	Licenses

	Changelog

For Developers

	How to contribute to DFHack

	Compiling DFHack

	Development Changelog

	DFHack Lua API

	Data Structure Definition Syntax

	Updating DF-structures for a new DF version

	Patching the DF binary

Introduction and Overview

DFHack is a Dwarf Fortress memory access library, distributed with
a wide variety of useful scripts and plugins.

The project is currently hosted at https://www.github.com/DFHack/dfhack,
and can be downloaded from the releases page [http://github.com/DFHack/dfhack/releases].

All new releases are announced in the bay12 forums thread [http://www.bay12forums.com/smf/index.php?topic=139553],
which is also a good place for discussion and questions.

For users, it provides a significant suite of bugfixes and interface
enhancements by default, and more can be enabled. There are also many tools
(such as workflow or autodump) which can make life easier.
You can even add third-party scripts and plugins to do almost anything!

For modders, DFHack makes many things possible. Custom reactions, new
interactions, magic creature abilities, and more can be set through Scripts for Modders
and custom raws. Non-standard DFHack scripts and inits can be stored in the
raw directory, making raws or saves fully self-contained for distribution -
or for coexistence in a single DF install, even with incompatible components.

For developers, DFHack unites the various ways tools access DF memory and
allows easier development of new tools. As an open-source project under
various copyleft licences, contributions are welcome.

Contents

	Introduction and Overview
	Installing DFHack

	Getting started

	Troubleshooting

Installing DFHack

DFHack is available for the SDL version of Dwarf Fortress on Windows,
any modern Linux distribution, and Mac OS X (10.6.8 and later).
It is possible to use Windows DF+DFHack under Wine on Linux or OS X.

Most releases only support the version of DF mentioned in their title - for
example, DFHack 0.40.24-r2 only supports DF 0.40.24 - but some releases
support earlier DF versions as well. Wherever possible, use the latest version
of DFHack built for the target version of DF.

Installing DFhack involves copying files from a release archive
into your DF folder, so that:

	On Windows, SDL.dll is replaced

	On Linux or OS X, the dfhack script is placed in the same folder as the df script

Uninstalling is basically the same, in reverse:

	On Windows, replace SDL.dll with SDLreal.dll, then remove the DFHack files.

	On Linux or OS X, remove the DFHack files.

New players may wish to get a pack [http://dwarffortresswiki.org/Utility:Lazy_Newb_Pack]
with DFHack preinstalled.

Getting started

DFHack basically extends DF with something similar to the
console found in many PC games.

If DFHack is installed correctly, it will automatically pop up a console
window once DF is started as usual on Windows. Linux and Mac OS X require
running the dfhack script from the terminal, and will use that terminal for
the console.

	Basic interaction with dfhack involves entering commands into the console.
To learn what commands are available, you can keep reading this documentation
or skip ahead and use the ls and help commands.

	Another way to interact with DFHack is to set in-game keybindings
for certain commands. Many of the newer and user-friendly tools are designed
to be used this way.

	Commands can also run at startup via init files,
on in batches at other times with the script command.

	Finally, some commands are persistent once enabled, and will sit in the
background managing or changing some aspect of the game if you enable them.

Troubleshooting

Don’t panic! Even if you need this section, it’ll be OK :)

If something goes wrong, check the log files in DF’s folder
(stderr.log and stdout.log). Looking at these might help you -
or someone else - solve the problem. Take screenshots of any weird
error messages, and take notes on what you did to cause them.

If the search function in this documentation isn’t enough and
the DF Wiki [http://dwarffortresswiki.org/] hasn’t helped, try asking in:

	the #dfhack IRC channel on freenode [https://webchat.freenode.net/?channels=dfhack]

	the Bay12 DFHack thread [http://www.bay12forums.com/smf/index.php?topic=139553]

	the /r/dwarffortress [https://dwarffortress.reddit.com] questions thread

	the thread for the mod or Starter Pack you’re using (if any)

DFHack Core

Contents

	DFHack Core
	Command Implementation

	Using DFHack Commands

	Built-in Commands

	Init Files

	Miscellaneous Notes

Command Implementation

DFHack commands can be implemented in three ways, all of which
are used in the same way:

	builtin:	commands are implemented by the core of DFHack. They manage
other DFhack tools, interpret commands, and control basic
aspects of DF (force pause or quit).

	plugins:	are stored in hack/plugins/ and must be compiled with the
same version of DFHack. They are less flexible than scripts,
but used for complex or ongoing tasks becasue they run faster.

	scripts:	are Ruby or Lua scripts stored in hack/scripts/.
Because they don’t need to be compiled, scripts are
more flexible about versions, and easier to distribute.
Most third-party DFHack addons are scripts.

Using DFHack Commands

DFHack commands can be executed in a number of ways:

	Typing the command into the DFHack console (see below)

	From the OS terminal (see below)

	Pressing a key combination set up with keybinding

	From one of several Init Files, automatically

	Using script to run a batch of commands from a file

The DFHack Console

The command line has some nice line editing capabilities, including history
that’s preserved between different runs of DF - use ↑ and ↓
to go through the history.

To include whitespace in the argument/s to some command, quote it in
double quotes. To include a double quote character, use \".

If the first non-whitespace character is :, the command is parsed in
an alternative mode. The non-whitespace characters following the : are
the command name, and the remaining part of the line is used verbatim as
the first argument. This is very useful for the lua and ruby commands.
As an example, the following two command lines are exactly equivalent:

:foo a b "c d" e f
foo "a b \"c d\" e f"

Using an OS terminal

DFHack commands can be run from an OS terminal at startup, using ‘+ args’,
or at any other time using the dfhack-run executable.

If DF/DFHack is started with arguments beginning with +, the remaining
text is treated as a command in the DFHack console. It is possible to use
multiple such commands, which are split on +. For example:

./dfhack +load-save region1
"Dwarf Fortress.exe" +devel/print-args Hello! +enable workflow

The first example (*nix), load-save, skips the main menu and loads
region1 immediately. The second (Windows) example prints
Hello! in the DFHack console, and enables workflow.
Note that the :foo syntax for whitespace in arguments is not compatible with ‘+ args’.

If DF and DFHack are already running, calling dfhack-run my command
in an external terminal is equivalent to calling my command in the
DFHack console. Direct use of the DFhack console is generally easier,
but dfhack-run can be useful in a variety of circumstances:

	if the console is unavailable
	with the init setting PRINT_MODE:TEXT

	while running an interactive command (eg. liquids or tiletypes)

	from external programs or scripts

	if DF or DFHack are not responding

Examples:

./dfhack-run cursecheck
dfhack-run multicmd kill-lua; die

The first (*nix) example checks for vampires; the
second (Windows) example uses kill-lua to cancel a script and exits.

Built-in Commands

The following commands are provided by the ‘core’ components
of DFhack, rather than plugins or scripts.

	cls

	die

	enable

	fpause

	help

	hide

	keybinding

	kill-lua

	load

	ls

	plug

	sc-script

	script

	show

	type

	Other Commands

cls

Clear the terminal. Does not delete command history.

die

Instantly kills DF without saving.

enable

Many plugins can be in a distinct enabled or disabled state. Some of
them activate and deactivate automatically depending on the contents
of the world raws. Others store their state in world data. However a
number of them have to be enabled globally, and the init file is the
right place to do it.

Most such plugins or scripts support the built-in enable and disable
commands. Calling them at any time without arguments prints a list
of enabled and disabled plugins, and shows whether that can be changed
through the same commands.

To enable or disable plugins that support this, use their names as
arguments for the command:

enable manipulator search

fpause

Forces DF to pause. This is useful when your FPS drops below 1 and you lose
control of the game.

help

Most commands support using the help <command> built-in command
to retrieve further help without having to look at this document.
? <cmd> and man <cmd> are aliases.

Some commands (including many scripts) instead take help or ?
as an option on their command line - ie <cmd> help.

hide

Hides the DFHack terminal window. Only available on Windows.

keybinding

To set keybindings, use the built-in keybinding command. Like any other
command it can be used at any time from the console, but bindings are not
remembered between runs of the game unless re-created in dfhack*.init.

Currently, any combinations of Ctrl/Alt/Shift with A-Z, 0-9, or F1-F12 are supported.

Possible ways to call the command:

	keybinding list <key>

	List bindings active for the key combination.

	keybinding clear <key> <key>...

	Remove bindings for the specified keys.

	keybinding add <key> "cmdline" "cmdline"...

	Add bindings for the specified key.

	keybinding set <key> "cmdline" "cmdline"...

	Clear, and then add bindings for the specified key.

The <key> parameter above has the following case-sensitive syntax:

[Ctrl-][Alt-][Shift-]KEY[@context[|context...]]

where the KEY part can be any recognized key and [] denote optional parts.

When multiple commands are bound to the same key combination, DFHack selects
the first applicable one. Later add commands, and earlier entries within one
add command have priority. Commands that are not specifically intended for use
as a hotkey are always considered applicable.

The context part in the key specifier above can be used to explicitly restrict
the UI state where the binding would be applicable. If called without parameters,
the keybinding command among other things prints the current context string.

Only bindings with a context tag that either matches the current context fully,
or is a prefix ending at a / boundary would be considered for execution, i.e.
when in context foo/bar/baz, keybindings restricted to any of @foo/bar/baz,
@foo/bar, @foo or none will be active.

Multiple contexts can be specified by separating them with a
pipe (|) - for example, @foo|bar|baz/foo would match
anything under @foo, @bar, or @baz/foo.

Interactive commands like liquids cannot be used as hotkeys.

kill-lua

Stops any currently-running Lua scripts. By default, scripts can
only be interrupted every 256 instructions. Use kill-lua force
to interrupt the next instruction.

load

load, unload, and reload control whether a plugin is loaded
into memory - note that plugins are loaded but disabled unless you do
something. Usage:

load|unload|reload PLUGIN|(-a|--all)

Allows dealing with plugins individually by name, or all at once.

ls

ls does not list files like the Unix command, but rather
available commands - first built in commands, then plugins,
and scripts at the end. Usage:

	ls -a:	Also list scripts in subdirectories of hack/scripts/,
which are generally not intended for direct use.

	ls <plugin>:	List subcommands for the given plugin.

plug

Lists available plugins, including their state and detailed description.

	plug

	Lists available plugins (not commands implemented by plugins)

	plug [PLUGIN] [PLUGIN] ...

	List state and detailed description of the given plugins,
including commands implemented by the plugin.

sc-script

Allows additional scripts to be run when certain events occur
(similar to onLoad*.init scripts)

script

Reads a text file, and runs each line as a DFHack command
as if it had been typed in by the user - treating the
input like an init file.

Some other tools, such as autobutcher and workflow, export
their settings as the commands to create them - which are later
loaded with script

show

Shows the terminal window after it has been hidden.
Only available on Windows. You’ll need to use it from a
keybinding set beforehand, or the in-game command-prompt.

type

type command shows where command is implemented.

Other Commands

The following commands are not built-in, but offer similarly useful functions.

	command-prompt

	hotkeys

	lua

	multicmd

	nopause

	quicksave

	ruby

	repeat

Init Files

	dfhack*.init

	onLoad*.init

	onUnload*.init

	Other init files

DFHack allows users to automatically run commonly-used DFHack commands
when DF is first loaded, when a game is loaded, and when a game is unloaded.

Init scripts function the same way they would if the user manually typed
in their contents, but are much more convenient. In order to facilitate
savegave portability, mod merging, and general organization of init files,
DFHack supports multiple init files both in the main DF directory and
save-specific init files in the save folders.

DFHack looks for init files in three places each time they could be run:

	The main DF directory

	data/save/world/raw, where world is the current save, and

	data/save/world/raw/objects

When reading commands from dfhack.init or with the script command, if the final
character on a line is a backslash then the next uncommented line is considered a
continuation of that line, with the backslash deleted. Commented lines are skipped,
so it is possible to comment out parts of a command with the # character.

dfhack*.init

If your DF folder contains at least one file named dfhack*.init
(where * is a placeholder for any string), then all such files
are executed in alphabetical order when DF is first started.

DFHack is distributed with /dfhack.init-example as an example
with an up-to-date collection of basic commands; mostly setting standard
keybindings and enabling plugins. You are encouraged to look
through this file to learn which features it makes available under which
key combinations. You may also customise it and rename it to dfhack.init.

If your DF folder does not contain any dfhack*.init files, the example
will be run as a fallback.

These files are best used for keybindings and enabling persistent plugins
which do not require a world to be loaded.

onLoad*.init

When a world is loaded, DFHack looks for files of the form onLoad*.init,
where * can be any string, including the empty string.

All matching init files will be executed in alphebetical order.
A world being loaded can mean a fortress, an adventurer, or legends mode.

These files are best used for non-persistent commands, such as setting
a fix script to run on repeat.

onUnload*.init

When a world is unloaded, DFHack looks for files of the form onUnload*.init.
Again, these files may be in any of the above three places.
All matching init files will be executed in alphebetical order.

Modders often use such scripts to disable tools which should not affect
an unmodded save.

Other init files

	onMapLoad*.init and onMapUnload*.init are run when a map,
distinct from a world, is loaded. This is good for map-affecting
commands (eg clean), or avoiding issues in Legends mode.

	Any lua script named raw/init.d/*.lua, in the save or main DF
directory, will be run when any world or that save is loaded.

Miscellaneous Notes

This section is for odd but important notes that don’t fit anywhere else.

	If a DF H hotkey is named with a DFHack command, pressing
the corresponding Fx button will run that command, instead of
zooming to the set location.
This feature will be removed in a future version. (see Issue 731 [https://github.com/DFHack/dfhack/issues/731])

	The binaries for 0.40.15-r1 to 0.34.11-r4 are on DFFD [http://dffd.bay12games.com/search.php?string=DFHack&id=15&limit=1000].
Older versions are available here [http://dethware.org/dfhack/download].
These files will eventually be migrated to GitHub. (see Issue 473 [https://github.com/DFHack/dfhack/issues/473])

DFHack Plugins

DFHack plugins are the commands, that are compiled with a specific version.
They can provide anything from a small keybinding, to a complete overhaul of
game subsystems or the entire renderer.

Most commands offered by plugins are listed here,
hopefully organised in a way you will find useful.

Contents

	DFHack Plugins
	Data inspection and visualizers

	Bugfixes

	UI Upgrades

	Job and Fortress management

	Map modification

	Mods and Cheating

Data inspection and visualizers

	stonesense

	blueprint

	remotefortressreader

	cursecheck

	flows

	probe

	prospect

	reveal

	showmood

stonesense

An isometric visualizer that runs in a second window. Usage:

	stonesense:	Open the visualiser in a new window. Alias ssense.

	ssense overlay:	Overlay DF window, replacing the map area.

For more information, see the full Stonesense README.

blueprint

Exports a portion of your fortress into QuickFort style blueprint files.:

blueprint <x> <y> <z> <name> [dig] [build] [place] [query]

Options (If only region and name are given, export all):

	x,y,z:	Size of map area to export

	name:	Name of export files

	dig:	Export dig commands to “<name>-dig.csv”

	build:	Export build commands to “<name>-build.csv”

	place:	Export stockpile commands to “<name>-place.csv”

	query:	Export query commands to “<name>-query.csv”

Goes very well with fortplan, for re-importing.

remotefortressreader

An in-development plugin for realtime fortress visualisation.
See Armok Vision [http://www.bay12forums.com/smf/index.php?topic=146473].

cursecheck

Checks a single map tile or the whole map/world for cursed creatures (ghosts,
vampires, necromancers, werebeasts, zombies).

With an active in-game cursor only the selected tile will be observed.
Without a cursor the whole map will be checked.

By default cursed creatures will be only counted in case you just want to find
out if you have any of them running around in your fort. Dead and passive
creatures (ghosts who were put to rest, killed vampires, ...) are ignored.
Undead skeletons, corpses, bodyparts and the like are all thrown into the curse
category “zombie”. Anonymous zombies and resurrected body parts will show
as “unnamed creature”.

Options:

	detail:	Print full name, date of birth, date of curse and some status
info (some vampires might use fake identities in-game, though).

	nick:	Set the type of curse as nickname (does not always show up
in-game, some vamps don’t like nicknames).

	all:	Include dead and passive cursed creatures (can result in a quite
long list after having FUN with necromancers).

	verbose:	Print all curse tags (if you really want to know it all).

Examples:

	cursecheck detail all

	Give detailed info about all cursed creatures including deceased ones (no
in-game cursor).

	cursecheck nick

	Give a nickname all living/active cursed creatures on the map(no in-game
cursor).

Note

If you do a full search (with the option “all”) former ghosts will show up
with the cursetype “unknown” because their ghostly flag is not set.

Please report any living/active creatures with cursetype “unknown” -
this is most likely with mods which introduce new types of curses.

flows

A tool for checking how many tiles contain flowing liquids. If you suspect that
your magma sea leaks into HFS, you can use this tool to be sure without
revealing the map.

probe

Can be used to determine tile properties like temperature.

prospect

Prints a big list of all the present minerals and plants. By default, only
the visible part of the map is scanned.

Options:

	all:	Scan the whole map, as if it was revealed.

	value:	Show material value in the output. Most useful for gems.

	hell:	Show the Z range of HFS tubes. Implies ‘all’.

If prospect is called during the embark selection screen, it displays an estimate of
layer stone availability.

Note

The results of pre-embark prospect are an estimate, and can at best be expected
to be somewhere within +/- 30% of the true amount; sometimes it does a lot worse.
Especially, it is not clear how to precisely compute how many soil layers there
will be in a given embark tile, so it can report a whole extra layer, or omit one
that is actually present.

Options:

	all:	Also estimate vein mineral amounts.

reveal

This reveals the map. By default, HFS will remain hidden so that the demons
don’t spawn. You can use reveal hell to reveal everything. With hell revealed,
you won’t be able to unpause until you hide the map again. If you really want
to unpause with hell revealed, use reveal demons.

Reveal also works in adventure mode, but any of its effects are negated once
you move. When you use it this way, you don’t need to run unreveal.

Usage and related commands:

	reveal:	Reveal the whole map, except for HFS to avoid demons spawning

	reveal hell:	Also show hell, but requires unreveal before unpausing

	reveal demon:	Reveals everything and allows unpausing - good luck!

	unreveal:	Reverts the effects of reveal

	revtoggle:	Switches between reveal and unreveal

	revflood:	Hide everything, then reveal tiles with a path to the cursor
(useful to make walled-off rooms vanish)

	revforget:	Discard info about what was visible before revealing the map.
Only useful where (eg) you abandoned with the fort revealed
and no longer want the data.

showmood

Shows all items needed for the currently active strange mood.

Bugfixes

	fix-unit-occupancy

	fixveins

	petcapRemover

	tweak

	fix-armory

fix-unit-occupancy

This plugin fixes issues with unit occupancy, notably phantom
“unit blocking tile” messages (Bug 3499 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=3499]). It can be run manually, or
periodically when enabled with the built-in enable/disable commands:

	(no argument):	Run the plugin once immediately, for the whole map.

	-h, here, cursor:

	 	Run immediately, only operate on the tile at the cursor

	-n, dry, dry-run:

	 	Run immediately, do not write changes to map

	interval <X>:	Run the plugin every X ticks (when enabled).
The default is 1200 ticks, or 1 day.
Ticks are only counted when the game is unpaused.

fixveins

Removes invalid references to mineral inclusions and restores missing ones.
Use this if you broke your embark with tools like tiletypes, or if you
accidentally placed a construction on top of a valuable mineral floor.

petcapRemover

Allows you to remove or raise the pet population cap. In vanilla
DF, pets will not reproduce unless the population is below 50 and the number of
children of that species is below a certain percentage. This plugin allows
removing the second restriction and removing or raising the first. Pets still
require PET or PET_EXOTIC tags in order to reproduce. Type help petcapRemover
for exact usage. In order to make population more stable and avoid sudden
population booms as you go below the raised population cap, this plugin counts
pregnancies toward the new population cap. It can still go over, but only in the
case of multiple births.

Usage:

	petcapRemover:	cause pregnancies now and schedule the next check

	petcapRemover every n:

	 	set how often in ticks the plugin checks for possible pregnancies

	petcapRemover cap n:

	 	set the new cap to n. if n = 0, no cap

	petcapRemover pregtime n:

	 	sets the pregnancy duration to n ticks. natural pregnancies are
300000 ticks for the current race and 200000 for everyone else

tweak

Contains various tweaks for minor bugs.

One-shot subcommands:

	clear-missing:	Remove the missing status from the selected unit.
This allows engraving slabs for ghostly, but not yet
found, creatures.

	clear-ghostly:	Remove the ghostly status from the selected unit and mark
it as dead. This allows getting rid of bugged ghosts
which do not show up in the engraving slab menu at all,
even after using clear-missing. It works, but is
potentially very dangerous - so use with care. Probably
(almost certainly) it does not have the same effects like
a proper burial. You’ve been warned.

	fixmigrant:	Remove the resident/merchant flag from the selected unit.
Intended to fix bugged migrants/traders who stay at the
map edge and don’t enter your fort. Only works for
dwarves (or generally the player’s race in modded games).
Do NOT abuse this for ‘real’ caravan merchants (if you
really want to kidnap them, use ‘tweak makeown’ instead,
otherwise they will have their clothes set to forbidden etc).

	makeown:	Force selected unit to become a member of your fort.
Can be abused to grab caravan merchants and escorts, even if
they don’t belong to the player’s race. Foreign sentients
(humans, elves) can be put to work, but you can’t assign rooms
to them and they don’t show up in DwarfTherapist because the
game treats them like pets. Grabbing draft animals from
a caravan can result in weirdness (animals go insane or berserk
and are not flagged as tame), but you are allowed to mark them
for slaughter. Grabbing wagons results in some funny spam, then
they are scuttled.

Subcommands that persist until disabled or DF quits:

	adamantine-cloth-wear:

	 	Prevents adamantine clothing from wearing out while being worn (Bug 6481 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6481]).

	advmode-contained:

	 	Works around Bug 6202 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6202], custom reactions with container inputs
in advmode. The issue is that the screen tries to force you to select
the contents separately from the container. This forcefully skips child
reagents.

	block-labors:	Prevents labors that can’t be used from being toggled

	civ-view-agreement:

	 	Fixes overlapping text on the “view agreement” screen

	condition-material:

	 	Fixes a crash in the work order contition material list (Bug 9905 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=9905]).

	craft-age-wear:	Fixes the behavior of crafted items wearing out over time (Bug 6003 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6003]).
With this tweak, items made from cloth and leather will gain a level of
wear every 20 years.

	embark-profile-name:

	 	Allows the use of lowercase letters when saving embark profiles

	eggs-fertile:	Displays a fertility indicator on nestboxes

	farm-plot-select:

	 	Adds “Select all” and “Deselect all” options to farm plot menus

	fast-heat:	Further improves temperature update performance by ensuring that 1 degree
of item temperature is crossed in no more than specified number of frames
when updating from the environment temperature. This reduces the time it
takes for stable-temp to stop updates again when equilibrium is disturbed.

	fast-trade:	Makes Shift-Down in the Move Goods to Depot and Trade screens select
the current item (fully, in case of a stack), and scroll down one line.

	fps-min:	Fixes the in-game minimum FPS setting

	hide-priority:	Adds an option to hide designation priority indicators

	hotkey-clear:	Adds an option to clear currently-bound hotkeys (in the H menu)

	import-priority-category:

	 	Allows changing the priority of all goods in a
category when discussing an import agreement with the liaison

	kitchen-keys:	Fixes DF kitchen meal keybindings (Bug 614 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=614])

	kitchen-prefs-color:

	 	Changes color of enabled items to green in kitchen preferences

	kitchen-prefs-empty:

	 	Fixes a layout issue with empty kitchen tabs (Bug 9000 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=9000])

	max-wheelbarrow:

	 	Allows assigning more than 3 wheelbarrows to a stockpile

	military-color-assigned:

	 	Color squad candidates already assigned to other squads in yellow/green
to make them stand out more in the list.

[image: ../_images/tweak-mil-color.png]

	military-stable-assign:

	 	Preserve list order and cursor position when assigning to squad,
i.e. stop the rightmost list of the Positions page of the military
screen from constantly resetting to the top.

	nestbox-color:	Fixes the color of built nestboxes

	shift-8-scroll:	Gives Shift-8 (or *) priority when scrolling menus, instead of scrolling the map

	stable-cursor:	Saves the exact cursor position between t/q/k/d/b/etc menus of fortress mode.

	title-start-rename:

	 	Adds a safe rename option to the title screen “Start Playing” menu

	tradereq-pet-gender:

	 	Displays pet genders on the trade request screen

fix-armory

This plugin requires a binpatch, which has not
been available since DF 0.34.11

UI Upgrades

Note

In order to avoid user confusion, as a matter of policy all GUI tools
display the word DFHack on the screen somewhere while active.

When that is not appropriate because they merely add keybinding hints to
existing DF screens, they deliberately use red instead of green for the key.

	automelt

	autotrade

	command-prompt

	hotkeys

	ruby

	manipulator
	Professions

	search

	nopause

	embark-tools

	automaterial

	buildingplan

	confirm

	follow

	mousequery

	resume

	title-folder

	title-version

	trackstop

	sort-items

	sort-units

	stocks

	stocksettings

	rename

	rendermax

automelt

When automelt is enabled for a stockpile, any meltable items placed
in it will be designated to be melted.
This plugin adds an option to the q menu when enabled.

autotrade

When autotrade is enabled for a stockpile, any items placed in it will be
designated to be taken to the Trade Depot whenever merchants are on the map.
This plugin adds an option to the q menu when enabled.

command-prompt

An in-game DFHack terminal, where you can enter other commands.

Keybinding: CtrlShiftP

Usage: command-prompt [entry]

If called with an entry, it starts with that text filled in.
Most useful for developers, who can set a keybinding to open
a laungage interpreter for lua or Ruby by starting with the
:lua or :rb commands.

Otherwise somewhat similar to gui/quickcmd.

[image: ../_images/command-prompt.png]

hotkeys

Opens an in-game screen showing which DFHack keybindings are
active in the current context. See also hotkey-notes.

[image: ../_images/hotkeys.png]
Keybinding: CtrlF1

Keybinding: AltF1

ruby

Ruby language plugin, which evaluates the following arguments as a ruby string.
Best used as :rb [string], for the special parsing mode. Alias rb_eval.

manipulator

An in-game equivalent to the popular program Dwarf Therapist.

To activate, open the unit screen and press l.

[image: ../_images/manipulator.png]
The far left column displays the unit’s Happiness (color-coded based on its
value), Name, Profession/Squad, and the right half of the screen displays each
dwarf’s labor settings and skill levels (0-9 for Dabbling through Professional,
A-E for Great through Grand Master, and U-Z for Legendary through Legendary+5).

Cells with teal backgrounds denote skills not controlled by labors, e.g.
military and social skills.

[image: ../_images/manipulator2.png]
Press t to toggle between Profession, Squad, and Job views.

[image: ../_images/manipulator3.png]
Use the arrow keys or number pad to move the cursor around, holding Shift to
move 10 tiles at a time.

Press the Z-Up (<) and Z-Down (>) keys to move quickly between labor/skill
categories. The numpad Z-Up and Z-Down keys seek to the first or last unit
in the list. Backspace seeks to the top left corner.

Press Enter to toggle the selected labor for the selected unit, or Shift+Enter
to toggle all labors within the selected category.

Press the +- keys to sort the unit list according to the currently selected
skill/labor, and press the */ keys to sort the unit list by Name, Profession/Squad,
Happiness, or Arrival order (using Tab to select which sort method to use here).

With a unit selected, you can press the v key to view its properties (and
possibly set a custom nickname or profession) or the c key to exit
Manipulator and zoom to its position within your fortress.

The following mouse shortcuts are also available:

	Click on a column header to sort the unit list. Left-click to sort it in one
direction (descending for happiness or labors/skills, ascending for name,
profession or squad) and right-click to sort it in the opposite direction.

	Left-click on a labor cell to toggle that labor. Right-click to move the
cursor onto that cell instead of toggling it.

	Left-click on a unit’s name, profession or squad to view its properties.

	Right-click on a unit’s name, profession or squad to zoom to it.

Pressing Esc normally returns to the unit screen, but ShiftEsc would exit
directly to the main dwarf mode screen.

Professions

The manipulator plugin supports saving Professions: a named set of Labors labors that can be
quickly applied to one or multiple Dwarves.

To save a Profession highlight a Dwarf and press P. The Profession will be saved using
the Custom Profession Name of the Dwarf, or the default for that Dwarf if no Custom Profession
Name has been set.

To apply a Profession either highlight a single Dwarf, or select multiple with x, and press
p to select the Profession to apply. All labors for the selected Dwarves will be reset to
the labors of the chosen Profession.

search

The search plugin adds search to the Stocks, Animals, Trading, Stockpile,
Noble (assignment candidates), Military (position candidates), Burrows
(unit list), Rooms, Announcements, Job List and Unit List screens.

[image: ../_images/search.png]
Searching works the same way as the search option in Move to Depot.
You will see the Search option displayed on screen with a hotkey (usually s).
Pressing it lets you start typing a query and the relevant list will start
filtering automatically.

Pressing Enter, Esc or the arrow keys will return you to browsing the now
filtered list, which still functions as normal. You can clear the filter
by either going back into search mode and backspacing to delete it, or
pressing the “shifted” version of the search hotkey while browsing the
list (e.g. if the hotkey is s, then hitting Shifts will clear any
filter).

Leaving any screen automatically clears the filter.

In the Trade screen, the actual trade will always only act on items that
are actually visible in the list; the same effect applies to the Trade
Value numbers displayed by the screen. Because of this, the t key is
blocked while search is active, so you have to reset the filters first.
Pressing AltC will clear both search strings.

In the stockpile screen the option only appears if the cursor is in the
rightmost list:

[image: ../_images/search-stockpile.png]
Note that the ‘Permit XXX’/’Forbid XXX’ keys conveniently operate only
on items actually shown in the rightmost list, so it is possible to select
only fat or tallow by forbidding fats, then searching for fat/tallow, and
using Permit Fats again while the list is filtered.

nopause

Disables pausing (both manual and automatic) with the exception of pause forced
by reveal hell. This is nice for digging under rivers.

embark-tools

A collection of embark-related tools. Usage and available tools:

embark-tools enable/disable tool [tool]...

	anywhere:	Allows embarking anywhere (including sites, mountain-only biomes,
and oceans). Use with caution.

	mouse:	Implements mouse controls (currently in the local embark region only)

	sand:	Displays an indicator when sand is present in the currently-selected
area, similar to the default clay/stone indicators.

	sticky:	Maintains the selected local area while navigating the world map

automaterial

This makes building constructions (walls, floors, fortifications, etc) a little bit
easier by saving you from having to trawl through long lists of materials each time
you place one.

Firstly, it moves the last used material for a given construction type to the top of
the list, if there are any left. So if you build a wall with chalk blocks, the next
time you place a wall the chalk blocks will be at the top of the list, regardless of
distance (it only does this in “grouped” mode, as individual item lists could be huge).
This should mean you can place most constructions without having to search for your
preferred material type.

[image: ../_images/automaterial-mat.png]
Pressing a while highlighting any material will enable that material for “auto select”
for this construction type. You can enable multiple materials as autoselect. Now the next
time you place this type of construction, the plugin will automatically choose materials
for you from the kinds you enabled. If there is enough to satisfy the whole placement,
you won’t be prompted with the material screen - the construction will be placed and you
will be back in the construction menu as if you did it manually.

When choosing the construction placement, you will see a couple of options:

[image: ../_images/automaterial-pos.png]
Use a here to temporarily disable the material autoselection, e.g. if you need
to go to the material selection screen so you can toggle some materials on or off.

The other option (auto type selection, off by default) can be toggled on with t. If you
toggle this option on, instead of returning you to the main construction menu after selecting
materials, it returns you back to this screen. If you use this along with several autoselect
enabled materials, you should be able to place complex constructions more conveniently.

buildingplan

When active (via enable buildingplan), this plugin adds a planning mode for
furniture placement. You can then place furniture and other buildings before
the required materials are available, and the job will be unsuspended when
the item is created.

Very useful when combined with workflow - you can set a constraint
to always have one or two doors/beds/tables/chairs/etc available, and place
as many as you like. The plugins then take over and fulfill the orders,
with minimal space dedicated to stockpiles.

confirm

Implements several confirmation dialogs for potentially destructive actions
(for example, seizing goods from traders or deleting hauling routes).

Usage:

	enable confirm:	Enable all confirmations; alias confirm enable all.
Replace with disable to disable.

	confirm help:	List available confirmation dialogues.

	confirm enable option1 [option2...]:

	 	Enable (or disable) specific confirmation dialogues.

follow

Makes the game view follow the currently highlighted unit after you exit from the
current menu or cursor mode. Handy for watching dwarves running around. Deactivated
by moving the view manually.

mousequery

Adds mouse controls to the DF interface, eg click-and-drag designations.

Options:

	plugin:	enable/disable the entire plugin

	rbutton:	enable/disable right mouse button

	track:	enable/disable moving cursor in build and designation mode

	edge:	enable/disable active edge scrolling (when on, will also enable tracking)

	live:	enable/disable query view when unpaused

	delay:	Set delay when edge scrolling in tracking mode. Omit amount to display current setting.

Usage:

mousequery [plugin] [rbutton] [track] [edge] [live] [enable|disable]

resume

Allows automatic resumption of suspended constructions, along with colored
UI hints for construction status.

title-folder

Displays the DF folder name in the window title bar when enabled.

title-version

Displays the DFHack version on DF’s title screen when enabled.

trackstop

Adds a q menu for track stops, which is completely blank by default.
This allows you to view and/or change the track stop’s friction and dump
direction settings, using the keybindings from the track stop building interface.

sort-items

Sort the visible item list:

sort-items order [order...]

Sort the item list using the given sequence of comparisons.
The < prefix for an order makes undefined values sort first.
The > prefix reverses the sort order for defined values.

Item order examples:

description material wear type quality

The orderings are defined in hack/lua/plugins/sort/*.lua

sort-units

Sort the visible unit list:

sort-units order [order...]

Sort the unit list using the given sequence of comparisons.
The < prefix for an order makes undefined values sort first.
The > prefix reverses the sort order for defined values.

Unit order examples:

name age arrival squad squad_position profession

The orderings are defined in hack/lua/plugins/sort/*.lua

Keybinding: AltShiftN -> "sort-units name" "sort-items description"

Keybinding: AltShiftR -> "sort-units arrival"

Keybinding: AltShiftT -> "sort-units profession" "sort-items type material"

Keybinding: AltShiftQ -> "sort-units squad_position" "sort-items quality"

stocks

Replaces the DF stocks screen with an improved version.

Keybinding: CtrlShiftZ -> "stocks show" in dwarfmode/Default

stocksettings

Offers the following commands to save and load stockpile settings.
See gui/stockpiles for an in-game interface.

	copystock:	Copies the parameters of the currently highlighted stockpile to the custom
stockpile settings and switches to custom stockpile placement mode, effectively
allowing you to copy/paste stockpiles easily.
Keybinding: AltP

	savestock:	Saves the currently highlighted stockpile’s settings to a file in your Dwarf
Fortress folder. This file can be used to copy settings between game saves or
players. eg: savestock food_settings.dfstock

	loadstock:	Loads a saved stockpile settings file and applies it to the currently selected
stockpile. eg: loadstock food_settings.dfstock

To use savestock and loadstock, use the q command to highlight a stockpile.
Then run savestock giving it a descriptive filename. Then, in a different (or
the same!) gameworld, you can highlight any stockpile with q then execute the
loadstock command passing it the name of that file. The settings will be
applied to that stockpile.

Note that files are relative to the DF folder, so put your files there or in a
subfolder for easy access. Filenames should not have spaces. Generated materials,
divine metals, etc are not saved as they are different in every world.

rename

Allows renaming various things. Use gui/rename for an in-game interface.

Options:

	rename squad <index> "name"

	Rename squad by index to ‘name’.

	rename hotkey <index> \"name\"

	Rename hotkey by index. This allows assigning
longer commands to the DF hotkeys.

	rename unit "nickname"

	Rename a unit/creature highlighted in the DF user interface.

	rename unit-profession "custom profession"

	Change proffession name of the highlighted unit/creature.

	rename building "name"

	Set a custom name for the selected building.
The building must be one of stockpile, workshop, furnace, trap,
siege engine or an activity zone.

rendermax

A collection of renderer replacing/enhancing filters. For better effect try changing the
black color in palette to non totally black. See Bay12 forums thread 128487 [http://www.bay12forums.com/smf/index.php?topic=128487] for more info.

Options:

	trippy:	Randomizes the color of each tiles. Used for fun, or testing.

	light:	Enable lighting engine.

	light reload:	Reload the settings file.

	light sun <x>|cycle:

	 	Set time to <x> (in hours) or set it to df time cycle.

	occlusionON, occlusionOFF:

	 	Show debug occlusion info.

	disable:	Disable any filter that is enabled.

An image showing lava and dragon breath. Not pictured here: sunlight, shining items/plants,
materials that color the light etc...

[image: ../_images/rendermax.png]

Job and Fortress management

	autolabor

	labormanager

	autohauler

	job

	job-material

	job-duplicate

	autogems

	stockflow

	workflow
	Function

	Constraint format

	Constraint examples

	fix-job-postings

	clean

	spotclean

	autodump

	cleanowned

	dwarfmonitor

	dwarfvet

	workNow

	seedwatch

	zone
	Usage with single units

	Usage with filters

	Mass-renaming

	Cage zones

	Examples

	autonestbox

	autobutcher

	autochop

autolabor

Automatically manage dwarf labors to efficiently complete jobs.
Autolabor tries to keep as many dwarves as possible busy but
also tries to have dwarves specialize in specific skills.

The key is that, for almost all labors, once a dwarf begins a job it will finish that
job even if the associated labor is removed. Autolabor therefore frequently checks
which dwarf or dwarves should take new jobs for that labor, and sets labors accordingly.
Labors with equiptment (mining, hunting, and woodcutting), which are abandoned
if labors change mid-job, are handled slightly differently to minimise churn.

Warning

autolabor will override any manual changes you make to labors while
it is enabled, including through other tools such as Dwarf Therapist

Simple usage:

	enable autolabor:

	 	Enables the plugin with default settings. (Persistent per fortress)

	disable autolabor:

	 	Disables the plugin.

Anything beyond this is optional - autolabor works well on the default settings.

By default, each labor is assigned to between 1 and 200 dwarves (2-200 for mining).
By default 33% of the workforce become haulers, who handle all hauling jobs as well
as cleaning, pulling levers, recovering wounded, removing constructions, and filling ponds.
Other jobs are automatically assigned as described above. Each of these settings can be adjusted.

Jobs are rarely assigned to nobles with responsibilities for meeting diplomats or merchants,
never to the chief medical dwarf, and less often to the bookeeper and manager.

Hunting is never assigned without a butchery, and fishing is never assigned without a fishery.

For each labor a preference order is calculated based on skill, biased against masters of other
trades and excluding those who can’t do the job. The labor is then added to the best <minimum>
dwarves for that labor. We assign at least the minimum number of dwarfs, in order of preference,
and then assign additional dwarfs that meet any of these conditions:

	The dwarf is idle and there are no idle dwarves assigned to this labor

	The dwarf has non-zero skill associated with the labor

	The labor is mining, hunting, or woodcutting and the dwarf currently has it enabled.

We stop assigning dwarfs when we reach the maximum allowed.

Advanced usage:

	autolabor <labor> <minimum> [<maximum>]:

	 	Set number of dwarves assigned to a labor.

	autolabor <labor> haulers:

	 	Set a labor to be handled by hauler dwarves.

	autolabor <labor> disable:

	 	Turn off autolabor for a specific labor.

	autolabor <labor> reset:

	 	Return a labor to the default handling.

	autolabor reset-all:

	 	Return all labors to the default handling.

	autolabor list:	List current status of all labors.

	autolabor status:

	 	Show basic status information.

See autolabor-artisans for a differently-tuned setup.

Examples:

	autolabor MINE

	Keep at least 5 dwarves with mining enabled.

	autolabor CUT_GEM 1 1

	Keep exactly 1 dwarf with gemcutting enabled.

	autolabor COOK 1 1 3

	Keep 1 dwarf with cooking enabled, selected only from the top 3.

	autolabor FEED_WATER_CIVILIANS haulers

	Have haulers feed and water wounded dwarves.

	autolabor CUTWOOD disable

	Turn off autolabor for wood cutting.

labormanager

Automatically manage dwarf labors to efficiently complete jobs.
Labormanager is derived from autolabor (above) but uses a completely
different approach to assigning jobs to dwarves. While autolabor tries
to keep as many dwarves busy as possible, labormanager instead strives
to get jobs done as quickly as possible.

Labormanager frequently scans the current job list, current list of
dwarfs, and the map to determine how many dwarves need to be assigned to
what labors in order to meet all current labor needs without starving
any particular type of job.

Warning

As with autolabor, labormanager will override any manual changes you
make to labors while it is enabled, including through other tools such
as Dwarf Therapist

Simple usage:

	enable labormanager:

	 	Enables the plugin with default settings.
(Persistent per fortress)

	disable labormanager:

	 	Disables the plugin.

Anything beyond this is optional - labormanager works fairly well on the
default settings.

The default priorities for each labor vary (some labors are higher
priority by default than others). The way the plugin works is that, once
it determines how many of each labor is needed, it then sorts them by
adjusted priority. (Labors other than hauling have a bias added to them
based on how long it’s been since they were last used, to prevent job
starvation.) The labor with the highest priority is selected, the “best
fit” dwarf for that labor is assigned to that labor, and then its
priority is halved. This process is repeated until either dwarfs or
labors run out.

Because there is no easy way to detect how many haulers are actually
needed at any moment, the plugin always ensures that at least one dwarf
is assigned to each of the hauling labors, even if no hauling jobs are
detected. At least one dwarf is always assigned to construction removing
and cleaning because these jobs also cannot be easily detected. Lever
pulling is always assigned to everyone. Any dwarfs for which there are
no jobs will be assigned hauling, lever pulling, and cleaning labors. If
you use animal trainers, note that labormanager will misbehave if you
assign specific trainers to specific animals; results are only guaranteed
if you use “any trainer”, and animal trainers will probably be
overallocated in any case.

Labormanager also sometimes assigns extra labors to currently busy
dwarfs so that when they finish their current job, they will go off and
do something useful instead of standing around waiting for a job.

There is special handling to ensure that at least one dwarf is assigned
to haul food whenever food is detected left in a place where it will rot
if not stored. This will cause a dwarf to go idle if you have no
storepiles to haul food to.

Dwarfs who are unable to work (child, in the military, wounded,
handless, asleep, in a meeting) are entirely excluded from labor
assignment. Any dwarf explicitly assigned to a burrow will also be
completely ignored by labormanager.

The fitness algorithm for assigning jobs to dwarfs generally attempts to
favor dwarfs who are more skilled over those who are less skilled. It
also tries to avoid assigning female dwarfs with children to jobs that
are “outside”, favors assigning “outside” jobs to dwarfs who are
carrying a tool that could be used as a weapon, and tries to minimize
how often dwarfs have to reequip.

Labormanager automatically determines medical needs and reserves health
care providers as needed. Note that this may cause idling if you have
injured dwarfs but no or inadequate hospital facilities.

Hunting is never assigned without a butchery, and fishing is never
assigned without a fishery, and neither of these labors is assigned
unless specifically enabled.

The method by which labormanager determines what labor is needed for a
particular job is complicated and, in places, incomplete. In some
situations, labormanager will detect that it cannot determine what labor
is required. It will, by default, pause and print an error message on
the dfhack console, followed by the message “LABORMANAGER: Game paused
so you can investigate the above message.”. If this happens, please open
an issue on github, reporting the lines that immediately preceded this
message. You can tell labormanager to ignore this error and carry on by
typing labormanager pause-on-error no, but be warned that some job may go
undone in this situation.

Advanced usage:

	labormanager enable:

	 	Turn plugin on.

	labormanager disable:

	 	Turn plugin off.

	labormanager priority <labor> <value>:

	 	Set the priority value (see above) for labor <labor> to <value>.

	labormanager reset <labor>:

	 	Reset the priority value of labor <labor> to its default.

	labormanager reset-all:

	 	Reset all priority values to their defaults.

	labormanager allow-fishing:

	 	Allow dwarfs to fish. Warning This tends to result in most of the fort going fishing.

	labormanager forbid-fishing:

	 	Forbid dwarfs from fishing. Default behavior.

	labormanager allow-hunting:

	 	Allow dwarfs to hunt. Warning This tends to result in as many dwarfs going hunting as you have crossbows.

	labormanager forbid-hunting:

	 	Forbid dwarfs from hunting. Default behavior.

	labormanager list:

	 	Show current priorities and current allocation stats.

	labormanager pause-on-error yes:

	 	Make labormanager pause if the labor inference engine fails. See above.

	labormanager pause-on-error no:

	 	Allow labormanager to continue past a labor inference engine failure.

autohauler

Autohauler is an autolabor fork.

Rather than the all-of-the-above means of autolabor, autohauler will instead
only manage hauling labors and leave skilled labors entirely to the user, who
will probably use Dwarf Therapist to do so.

Idle dwarves will be assigned the hauling labors; everyone else (including
those currently hauling) will have the hauling labors removed. This is to
encourage every dwarf to do their assigned skilled labors whenever possible,
but resort to hauling when those jobs are not available. This also implies
that the user will have a very tight skill assignment, with most skilled
labors only being assigned to just one dwarf, no dwarf having more than two
active skilled labors, and almost every non-military dwarf having at least
one skilled labor assigned.

Autohauler allows skills to be flagged as to prevent hauling labors from
being assigned when the skill is present. By default this is the unused
ALCHEMIST labor but can be changed by the user.

job

Command for general job query and manipulation.

Options:

	no extra options

	Print details of the current job. The job can be selected
in a workshop, or the unit/jobs screen.

	list

	Print details of all jobs in the selected workshop.

	item-material <item-idx> <material[:subtoken]>

	Replace the exact material id in the job item.

	item-type <item-idx> <type[:subtype]>

	Replace the exact item type id in the job item.

job-material

Alter the material of the selected job. Similar to job item-material ...

Invoked as:

job-material <inorganic-token>

Keybinding: ShiftA -> "job-material ALUNITE"

Keybinding: ShiftM -> "job-material MICROCLINE"

Keybinding: ShiftD -> "job-material DACITE"

Keybinding: ShiftR -> "job-material RHYOLITE"

Keybinding: ShiftI -> "job-material CINNABAR"

Keybinding: ShiftB -> "job-material COBALTITE"

Keybinding: ShiftO -> "job-material OBSIDIAN"

Keybinding: ShiftT -> "job-material ORTHOCLASE"

Keybinding: ShiftG -> "job-material GLASS_GREEN"

	In q mode, when a job is highlighted within a workshop or furnace,
changes the material of the job. Only inorganic materials can be used
in this mode.

	In b mode, during selection of building components positions the cursor
over the first available choice with the matching material.

job-duplicate

In q mode, when a job is highlighted within a workshop or furnace
building, calling job-duplicate instantly duplicates the job.

Keybinding: CtrlD

autogems

Creates a new Workshop Order setting, automatically cutting rough gems
when enabled.

stockflow

Allows the fortress bookkeeper to queue jobs through the manager,
based on space or items available in stockpiles.

Inspired by workflow.

Usage:

	stockflow enable

	Enable the plugin.

	stockflow disable

	Disable the plugin.

	stockflow fast

	Enable the plugin in fast mode.

	stockflow list

	List any work order settings for your stockpiles.

	stockflow status

	Display whether the plugin is enabled.

While enabled, the q menu of each stockpile will have two new options:

	j: Select a job to order, from an interface like the manager’s screen.

	J: Cycle between several options for how many such jobs to order.

Whenever the bookkeeper updates stockpile records, new work orders will
be placed on the manager’s queue for each such selection, reduced by the
number of identical orders already in the queue.

In fast mode, new work orders will be enqueued once per day, instead of
waiting for the bookkeeper.

workflow

Manage control of repeat jobs. gui/workflow provides a simple
front-end integrated in the game UI.

Usage:

	workflow enable [option...], workflow disable [option...]

	If no options are specified, enables or disables the plugin.
Otherwise, enables or disables any of the following options:

	drybuckets: Automatically empty abandoned water buckets.

	auto-melt: Resume melt jobs when there are objects to melt.

	workflow jobs

	List workflow-controlled jobs (if in a workshop, filtered by it).

	workflow list

	List active constraints, and their job counts.

	workflow list-commands

	List active constraints as workflow commands that re-create them;
this list can be copied to a file, and then reloaded using the
script built-in command.

	workflow count <constraint-spec> <cnt-limit> [cnt-gap]

	Set a constraint, counting every stack as 1 item.

	workflow amount <constraint-spec> <cnt-limit> [cnt-gap]

	Set a constraint, counting all items within stacks.

	workflow unlimit <constraint-spec>

	Delete a constraint.

	workflow unlimit-all

	Delete all constraints.

Function

When the plugin is enabled, it protects all repeat jobs from removal.
If they do disappear due to any cause, they are immediately re-added to their
workshop and suspended.

In addition, when any constraints on item amounts are set, repeat jobs that
produce that kind of item are automatically suspended and resumed as the item
amount goes above or below the limit. The gap specifies how much below the limit
the amount has to drop before jobs are resumed; this is intended to reduce
the frequency of jobs being toggled.

Constraint format

The constraint spec consists of 4 parts, separated with / characters:

ITEM[:SUBTYPE]/[GENERIC_MAT,...]/[SPECIFIC_MAT:...]/[LOCAL,<quality>]

The first part is mandatory and specifies the item type and subtype,
using the raw tokens for items (the same syntax used custom reaction inputs).
For more information, see this wiki page [http://dwarffortresswiki.org/Material_token].

The subsequent parts are optional:

	A generic material spec constrains the item material to one of
the hard-coded generic classes, which currently include:

PLANT WOOD CLOTH SILK LEATHER BONE SHELL SOAP TOOTH HORN PEARL YARN
METAL STONE SAND GLASS CLAY MILK

	A specific material spec chooses the material exactly, using the
raw syntax for reaction input materials, e.g. INORGANIC:IRON,
although for convenience it also allows just IRON, or ACACIA:WOOD etc.
See the link above for more details on the unabbreviated raw syntax.

	A comma-separated list of miscellaneous flags, which currently can
be used to ignore imported items or items below a certain quality.

Constraint examples

Keep metal bolts within 900-1000, and wood/bone within 150-200:

workflow amount AMMO:ITEM_AMMO_BOLTS/METAL 1000 100
workflow amount AMMO:ITEM_AMMO_BOLTS/WOOD,BONE 200 50

Keep the number of prepared food & drink stacks between 90 and 120:

workflow count FOOD 120 30
workflow count DRINK 120 30

Make sure there are always 25-30 empty bins/barrels/bags:

workflow count BIN 30
workflow count BARREL 30
workflow count BOX/CLOTH,SILK,YARN 30

Make sure there are always 15-20 coal and 25-30 copper bars:

workflow count BAR//COAL 20
workflow count BAR//COPPER 30

Produce 15-20 gold crafts:

workflow count CRAFTS//GOLD 20

Collect 15-20 sand bags and clay boulders:

workflow count POWDER_MISC/SAND 20
workflow count BOULDER/CLAY 20

Make sure there are always 80-100 units of dimple dye:

workflow amount POWDER_MISC//MUSHROOM_CUP_DIMPLE:MILL 100 20

Note

In order for this to work, you have to set the material of the PLANT input
on the Mill Plants job to MUSHROOM_CUP_DIMPLE using the job item-material
command. Otherwise the plugin won’t be able to deduce the output material.

Maintain 10-100 locally-made crafts of exceptional quality:

workflow count CRAFTS///LOCAL,EXCEPTIONAL 100 90

fix-job-postings

This command fixes crashes caused by previous versions of workflow, mostly in
DFHack 0.40.24-r4, and should be run automatically when loading a world (but can
also be run manually if desired).

clean

Cleans all the splatter that get scattered all over the map, items and
creatures. In an old fortress, this can significantly reduce FPS lag. It can
also spoil your !!FUN!!, so think before you use it.

Options:

	map:	Clean the map tiles. By default, it leaves mud and snow alone.

	units:	Clean the creatures. Will also clean hostiles.

	items:	Clean all the items. Even a poisoned blade.

Extra options for map:

	mud:	Remove mud in addition to the normal stuff.

	snow:	Also remove snow coverings.

spotclean

Works like clean map snow mud, but only for the tile under the cursor. Ideal
if you want to keep that bloody entrance clean map would clean up.

Keybinding: CtrlC

autodump

This plugin adds an option to the q menu for stckpiles when enabled.
When autodump is enabled for a stockpile, any items placed in the stockpile will
automatically be designated to be dumped.

Alternatively, you can use it to quickly move all items designated to be dumped.
Items are instantly moved to the cursor position, the dump flag is unset,
and the forbid flag is set, as if it had been dumped normally.
Be aware that any active dump item tasks still point at the item.

Cursor must be placed on a floor tile so the items can be dumped there.

Options:

	destroy:	Destroy instead of dumping. Doesn’t require a cursor.
If called again before the game is resumed, cancels destroy.

	destroy-here:	As destroy, but only the selected item in the k list,
or inside a container.
Alias autodump-destroy-here, for keybindings.
Keybinding: CtrlShiftK

	visible:	Only process items that are not hidden.

	hidden:	Only process hidden items.

	forbidden:	Only process forbidden items (default: only unforbidden).

autodump-destroy-item destroys the selected item, which may be selected
in the k list, or inside a container. If called again before the game
is resumed, cancels destruction of the item.
Keybinding: CtrlK

cleanowned

Confiscates items owned by dwarfs. By default, owned food on the floor
and rotten items are confistacted and dumped.

Options:

	all:	confiscate all owned items

	scattered:	confiscated and dump all items scattered on the floor

	x:	confiscate/dump items with wear level ‘x’ and more

	X:	confiscate/dump items with wear level ‘X’ and more

	dryrun:	a dry run. combine with other options to see what will happen
without it actually happening.

Example:

	cleanowned scattered X

	This will confiscate rotten and dropped food, garbage on the floors and any
worn items with ‘X’ damage and above.

dwarfmonitor

Records dwarf activity to measure fort efficiency.

Options:

	enable <mode>:	Start monitoring mode. mode can be “work”, “misery”,
“weather”, or “all”. This will enable all corresponding widgets,
if applicable.

	disable <mode>:	Stop monitoring mode, and disable corresponding widgets, if applicable.

	stats:	Show statistics summary

	prefs:	Show dwarf preferences summary

	reload:	Reload configuration file (dfhack-config/dwarfmonitor.json)

Keybinding: AltM -> "dwarfmonitor prefs" in dwarfmode/Default

Keybinding: CtrlF -> "dwarfmonitor stats" in dwarfmode/Default

Widget configuration:

The following types of widgets (defined in hack/lua/plugins/dwarfmonitor.lua)
can be displayed on the main fortress mode screen:

	date:	Show the in-game date

	misery:	Show overall happiness levels of all dwarves

	weather:	Show current weather (rain/snow)

	cursor:	Show the current mouse cursor position

The file dfhack-config/dwarfmonitor.json can be edited to control the
positions and settings of all widgets displayed. This file should contain a
JSON object with the key widgets containing an array of objects - see the
included file in the dfhack-config folder for an example:

{
 "widgets": [
 {
 "type": "widget type (weather, misery, etc.)",
 "x": X coordinate,
 "y": Y coordinate
 <...additional options...>
 }
]
}

X and Y coordinates begin at zero (in the upper left corner of the screen).
Negative coordinates will be treated as distances from the lower right corner,
beginning at 1 - e.g. an x coordinate of 0 is the leftmost column, while an x
coordinate of 1 is the rightmost column.

By default, the x and y coordinates given correspond to the leftmost tile of
the widget. Including an anchor option set to right will cause the
rightmost tile of the widget to be located at this position instead.

Some widgets support additional options:

	date widget:

	format: specifies the format of the date. The following characters
are replaced (all others, such as punctuation, are not modified)

	Y or y: The current year

	M: The current month, zero-padded if necessary

	m: The current month, not zero-padded

	D: The current day, zero-padded if necessary

	d: The current day, not zero-padded

The default date format is Y-M-D, per the ISO8601 [https://en.wikipedia.org/wiki/ISO_8601] standard.

	cursor widget:

	format: Specifies the format. X, x, Y, and y are
replaced with the corresponding cursor cordinates, while all other
characters are unmodified.

	show_invalid: If set to true, the mouse coordinates will both be
displayed as -1 when the cursor is outside of the DF window; otherwise,
nothing will be displayed.

dwarfvet

Enables Animal Caretaker functionality

Always annoyed your dragons become useless after a minor injury? Well, with
dwarfvet, your animals become first rate members of your fort. It can also
be used to train medical skills.

Animals need to be treated in an animal hospital, which is simply a hospital
that is also an animal training zone. The console will print out a list on game
load, and whenever one is added or removed. Dwarfs must have the Animal Caretaker
labor to treat animals. Normal medical skills are used (and no experience is given
to the Animal Caretaker skill).

Options:

	enable:	Enables Animal Caretakers to treat and manage animals

	disable:	Turns off the plguin

	report:	Reports all zones that the game considers animal hospitals

workNow

Don’t allow dwarves to idle if any jobs are available.

When workNow is active, every time the game pauses, DF will make dwarves
perform any appropriate available jobs. This includes when you one step
through the game using the pause menu. Usage:

	workNow:	print workNow status

	workNow 0:	deactivate workNow

	workNow 1:	activate workNow (look for jobs on pause, and only then)

	workNow 2:	make dwarves look for jobs whenever a job completes

seedwatch

Watches the numbers of seeds available and enables/disables seed and plant cooking.

Each plant type can be assigned a limit. If their number falls below that limit,
the plants and seeds of that type will be excluded from cookery.
If the number rises above the limit + 20, then cooking will be allowed.

The plugin needs a fortress to be loaded and will deactivate automatically otherwise.
You have to reactivate with ‘seedwatch start’ after you load the game.

Options:

	all:	Adds all plants from the abbreviation list to the watch list.

	start:	Start watching.

	stop:	Stop watching.

	info:	Display whether seedwatch is watching, and the watch list.

	clear:	Clears the watch list.

Examples:

	seedwatch MUSHROOM_HELMET_PLUMP 30

	add MUSHROOM_HELMET_PLUMP to the watch list, limit = 30

	seedwatch MUSHROOM_HELMET_PLUMP

	removes MUSHROOM_HELMET_PLUMP from the watch list.

	seedwatch all 30

	adds all plants from the abbreviation list to the watch list, the limit being 30.

zone

Helps a bit with managing activity zones (pens, pastures and pits) and cages.

Keybinding: AltShiftI -> "zone set" in dwarfmode/Zones

Options:

	set:	Set zone or cage under cursor as default for future assigns.

	assign:	Assign unit(s) to the pen or pit marked with the ‘set’ command.
If no filters are set a unit must be selected in the in-game ui.
Can also be followed by a valid zone id which will be set
instead.

	unassign:	Unassign selected creature from it’s zone.

	nick:	Mass-assign nicknames, must be followed by the name you want
to set.

	remnick:	Mass-remove nicknames.

	tocages:	Assign unit(s) to cages inside a pasture.

	uinfo:	Print info about unit(s). If no filters are set a unit must
be selected in the in-game ui.

	zinfo:	Print info about zone(s). If no filters are set zones under
the cursor are listed.

	verbose:	Print some more info.

	filters:	Print list of valid filter options.

	examples:	Print some usage examples.

	not:	Negates the next filter keyword.

Filters:

	all:	Process all units (to be used with additional filters).

	count:	Must be followed by a number. Process only n units (to be used
with additional filters).

	unassigned:	Not assigned to zone, chain or built cage.

	minage:	Minimum age. Must be followed by number.

	maxage:	Maximum age. Must be followed by number.

	race:	Must be followed by a race RAW ID (e.g. BIRD_TURKEY, ALPACA,
etc). Negatable.

	caged:	In a built cage. Negatable.

	own:	From own civilization. Negatable.

	merchant:	Is a merchant / belongs to a merchant. Should only be used for
pitting, not for stealing animals (slaughter should work).

	war:	Trained war creature. Negatable.

	hunting:	Trained hunting creature. Negatable.

	tamed:	Creature is tame. Negatable.

	trained:	Creature is trained. Finds war/hunting creatures as well as
creatures who have a training level greater than ‘domesticated’.
If you want to specifically search for war/hunting creatures use
‘war’ or ‘hunting’ Negatable.

	trainablewar:	Creature can be trained for war (and is not already trained for
war/hunt). Negatable.

	trainablehunt:	Creature can be trained for hunting (and is not already trained
for war/hunt). Negatable.

	male:	Creature is male. Negatable.

	female:	Creature is female. Negatable.

	egglayer:	Race lays eggs. Negatable.

	grazer:	Race is a grazer. Negatable.

	milkable:	Race is milkable. Negatable.

Usage with single units

One convenient way to use the zone tool is to bind the command ‘zone assign’ to
a hotkey, maybe also the command ‘zone set’. Place the in-game cursor over
a pen/pasture or pit, use ‘zone set’ to mark it. Then you can select units
on the map (in ‘v’ or ‘k’ mode), in the unit list or from inside cages
and use ‘zone assign’ to assign them to their new home. Allows pitting your
own dwarves, by the way.

Usage with filters

All filters can be used together with the ‘assign’ command.

Restrictions: It’s not possible to assign units who are inside built cages
or chained because in most cases that won’t be desirable anyways.
It’s not possible to cage owned pets because in that case the owner
uncages them after a while which results in infinite hauling back and forth.

Usually you should always use the filter ‘own’ (which implies tame) unless you
want to use the zone tool for pitting hostiles. ‘own’ ignores own dwarves unless
you specify ‘race DWARF’ (so it’s safe to use ‘assign all own’ to one big
pasture if you want to have all your animals at the same place). ‘egglayer’ and
‘milkable’ should be used together with ‘female’ unless you have a mod with
egg-laying male elves who give milk or whatever. Merchants and their animals are
ignored unless you specify ‘merchant’ (pitting them should be no problem,
but stealing and pasturing their animals is not a good idea since currently they
are not properly added to your own stocks; slaughtering them should work).

Most filters can be negated (e.g. ‘not grazer’ -> race is not a grazer).

Mass-renaming

Using the ‘nick’ command you can set the same nickname for multiple units.
If used without ‘assign’, ‘all’ or ‘count’ it will rename all units in the
current default target zone. Combined with ‘assign’, ‘all’ or ‘count’ (and
further optional filters) it will rename units matching the filter conditions.

Cage zones

Using the ‘tocages’ command you can assign units to a set of cages, for example
a room next to your butcher shop(s). They will be spread evenly among available
cages to optimize hauling to and butchering from them. For this to work you need
to build cages and then place one pen/pasture activity zone above them, covering
all cages you want to use. Then use ‘zone set’ (like with ‘assign’) and use
‘zone tocages filter1 filter2 ...’. ‘tocages’ overwrites ‘assign’ because it
would make no sense, but can be used together with ‘nick’ or ‘remnick’ and all
the usual filters.

Examples

	zone assign all own ALPACA minage 3 maxage 10

	Assign all own alpacas who are between 3 and 10 years old to the selected
pasture.

	zone assign all own caged grazer nick ineedgrass

	Assign all own grazers who are sitting in cages on stockpiles (e.g. after
buying them from merchants) to the selected pasture and give them
the nickname ‘ineedgrass’.

	zone assign all own not grazer not race CAT

	Assign all own animals who are not grazers, excluding cats.

	zone assign count 5 own female milkable

	Assign up to 5 own female milkable creatures to the selected pasture.

	zone assign all own race DWARF maxage 2

	Throw all useless kids into a pit :)

	zone nick donttouchme

	Nicknames all units in the current default zone or cage to ‘donttouchme’.
Mostly intended to be used for special pastures or cages which are not marked
as rooms you want to protect from autobutcher.

	zone tocages count 50 own tame male not grazer

	Stuff up to 50 owned tame male animals who are not grazers into cages built
on the current default zone.

autonestbox

Assigns unpastured female egg-layers to nestbox zones. Requires that you create
pen/pasture zones above nestboxes. If the pen is bigger than 1x1 the nestbox
must be in the top left corner. Only 1 unit will be assigned per pen, regardless
of the size. The age of the units is currently not checked, most birds grow up
quite fast. Egglayers who are also grazers will be ignored, since confining them
to a 1x1 pasture is not a good idea. Only tame and domesticated own units are
processed since pasturing half-trained wild egglayers could destroy your neat
nestbox zones when they revert to wild. When called without options autonestbox
will instantly run once.

Options:

	start:	Start running every X frames (df simulation ticks).
Default: X=6000, which would be every 60 seconds at 100fps.

	stop:	Stop running automatically.

	sleep:	Must be followed by number X. Changes the timer to sleep X
frames between runs.

autobutcher

Assigns lifestock for slaughter once it reaches a specific count. Requires that
you add the target race(s) to a watch list. Only tame units will be processed.

Units will be ignored if they are:

	Nicknamed (for custom protection; you can use the rename unit tool
individually, or zone nick for groups)

	Caged, if and only if the cage is defined as a room (to protect zoos)

	Trained for war or hunting

Creatures who will not reproduce (because they’re not interested in the
opposite sex or have been gelded) will be butchered before those who will.
Older adults and younger children will be butchered first if the population
is above the target (default 1 male, 5 female kids and adults). Note that
you may need to set a target above 1 to have a reliable breeding population
due to asexuality etc. See fix-ster if this is a problem.

Options:

	example:	Print some usage examples.

	start:	Start running every X frames (df simulation ticks).
Default: X=6000, which would be every 60 seconds at 100fps.

	stop:	Stop running automatically.

	sleep <x>:	Changes the timer to sleep X frames between runs.

	watch R:	Start watching a race. R can be a valid race RAW id (ALPACA,
BIRD_TURKEY, etc) or a list of ids seperated by spaces or
the keyword ‘all’ which affects all races on your current
watchlist.

	unwatch R:	Stop watching race(s). The current target settings will be
remembered. R can be a list of ids or the keyword ‘all’.

	forget R:	Stop watching race(s) and forget it’s/their target settings.
R can be a list of ids or the keyword ‘all’.

	autowatch:	Automatically adds all new races (animals you buy from merchants,
tame yourself or get from migrants) to the watch list using
default target count.

	noautowatch:	Stop auto-adding new races to the watchlist.

	list:	Print the current status and watchlist.

	list_export:	Print the commands needed to set up status and watchlist,
which can be used to import them to another save (see notes).

	target <fk> <mk> <fa> <ma> <R>:

	 	Set target count for specified race(s). The first four arguments
are the number of female and male kids, and female and male adults.
R can be a list of spceies ids, or the keyword all or new.
R = 'all': change target count for all races on watchlist
and set the new default for the future. R = 'new': don’t touch
current settings on the watchlist, only set the new default
for future entries.

	list_export:	Print the commands required to rebuild your current settings.

Note

Settings and watchlist are stored in the savegame, so that you can have
different settings for each save. If you want to copy your watchlist to
another savegame you must export the commands required to recreate your settings.

To export, open an external terminal in the DF directory, and run
dfhack-run autobutcher list_export > filename.txt. To import, load your
new save and run script filename.txt in the DFHack terminal.

Examples:

You want to keep max 7 kids (4 female, 3 male) and max 3 adults (2 female,
1 male) of the race alpaca. Once the kids grow up the oldest adults will get
slaughtered. Excess kids will get slaughtered starting with the youngest
to allow that the older ones grow into adults. Any unnamed cats will
be slaughtered as soon as possible.

autobutcher target 4 3 2 1 ALPACA BIRD_TURKEY
autobutcher target 0 0 0 0 CAT
autobutcher watch ALPACA BIRD_TURKEY CAT
autobutcher start

Automatically put all new races onto the watchlist and mark unnamed tame units
for slaughter as soon as they arrive in your fort. Settings already made
for specific races will be left untouched.

autobutcher target 0 0 0 0 new
autobutcher autowatch
autobutcher start

Stop watching the races alpaca and cat, but remember the target count
settings so that you can use ‘unwatch’ without the need to enter the
values again. Note: ‘autobutcher unwatch all’ works, but only makes sense
if you want to keep the plugin running with the ‘autowatch’ feature or manually
add some new races with ‘watch’. If you simply want to stop it completely use
‘autobutcher stop’ instead.

autobutcher unwatch ALPACA CAT

autochop

Automatically manage tree cutting designation to keep available logs withing given
quotas.

Open the dashboard by running:

enable autochop

The plugin must be activated (with d-t-c-a) before
it can be used. You can then set logging quotas and restrict designations to
specific burrows (with ‘Enter’) if desired. The plugin’s activity cycle runs
once every in game day.

If you add enable autochop to your dfhack.init there will be a hotkey to
open the dashboard from the chop designation menu.

Map modification

	3dveins

	alltraffic

	burrow

	changelayer

	changevein

	changeitem

	cleanconst

	deramp

	dig

	digexp

	digcircle

	digtype

	digFlood

	filltraffic

	fortplan

	getplants

	infiniteSky

	liquids
	Commands

	liquids-here

	plant

	regrass

	restrictice

	restrictliquids

	tiletypes
	tiletypes-command

	tiletypes-here

	tiletypes-here-point

	tubefill

3dveins

Removes all existing veins from the map and generates new ones using
3D Perlin noise, in order to produce a layout that smoothly flows between
Z levels. The vein distribution is based on the world seed, so running
the command for the second time should produce no change. It is best to
run it just once immediately after embark.

This command is intended as only a cosmetic change, so it takes
care to exactly preserve the mineral counts reported by prospect all.
The amounts of different layer stones may slightly change in some cases
if vein mass shifts between Z layers.

The only undo option is to restore your save from backup.

alltraffic

Set traffic designations for every single tile of the map - useful for resetting
traffic designations. See also filltraffic, restrictice, and restrictliquids.

Options:

	H:	High Traffic

	N:	Normal Traffic

	L:	Low Traffic

	R:	Restricted Traffic

burrow

Miscellaneous burrow control. Allows manipulating burrows and automated burrow
expansion while digging.

Options:

	enable feature ...:

	 	Enable features of the plugin.

	disable feature ...:

	 	Disable features of the plugin.

	clear-unit burrow burrow ...:

	 	Remove all units from the burrows.

	clear-tiles burrow burrow ...:

	 	Remove all tiles from the burrows.

	set-units target-burrow src-burrow ...:

	 	Clear target, and adds units from source burrows.

	add-units target-burrow src-burrow ...:

	 	Add units from the source burrows to the target.

	remove-units target-burrow src-burrow ...:

	 	Remove units in source burrows from the target.

	set-tiles target-burrow src-burrow ...:

	 	Clear target and adds tiles from the source burrows.

	add-tiles target-burrow src-burrow ...:

	 	Add tiles from the source burrows to the target.

	remove-tiles target-burrow src-burrow ...:

	 	Remove tiles in source burrows from the target.

For these three options, in place of a source burrow it is
possible to use one of the following keywords: ABOVE_GROUND,
SUBTERRANEAN, INSIDE, OUTSIDE, LIGHT, DARK, HIDDEN, REVEALED

Features:

	auto-grow:	When a wall inside a burrow with a name ending in ‘+’ is dug
out, the burrow is extended to newly-revealed adjacent walls.
This final ‘+’ may be omitted in burrow name args of commands above.
Digging 1-wide corridors with the miner inside the burrow is SLOW.

changelayer

Changes material of the geology layer under cursor to the specified inorganic
RAW material. Can have impact on all surrounding regions, not only your embark!
By default changing stone to soil and vice versa is not allowed. By default
changes only the layer at the cursor position. Note that one layer can stretch
across lots of z levels. By default changes only the geology which is linked
to the biome under the cursor. That geology might be linked to other biomes
as well, though. Mineral veins and gem clusters will stay on the map. Use
changevein for them.

tl;dr: You will end up with changing quite big areas in one go, especially if
you use it in lower z levels. Use with care.

Options:

	all_biomes:	Change selected layer for all biomes on your map.
Result may be undesirable since the same layer can AND WILL
be on different z-levels for different biomes. Use the tool
‘probe’ to get an idea how layers and biomes are distributed
on your map.

	all_layers:	Change all layers on your map (only for the selected biome
unless ‘all_biomes’ is added).
Candy mountain, anyone? Will make your map quite boring,
but tidy.

	force:	Allow changing stone to soil and vice versa. !!THIS CAN HAVE
WEIRD EFFECTS, USE WITH CARE!!
Note that soil will not be magically replaced with stone.
You will, however, get a stone floor after digging so it
will allow the floor to be engraved.
Note that stone will not be magically replaced with soil.
You will, however, get a soil floor after digging so it
could be helpful for creating farm plots on maps with no
soil.

	verbose:	Give some details about what is being changed.

	trouble:	Give some advice about known problems.

Examples:

	changelayer GRANITE

	Convert layer at cursor position into granite.

	changelayer SILTY_CLAY force

	Convert layer at cursor position into clay even if it’s stone.

	changelayer MARBLE all_biomes all_layers

	Convert all layers of all biomes which are not soil into marble.

Note

	If you use changelayer and nothing happens, try to pause/unpause the game
for a while and try to move the cursor to another tile. Then try again.
If that doesn’t help try temporarily changing some other layer, undo your
changes and try again for the layer you want to change. Saving
and reloading your map might also help.

	You should be fine if you only change single layers without the use
of ‘force’. Still it’s advisable to save your game before messing with
the map.

	When you force changelayer to convert soil to stone you might experience
weird stuff (flashing tiles, tiles changed all over place etc).
Try reverting the changes manually or even better use an older savegame.
You did save your game, right?

changevein

Changes material of the vein under cursor to the specified inorganic RAW
material. Only affects tiles within the current 16x16 block - for veins and
large clusters, you will need to use this command multiple times.

Example:

	changevein NATIVE_PLATINUM

	Convert vein at cursor position into platinum ore.

changeitem

Allows changing item material and base quality. By default the item currently
selected in the UI will be changed (you can select items in the ‘k’ list
or inside containers/inventory). By default change is only allowed if materials
is of the same subtype (for example wood<->wood, stone<->stone etc). But since
some transformations work pretty well and may be desired you can override this
with ‘force’. Note that some attributes will not be touched, possibly resulting
in weirdness. To get an idea how the RAW id should look like, check some items
with ‘info’. Using ‘force’ might create items which are not touched by
crafters/haulers.

Options:

	info:	Don’t change anything, print some info instead.

	here:	Change all items at the cursor position. Requires in-game cursor.

	material, m:	Change material. Must be followed by valid material RAW id.

	quality, q:	Change base quality. Must be followed by number (0-5).

	force:	Ignore subtypes, force change to new material.

Examples:

	changeitem m INORGANIC:GRANITE here

	Change material of all items under the cursor to granite.

	changeitem q 5

	Change currently selected item to masterpiece quality.

cleanconst

Cleans up construction materials.

This utility alters all constructions on the map so that they spawn their
building component when they are disassembled, allowing their actual
build items to be safely deleted. This can improve FPS in extreme situations.

deramp

Removes all ramps designated for removal from the map. This is useful for
replicating the old channel digging designation. It also removes any and
all ‘down ramps’ that can remain after a cave-in (you don’t have to designate
anything for that to happen).

dig

This plugin makes many automated or complicated dig patterns easy.

Basic commands:

	digv:	Designate all of the selected vein for digging.

	digvx:	Also cross z-levels, digging stairs as needed. Alias for digv x.

	digl:	Like digv, for layer stone. Also supports an undo option
to remove designations, for if you accidentally set 50 levels at once.

	diglx:	Also cross z-levels, digging stairs as needed. Alias for digl x.

Keybinding: CtrlV

Keybinding: CtrlShiftV -> "digv x"

digexp

This command is for exploratory mining [http://dwarffortresswiki.org/Exploratory_mining].

There are two variables that can be set: pattern and filter.

Patterns:

	diag5:	diagonals separated by 5 tiles

	diag5r:	diag5 rotated 90 degrees

	ladder:	A ‘ladder’ pattern

	ladderr:	ladder rotated 90 degrees

	clear:	Just remove all dig designations

	cross:	A cross, exactly in the middle of the map.

Filters:

	all:	designate whole z-level

	hidden:	designate only hidden tiles of z-level (default)

	designated:	Take current designation and apply pattern to it.

After you have a pattern set, you can use expdig to apply it again.

Examples:

	expdig diag5 hidden

	Designate the diagonal 5 patter over all hidden tiles

	expdig

	Apply last used pattern and filter

	expdig ladder designated

	Take current designations and replace them with the ladder pattern

digcircle

A command for easy designation of filled and hollow circles.
It has several types of options.

Shape:

	hollow:	Set the circle to hollow (default)

	filled:	Set the circle to filled

	#:	Diameter in tiles (default = 0, does nothing)

Action:

	set:	Set designation (default)

	unset:	Unset current designation

	invert:	Invert designations already present

Designation types:

	dig:	Normal digging designation (default)

	ramp:	Ramp digging

	ustair:	Staircase up

	dstair:	Staircase down

	xstair:	Staircase up/down

	chan:	Dig channel

After you have set the options, the command called with no options
repeats with the last selected parameters.

Examples:

	digcircle filled 3

	Dig a filled circle with diameter = 3.

	digcircle

	Do it again.

digtype

For every tile on the map of the same vein type as the selected tile,
this command designates it to have the same designation as the
selected tile. If the selected tile has no designation, they will be
dig designated.
If an argument is given, the designation of the selected tile is
ignored, and all appropriate tiles are set to the specified
designation.

Options:

	dig:	

	channel:	

	ramp:	

	updown:	up/down stairs

	up:	up stairs

	down:	down stairs

	clear:	clear designation

digFlood

Automatically digs out specified veins as they are discovered. It runs once
every time a dwarf finishes a dig job. It will only dig out appropriate tiles
that are adjacent to the finished dig job. To add a vein type, use digFlood 1 [type].
This will also enable the plugin. To remove a vein type, use digFlood 0 [type] 1
to disable, then remove, then re-enable.

Usage:

	help digflood:	detailed help message

	digFlood 0:	disable the plugin

	digFlood 1:	enable the plugin

	digFlood 0 MICROCLINE COAL_BITUMINOUS 1:

	 	disable plugin, remove microcline and bituminous coal from monitoring, then re-enable the plugin

	digFlood CLEAR:	remove all inorganics from monitoring

	digFlood digAll1:

	 	ignore the monitor list and dig any vein

	digFlood digAll0:

	 	disable digAll mode

filltraffic

Set traffic designations using flood-fill starting at the cursor.
See also alltraffic, restrictice, and restrictliquids. Options:

	H:	High Traffic

	N:	Normal Traffic

	L:	Low Traffic

	R:	Restricted Traffic

	X:	Fill across z-levels.

	B:	Include buildings and stockpiles.

	P:	Include empty space.

Example:

	filltraffic H

	When used in a room with doors, it will set traffic to HIGH in just that room.

fortplan

Usage: fortplan [filename]

Designates furniture for building according to a .csv file with
quickfort-style syntax. Companion to digfort.

The first line of the file must contain the following:

#build start(X; Y; <start location description>)

...where X and Y are the offset from the top-left corner of the file’s area
where the in-game cursor should be located, and <start location description>
is an optional description of where that is. You may also leave a description
of the contents of the file itself following the closing parenthesis on the
same line.

The syntax of the file itself is similar to digfort or quickfort [http://www.bay12forums.com/smf/index.php?topic=35931].
At present, only buildings constructed of an item with the same name as the building
are supported. All other characters are ignored. For example:

`,`,d,`,`
`,f,`,t,`
`,s,b,c,`

This section of a file would designate for construction a door and some
furniture inside a bedroom: specifically, clockwise from top left, a cabinet,
a table, a chair, a bed, and a statue.

All of the building designation uses buildingplan, so you do not need to
have the items available to construct all the buildings when you run
fortplan with the .csv file.

getplants

This tool allows plant gathering and tree cutting by RAW ID. Specify the types
of trees to cut down and/or shrubs to gather by their plant names, separated
by spaces.

Options:

	-t:	Select trees only (exclude shrubs)

	-s:	Select shrubs only (exclude trees)

	-c:	Clear designations instead of setting them

	-x:	Apply selected action to all plants except those specified (invert
selection)

	-a:	Select every type of plant (obeys -t/-s)

Specifying both -t and -s will have no effect. If no plant IDs are specified,
all valid plant IDs will be listed.

infiniteSky

Automatically allocates new z-levels of sky at the top of the map as you build up,
or on request allocates many levels all at once.

Usage:

	infiniteSky n

	Raise the sky by n z-levels.

	infiniteSky enable/disable

	Enables/disables monitoring of constructions. If you build anything in the second to highest z-level, it will allocate one more sky level. This is so you can continue to build stairs upward.

Sometimes [https://github.com/DFHack/dfhack/issues/254] new z-levels disappear and cause cave-ins.
Saving and loading after creating new z-levels should fix the problem.

liquids

Allows adding magma, water and obsidian to the game. It replaces the normal
dfhack command line and can’t be used from a hotkey. Settings will be remembered
as long as dfhack runs. Intended for use in combination with the command
liquids-here (which can be bound to a hotkey). See also Issue 80 [https://github.com/DFHack/dfhack/issues/80].

Note

Spawning and deleting liquids can mess up pathing data and
temperatures (creating heat traps). You’ve been warned.

Settings will be remembered until you quit DF. You can call liquids-here to execute
the last configured action, which is useful in combination with keybindings.

Usage: point the DF cursor at a tile you want to modify and use the commands.

If you only want to add or remove water or magma from one tile,
source may be easier to use.

Commands

Misc commands:

	q:	quit

	help, ?:	print this list of commands

	<empty line>:	put liquid

Modes:

	m:	switch to magma

	w:	switch to water

	o:	make obsidian wall instead

	of:	make obsidian floors

	rs:	make a river source

	f:	flow bits only

	wclean:	remove salt and stagnant flags from tiles

Set-Modes and flow properties (only for magma/water):

	s+:	only add mode

	s.:	set mode

	s-:	only remove mode

	f+:	make the spawned liquid flow

	f.:	don’t change flow state (read state in flow mode)

	f-:	make the spawned liquid static

Permaflow (only for water):

	pf.:	don’t change permaflow state

	pf-:	make the spawned liquid static

	pf[NS][EW]:	make the spawned liquid permanently flow

	0-7:	set liquid amount

Brush size and shape:

	p, point:	Single tile

	r, range:	Block with cursor at bottom north-west (any place, any size)

	block:	DF map block with cursor in it (regular spaced 16x16x1 blocks)

	column:	Column from cursor, up through free space

	flood:	Flood-fill water tiles from cursor (only makes sense with wclean)

liquids-here

Run the liquid spawner with the current/last settings made in liquids (if no
settings in liquids were made it paints a point of 7/7 magma by default).

Intended to be used as keybinding. Requires an active in-game cursor.

plant

A tool for creating shrubs, growing, or getting rid of them.

Subcommands:

	create:	Creates a new sapling under the cursor. Takes a raw ID as argument
(e.g. TOWER_CAP). The cursor must be located on a dirt or grass floor tile.

	grow:	Turns saplings into trees; under the cursor if a sapling is selected,
or every sapling on the map if the cursor is hidden.

	extirpate:	Kills the tree or shrub under the cursor, instantly turning them to ashes.

	immolate:	Sets the plants on fire instead. The fires can and will spread ;)

For mass effects, use one of the additional options:

	shrubs:	affect all shrubs on the map

	trees:	affect all trees on the map

	all:	affect every plant!

regrass

Regrows all the grass. Not much to it ;)

restrictice

Restrict traffic on all tiles on top of visible ice.
See also alltraffic, filltraffic, and restrictliquids.

restrictliquids

Restrict traffic on all visible tiles with liquid.
See also alltraffic, filltraffic, and restrictice.

tiletypes

Can be used for painting map tiles and is an interactive command, much like
liquids. If something goes wrong, fixveins may help.

The tool works with two set of options and a brush. The brush determines which
tiles will be processed. First set of options is the filter, which can exclude
some of the tiles from the brush by looking at the tile properties. The second
set of options is the paint - this determines how the selected tiles are
changed.

Both paint and filter can have many different properties including things like
general shape (WALL, FLOOR, etc.), general material (SOIL, STONE, MINERAL,
etc.), state of ‘designated’, ‘hidden’ and ‘light’ flags.

The properties of filter and paint can be partially defined. This means that
you can for example turn all stone fortifications into floors, preserving the
material:

filter material STONE
filter shape FORTIFICATION
paint shape FLOOR

Or turn mineral vein floors back into walls:

filter shape FLOOR
filter material MINERAL
paint shape WALL

The tool also allows tweaking some tile flags:

paint hidden 1
paint hidden 0

This will hide previously revealed tiles (or show hidden with the 0 option).

More recently, the tool supports changing the base material of the tile to
an arbitrary stone from the raws, by creating new veins as required. Note
that this mode paints under ice and constructions, instead of overwriting
them. To enable, use:

paint stone MICROCLINE

This mode is incompatible with the regular material setting, so changing
it cancels the specific stone selection:

paint material ANY

Since different vein types have different drop rates, it is possible to choose
which one to use in painting:

paint veintype CLUSTER_SMALL

When the chosen type is CLUSTER (the default), the tool may automatically
choose to use layer stone or lava stone instead of veins if its material matches
the desired one.

Any paint or filter option (or the entire paint or filter) can be disabled entirely by using the ANY keyword:

paint hidden ANY
paint shape ANY
filter material any
filter shape any
filter any

You can use several different brushes for painting tiles:

	point:	a single tile

	range:	a rectangular range

	column:	a column ranging from current cursor to the first solid tile above

	block:	a DF map block - 16x16 tiles, in a regular grid

Example:

range 10 10 1

This will change the brush to a rectangle spanning 10x10 tiles on one z-level.
The range starts at the position of the cursor and goes to the east, south and
up.

For more details, use tiletypes help.

tiletypes-command

Runs tiletypes commands, separated by ;. This makes it possible to change
tiletypes modes from a hotkey or via dfhack-run.

tiletypes-here

Apply the current tiletypes options at the in-game cursor position, including
the brush. Can be used from a hotkey.

tiletypes-here-point

Apply the current tiletypes options at the in-game cursor position to a single
tile. Can be used from a hotkey.

tubefill

Fills all the adamantine veins again. Veins that were hollow will be left
alone.

Options:

	hollow:	fill in naturally hollow veins too

Beware that filling in hollow veins will trigger a demon invasion on top of
your miner when you dig into the region that used to be hollow.

Mods and Cheating

	add-spatter

	adv-bodyswap

	createitem

	diggingInvaders

	fastdwarf

	forceequip

	generated-creature-renamer

	lair

	misery

	mode

	strangemood

	siege-engine

	power-meter

	steam-engine
	Construction

	Operation

	Explosions

	Save files

add-spatter

This plugin makes reactions with names starting with SPATTER_ADD_
produce contaminants on the items instead of improvements. The plugin is
intended to give some use to all those poisons that can be bought from caravans,
so they’re immune to being washed away by water or destroyed by clean.

adv-bodyswap

This allows taking control over your followers and other creatures in adventure
mode. For example, you can make them pick up new arms and armor and equip them
properly.

Usage:

	When viewing unit details, body-swaps into that unit.

	In the main adventure mode screen, reverts transient swap.

Keybinding: CtrlB in dungeonmode

Keybinding: CtrlShiftB -> "adv-bodyswap force" in dungeonmode

createitem

Allows creating new items of arbitrary types and made of arbitrary materials.
By default, items created are spawned at the feet of the selected unit.

Specify the item and material information as you would indicate them in
custom reaction raws, with the following differences:

	Separate the item and material with a space rather than a colon

	If the item has no subtype, omit the :NONE

	If the item is REMAINS, FISH, FISH_RAW, VERMIN, PET, or EGG,
specify a CREATURE:CASTE pair instead of a material token.

Corpses, body parts, and prepared meals cannot be created using this tool.

Examples:

createitem GLOVES:ITEM_GLOVES_GAUNTLETS INORGANIC:STEEL 2
 Create 2 pairs of steel gauntlets.
createitem WOOD PLANT_MAT:TOWER_CAP:WOOD
 Create tower-cap logs.

For more examples, see this wiki page [http://dwarffortresswiki.org/Utility:DFHack/createitem].

To change where new items are placed, first run the command with a
destination type while an appropriate destination is selected.

Options:

	floor:	Subsequent items will be placed on the floor beneath the selected unit’s feet.

	item:	Subsequent items will be stored inside the currently selected item.

	building:	Subsequent items will become part of the currently selected building.
Good for loading traps; do not use with workshops (or deconstruct to use the item).

diggingInvaders

Makes invaders dig or destroy constructions to get to your dwarves.

To enable/disable the pluging, use: diggingInvaders (1|enable)|(0|disable)

Basic usage:

	add GOBLIN:	registers the race GOBLIN as a digging invader. Case-sensitive.

	remove GOBLIN:	unregisters the race GOBLIN as a digging invader. Case-sensitive.

	now:	makes invaders try to dig now, if plugin is enabled

	clear:	clears all digging invader races

	edgesPerTick n:	makes the pathfinding algorithm work on at most n edges per tick.
Set to 0 or lower to make it unlimited.

You can also use diggingInvaders setCost (race) (action) n to set the
pathing cost of particular action, or setDelay to set how long it takes.
Costs and delays are per-tile, and the table shows default values.

	Action
	Cost
	Delay
	Notes

	walk
	1
	0
	base cost in the path algorithm

	destroyBuilding
	2
	1,000
	delay adds to the job_completion_timer of destroy building jobs that are assigned to invaders

	dig
	10,000
	1,000
	digging soil or natural stone

	destroyRoughConstruction
	1,000
	1,000
	constructions made from boulders

	destroySmoothConstruction
	100
	100
	constructions made from blocks or bars

fastdwarf

Controls speedydwarf and teledwarf. Speedydwarf makes dwarves move quickly
and perform tasks quickly. Teledwarf makes dwarves move instantaneously,
but do jobs at the same speed.

	fastdwarf 0:	disables both (also 0 0)

	fastdwarf 1:	enables speedydwarf and disables teledwarf (also 1 0)

	fastdwarf 2:	sets a native debug flag in the game memory that implements an
even more aggressive version of speedydwarf.

	fastdwarf 0 1:	disables speedydwarf and enables teledwarf

	fastdwarf 1 1:	enables both

See superdwarf for a per-creature version.

forceequip

Forceequip moves local items into a unit’s inventory. It is typically used to
equip specific clothing/armor items onto a dwarf, but can also be used to put
armor onto a war animal or to add unusual items (such as crowns) to any unit.

For more information run forceequip help. See also modtools/equip-item.

generated-creature-renamer

Automatically renames generated creatures, such as forgotten beasts, titans,
etc, to have raw token names that match the description given in-game.

The list-generated command can be used to list the token names of all
generated creatures in a given save, with an optional detailed argument
to show the accompanying description.

The save-generated-raws command will save a sample creature graphics file in
the Dwarf Fortress root directory, to use as a start for making a graphics set
for generated creatures using the new names that they get with this plugin.

The new names are saved with the save, and the plugin, when enabled, only runs once
per save, unless there’s an update.

lair

This command allows you to mark the map as a monster lair, preventing item
scatter on abandon. When invoked as lair reset, it does the opposite.

Unlike reveal, this command doesn’t save the information about tiles - you
won’t be able to restore state of real monster lairs using lair reset.

Options:

	lair:	Mark the map as monster lair

	lair reset:	Mark the map as ordinary (not lair)

misery

When enabled, fake bad thoughts will be added to all dwarves.

Usage:

	misery enable n:

	 	enable misery with optional magnitude n. If specified, n must
be positive.

	misery n:	same as “misery enable n”

	misery enable:	same as “misery enable 1”

	misery disable:	stop adding new negative thoughts. This will not remove
existing negative thoughts. Equivalent to “misery 0”.

	misery clear:	remove fake thoughts, even after saving and reloading. Does
not change factor.

mode

This command lets you see and change the game mode directly.

Warning

Only use mode after making a backup of your save!

Not all combinations are good for every situation and most of them will
produce undesirable results. There are a few good ones though.

Examples:

	You are in fort game mode, managing your fortress and paused.

	You switch to the arena game mode, assume control of a creature and then

	switch to adventure game mode(1).
You just lost a fortress and gained an adventurer. Alternatively:

	You are in fort game mode, managing your fortress and paused at the esc menu.

	You switch to the adventure game mode, assume control of a creature, then save or retire.

	You just created a returnable mountain home and gained an adventurer.

strangemood

Creates a strange mood job the same way the game itself normally does it.

Options:

	-force:	Ignore normal strange mood preconditions (no recent mood, minimum
moodable population, artifact limit not reached).

	-unit:	Make the strange mood strike the selected unit instead of picking
one randomly. Unit eligibility is still enforced.

	-type <T>:	Force the mood to be of a particular type instead of choosing randomly based on happiness.
Valid values for T are “fey”, “secretive”, “possessed”, “fell”, and “macabre”.

	-skill S:	Force the mood to use a specific skill instead of choosing the highest moodable skill.
Valid values are “miner”, “carpenter”, “engraver”, “mason”, “tanner”, “weaver”,
“clothier”, “weaponsmith”, “armorsmith”, “metalsmith”, “gemcutter”, “gemsetter”,
“woodcrafter”, “stonecrafter”, “metalcrafter”, “glassmaker”, “leatherworker”,
“bonecarver”, “bowyer”, and “mechanic”.

Known limitations: if the selected unit is currently performing a job, the mood will not be started.

siege-engine

Siege engines in DF haven’t been updated since the game was 2D, and can
only aim in four directions. To make them useful above-ground,
this plugin allows you to:

	link siege engines to stockpiles

	restrict operator skill levels (like workshops)

	load any object into a catapult, not just stones

	aim at a rectangular area in any direction, and across Z-levels

The front-end is implemented by gui/siege-engine.

power-meter

The power-meter plugin implements a modified pressure plate that detects power being
supplied to gear boxes built in the four adjacent N/S/W/E tiles.

The configuration front-end is implemented by gui/power-meter.

steam-engine

The steam-engine plugin detects custom workshops with STEAM_ENGINE in
their token, and turns them into real steam engines.

The vanilla game contains only water wheels and windmills as sources of
power, but windmills give relatively little power, and water wheels require
flowing water, which must either be a real river and thus immovable and
limited in supply, or actually flowing and thus laggy.

Compared to the water reactor [http://dwarffortresswiki.org/Water_wheel#Dwarven_Water_Reactor]
exploit, steam engines make a lot of sense!

Construction

The workshop needs water as its input, which it takes via a
passable floor tile below it, like usual magma workshops do.
The magma version also needs magma.

Due to DFHack limits, the workshop will collapse over true open space.
However down stairs are passable but support machines, so you can use them.

After constructing the building itself, machines can be connected
to the edge tiles that look like gear boxes. Their exact position
is extracted from the workshop raws.

Like with collapse above, due to DFHack limits the workshop
can only immediately connect to machine components built AFTER it.
This also means that engines cannot be chained without intermediate
axles built after both engines.

Operation

In order to operate the engine, queue the Stoke Boiler job (optionally
on repeat). A furnace operator will come, possibly bringing a bar of fuel,
and perform it. As a result, a “boiling water” item will appear
in the t view of the workshop.

Note

The completion of the job will actually consume one unit
of the appropriate liquids from below the workshop. This means
that you cannot just raise 7 units of magma with a piston and
have infinite power. However, liquid consumption should be slow
enough that water can be supplied by a pond zone bucket chain.

Every such item gives 100 power, up to a limit of 300 for coal,
and 500 for a magma engine. The building can host twice that
amount of items to provide longer autonomous running. When the
boiler gets filled to capacity, all queued jobs are suspended;
once it drops back to 3+1 or 5+1 items, they are re-enabled.

While the engine is providing power, steam is being consumed.
The consumption speed includes a fixed 10% waste rate, and
the remaining 90% are applied proportionally to the actual
load in the machine. With the engine at nominal 300 power with
150 load in the system, it will consume steam for actual
300*(10% + 90%*150/300) = 165 power.

Masterpiece mechanism and chain will decrease the mechanical
power drawn by the engine itself from 10 to 5. Masterpiece
barrel decreases waste rate by 4%. Masterpiece piston and pipe
decrease it by further 4%, and also decrease the whole steam
use rate by 10%.

Explosions

The engine must be constructed using barrel, pipe and piston
from fire-safe, or in the magma version magma-safe metals.

During operation weak parts get gradually worn out, and
eventually the engine explodes. It should also explode if
toppled during operation by a building destroyer, or a
tantruming dwarf.

Save files

It should be safe to load and view engine-using fortresses
from a DF version without DFHack installed, except that in such
case the engines won’t work. However actually making modifications
to them, or machines they connect to (including by pulling levers),
can easily result in inconsistent state once this plugin is
available again. The effects may be as weird as negative power
being generated.

DFHack Scripts

Lua or ruby scripts placed in the hack/scripts/ directory
are considered for execution as if they were native DFHack commands.

The following pages document all the scripts in the DFHack standard library.

	Basic Scripts
	adaptation

	add-thought

	adv-max-skills

	adv-rumors

	armoks-blessing

	autofarm

	autolabor-artisans

	autounsuspend

	ban-cooking

	binpatch

	brainwash

	burial

	catsplosion

	colonies

	combine-drinks

	combine-plants

	create-items

	deathcause

	deteriorateclothes

	deterioratecorpses

	deterioratefood

	digfort

	drain-aquifer

	elevate-mental

	elevate-physical

	embark-skills

	emigration

	exportlegends

	exterminate

	feature

	fix-ster

	fixnaked

	force

	forum-dwarves

	full-heal

	gaydar

	growcrops

	hfs-pit

	hotkey-notes

	install-info

	item-descriptions

	launch

	lever

	load-save

	locate-ore

	lua

	make-legendary

	make-monarch

	markdown

	masspit

	migrants-now

	multicmd

	names

	open-legends

	points

	position

	pref-adjust

	prefchange

	putontable

	quicksave

	region-pops

	rejuvenate

	remove-stress

	remove-wear

	repeat

	season-palette

	setfps

	show-unit-syndromes

	siren

	source

	spawnunit

	startdwarf

	starvingdead

	stripcaged

	superdwarf

	teleport

	tidlers

	troubleshoot-item

	twaterlvl

	undump-buildings

	unforbid

	unsuspend

	view-item-info

	warn-starving

	weather

	Development Scripts
	devel/all-bob

	devel/annc-monitor

	devel/check-release

	devel/clear-script-env

	devel/click-monitor

	devel/cmptiles

	devel/export-dt-ini

	devel/find-offsets

	devel/inject-raws

	devel/inspect-screen

	devel/light

	devel/list-filters

	devel/lsmem

	devel/lua-example

	devel/modstate-monitor

	devel/nuke-items

	devel/pop-screen

	devel/prepare-save

	devel/print-args

	devel/print-args2

	devel/save-version

	devel/scanitemother

	devel/send-key

	devel/spawn-unit-helper

	devel/test-perlin

	devel/unforbidall

	devel/unit-path

	devel/watch-minecarts

	Bugfixing Scripts
	fix/blood-del

	fix/build-location

	fix/dead-units

	fix/diplomats

	fix/dry-buckets

	fix/fat-dwarves

	fix/feeding-timers

	fix/item-occupancy

	fix/loyaltycascade

	fix/merchants

	fix/population-cap

	fix/stable-temp

	fix/stuckdoors

	fix/tile-occupancy

	GUI Scripts
	gui/advfort

	gui/advfort_items

	gui/assign-rack

	gui/autobutcher

	gui/choose-weapons

	gui/clone-uniform

	gui/companion-order

	gui/confirm-opts

	gui/create-item

	gui/dfstatus

	gui/extended-status

	gui/family-affairs

	gui/gm-editor

	gui/gm-unit

	gui/guide-path

	gui/hack-wish

	gui/hello-world

	gui/liquids

	gui/load-screen

	gui/manager-quantity

	gui/mechanisms

	gui/mod-manager

	gui/no-dfhack-init

	gui/power-meter

	gui/prerelease-warning

	gui/quickcmd

	gui/rename

	gui/room-list

	gui/settings-manager

	gui/siege-engine

	gui/stockpiles

	gui/unit-info-viewer

	gui/workflow

	gui/workshop-job

	Scripts for Modders
	modtools/add-syndrome

	modtools/anonymous-script

	modtools/change-build-menu

	modtools/create-item

	modtools/create-unit

	modtools/equip-item

	modtools/extra-gamelog

	modtools/force

	modtools/if-entity

	modtools/interaction-trigger

	modtools/invader-item-destroyer

	modtools/item-trigger

	modtools/moddable-gods

	modtools/outside-only

	modtools/projectile-trigger

	modtools/random-trigger

	modtools/raw-lint

	modtools/reaction-product-trigger

	modtools/reaction-trigger

	modtools/reaction-trigger-transition

	modtools/skill-change

	modtools/spawn-flow

	modtools/syndrome-trigger

	modtools/transform-unit

Basic Scripts

Basic scripts are not stored in any subdirectory, and can be invoked directly.
They are generally useful tools for any player.

Contents

	Basic Scripts
	adaptation

	add-thought

	adv-max-skills

	adv-rumors

	armoks-blessing

	autofarm

	autolabor-artisans

	autounsuspend

	ban-cooking

	binpatch

	brainwash

	burial

	catsplosion

	colonies

	combine-drinks

	combine-plants

	create-items

	deathcause

	deteriorateclothes

	deterioratecorpses

	deterioratefood

	digfort

	drain-aquifer

	elevate-mental

	elevate-physical

	embark-skills

	emigration

	exportlegends

	exterminate

	feature

	fix-ster

	fixnaked

	force

	forum-dwarves

	full-heal

	gaydar

	growcrops

	hfs-pit

	hotkey-notes

	install-info

	item-descriptions

	launch

	lever

	load-save

	locate-ore

	lua

	make-legendary

	make-monarch

	markdown

	masspit

	migrants-now

	multicmd

	names

	open-legends

	points

	position

	pref-adjust

	prefchange

	putontable

	quicksave

	region-pops

	rejuvenate

	remove-stress

	remove-wear

	repeat

	season-palette

	setfps

	show-unit-syndromes

	siren

	source

	spawnunit

	startdwarf

	starvingdead

	stripcaged

	superdwarf

	teleport

	tidlers

	troubleshoot-item

	twaterlvl

	undump-buildings

	unforbid

	unsuspend

	view-item-info

	warn-starving

	weather

adaptation

View or set level of cavern adaptation for the selected unit or the whole fort.
Usage: adaptation <show|set> <him|all> [value]. The value must be
between 0 and 800,000 inclusive.

add-thought

Adds a thought or emotion to the selected unit. Can be used by other scripts,
or the gui invoked by running add-thought gui with a unit selected.

adv-max-skills

When creating an adventurer, raises all changeable skills and
attributes to their maximum level.

adv-rumors

Improves the “Bring up specific incident or rumor” menu in Adventure mode.

armoks-blessing

Runs the equivalent of rejuvenate, elevate-physical, elevate-mental, and
brainwash on all dwarves currently on the map. This is an extreme change,
which sets every stat to an ideal - legendary skills, great traits, and
easy-to-satisfy preferences.

Without arguments, all attributes, age & personalities are adjusted.
Arguments allow for skills to be adjusted as well.

autofarm

Automatically handle crop selection in farm plots based on current plant stocks.
Selects a crop for planting if current stock is below a threshold.
Selected crops are dispatched on all farmplots.

Usage:

autofarm start
autofarm default 30
autofarm threshold 150 helmet_plump tail_pig

autolabor-artisans

Runs an autolabor command, for all labors where skill level
influences output quality. Examples:

autolabor-artisans 0 2 3
autolabor-artisans disable

autounsuspend

Automatically unsuspend jobs in workshops, on a recurring basis.
See unsuspend for one-off use, or resume all.

ban-cooking

A more convenient way to ban cooking various categories of foods than the
kitchen interface. Usage: ban-cooking <type>. Valid types are booze,
honey, tallow, oil, seeds (non-tree plants with seeds),
brew, fruit, mill, thread, and milk.

binpatch

Implements functions for in-memory binpatches. See Patching the DF binary.

brainwash

Modify the personality traits of the selected dwarf to match an idealised
personality - for example, as stable and reliable as possible to prevent
tantrums even after months of misery.

Usage: brainwash <type>, with one of the following types:

	ideal:	reliable, with generally positive personality traits

	baseline:	reset all personality traits to the average

	stepford:	amplifies all good qualities to an excessive degree

	wrecked:	amplifies all bad qualities to an excessive degree

burial

Sets all unowned coffins to allow burial. burial -pets also allows burial
of pets.

catsplosion

Makes cats (and other animals) just multiply. It is not a good idea to run this
more than once or twice.

Usage:

	catsplosion:	Make all cats pregnant

	catsplosion list:

	 	List IDs of all animals on the map

	catsplosion ID ...:

	 	Make animals with given ID(s) pregnant

Animals will give birth within two in-game hours (100 ticks or fewer).

colonies

List vermin colonies, place honey bees, or convert all vermin
to honey bees. Usage:

	colonies:	List all vermin colonies on the map.

	colonies place:	Place a honey bee colony under the cursor.

	colonies convert:

	 	Convert all existing colonies to honey bees.

The place and convert subcommands by default create or
convert to honey bees, as this is the most commonly useful.
However both accept an optional flag to use a different vermin
type, for example colonies place ANT creates an ant colony
and colonies convert TERMITE ends your beekeeping industry.

combine-drinks

Merge stacks of drinks in the selected stockpile.

combine-plants

Merge stacks of plants or plant growths in the selected container or stockpile.

create-items

Spawn items under the cursor, to get your fortress started.

The first argument gives the item category, the second gives the material,
and the optionnal third gives the number of items to create (defaults to 20).

Currently supported item categories: boulder, bar, plant, log,
web.

Instead of material, using list makes the script list eligible materials.

The web item category will create an uncollected cobweb on the floor.

Note that the script does not enforce anything, and will let you create
boulders of toad blood and stuff like that.
However the list mode will only show ‘normal’ materials.

Examples:

create-items boulders COAL_BITUMINOUS 12
create-items plant tail_pig
create-items log list
create-items web CREATURE:SPIDER_CAVE_GIANT:SILK
create-items bar CREATURE:CAT:SOAP
create-items bar adamantine

deathcause

Select a body part ingame, or a unit from the u unit list, and this
script will display the cause of death of the creature.

deteriorateclothes

Somewhere between a “mod” and a “fps booster”, with a small impact on
vanilla gameplay. All of those slightly worn wool shoes that dwarves
scatter all over the place will deteriorate at a greatly increased rate,
and eventually just crumble into nothing. As warm and fuzzy as a dining
room full of used socks makes your dwarves feel, your FPS does not like it.

Usage: deteriorateclothes (start|stop)

deterioratecorpses

Somewhere between a “mod” and a “fps booster”, with a small impact on
vanilla gameplay.

In long running forts, especially evil biomes, you end up with a lot
of toes, teeth, fingers, and limbs scattered all over the place.
Various corpses from various sieges, stray kitten corpses, probably
some heads. Basically, your map will look like a giant pile of
assorted body parts, all of which individually eat up a small part
of your FPS, which collectively eat up quite a bit.

In addition, this script also targets various butchery byproducts.
Enjoying your thriving animal industry? Your FPS does not. Those
thousands of skulls, bones, hooves, and wool eat up precious FPS
that could be used to kill goblins and elves. Whose corpses will
also get destroyed by the script to kill more goblins and elves.

This script causes all of those to rot away into nothing after
several months.

Usage: deterioratecorpses (start|stop)

deterioratefood

Somewhere between a “mod” and a “fps booster”, with a small impact on
vanilla gameplay.

With this script running, all food and plants wear out and disappear
after several months. Barrels and stockpiles will keep them from
rotting, but it won’t keep them from decaying. No more sitting on a
hundred years worth of food. No more keeping barrels of pig tails
sitting around until you decide to use them. Either use it, eat it,
or lose it. Seeds, are excluded from this, if you aren’t planning on
using your pig tails, hold onto the seeds for a rainy day.

This script is...pretty far reaching. However, almost all long
running forts I’ve had end up sitting on thousands and thousands of
food items. Several thousand cooked meals, three thousand plump
helmets, just as many fish and meat. It gets pretty absurd. And your
FPS doesn’t like it.

Usage: deterioratefood (start|stop)

digfort

A script to designate an area for digging according to a plan in csv format.

This script, inspired from quickfort, can designate an area for digging.
Your plan should be stored in a .csv file like this:

this is a comment
d;d;u;d;d;skip this tile;d
d;d;d;i

Available tile shapes are named after the ‘dig’ menu shortcuts:
d for dig, u for upstairs, j downstairs, i updown,
h channel, r upward ramp, x remove designation.
Unrecognized characters are ignored (eg the ‘skip this tile’ in the sample).

Empty lines and data after a # are ignored as comments.
To skip a row in your design, use a single ;.

One comment in the file may contain the phrase start(3,5). It is interpreted
as an offset for the pattern: instead of starting at the cursor, it will start
3 tiles left and 5 tiles up from the cursor.

The script takes the plan filename, starting from the root df folder (where
Dwarf Fortress.exe is found).

drain-aquifer

Remove all ‘aquifer’ tags from the map blocks. Irreversible.

elevate-mental

Set all mental attributes of the selected dwarf to the maximum possible, or
any number numbers between 0 and 5000 passed as an argument:
elevate-mental 100 for example would make the dwarf very stupid indeed.

elevate-physical

Set all physical attributes of the selected dwarf to the maximum possible, or
any number numbers between 0 and 5000 passed as an argument. Higher is
usually better, but an ineffective hammerer can be useful too...

embark-skills

Adjusts dwarves’ skills when embarking.

Note that already-used skill points are not taken into account or reset.

	points N:	Sets the skill points remaining of the selected dwarf to N.

	points N all:	Sets the skill points remaining of all dwarves to N.

	max:	Sets all skills of the selected dwarf to “Proficient”.

	max all:	Sets all skills of all dwarves to “Proficient”.

	legendary:	Sets all skills of the selected dwarf to “Legendary”.

	legendary all:	Sets all skills of all dwarves to “Legendary”.

emigration

Allows dwarves to emigrate from the fortress when stressed,
in proportion to how badly stressed they are and adjusted
for who they would have to leave with - a dwarven merchant
being more attractive than leaving alone (or with an elf).
The check is made monthly.

A happy dwarf (ie with negative stress) will never emigrate.

Usage: emigration enable|disable

exportlegends

Controls legends mode to export data - especially useful to set-and-forget large
worlds, or when you want a map of every site when there are several hundred.

The ‘info’ option exports more data than is possible in vanilla, to a
region-date-legends_plus.xml file developed to extend
World Viewer [http://www.bay12forums.com/smf/index.php?topic=128932] and other legends utilities.

Options:

	info:	Exports the world/gen info, the legends XML, and a custom XML with more information

	custom:	Exports a custom XML with more information

	sites:	Exports all available site maps

	maps:	Exports all seventeen detailed maps

	all:	Equivalent to calling all of the above, in that order

Keybinding: CtrlA -> "exportlegends all" in legends

exterminate

Kills any unit of a given race.

With no argument, lists the available races and count eligible targets.

With the special argument him, targets only the selected creature.

With the special argument undead, targets all undeads on the map,
regardless of their race.

When specifying a race, a caste can be specified to further restrict the
targeting. To do that, append and colon and the caste name after the race.

Any non-dead non-caged unit of the specified race gets its blood_count
set to 0, which means immediate death at the next game tick. For creatures
such as vampires, it also sets animal.vanish_countdown to 2.

An alternate mode is selected by adding a 2nd argument to the command,
magma. In this case, a column of 7/7 magma is generated on top of the
targets until they die (Warning: do not call on magma-safe creatures. Also,
using this mode on birds is not recommended.) The final alternate mode
is butcher, which marks them for butchering but does not kill.

Will target any unit on a revealed tile of the map, including ambushers,
but ignore caged/chained creatures.

Ex:

exterminate gob
exterminate gob:male

To kill a single creature, select the unit with the ‘v’ cursor and:

exterminate him

To purify all elves on the map with fire (may have side-effects):

exterminate elve magma

feature

Enables management of map features.

	Discovering a magma feature (magma pool, volcano, magma sea, or curious
underground structure) permits magma workshops and furnaces to be built.

	Discovering a cavern layer causes plants (trees, shrubs, and grass) from
that cavern to grow within your fortress.

Options:

	list:	Lists all map features in your current embark by index.

	magma:	Enable magma furnaces (discovers a random magma feature).

	show X:	Marks the selected map feature as discovered.

	hide X:	Marks the selected map feature as undiscovered.

fix-ster

Utilizes the orientation tag to either fix infertile creatures or inflict
infertility on creatures that you do not want to breed. Usage:

fix-ster [fert|ster] [all|animals|only:<creature>]

fert or ster is a required argument; whether to make the target fertile
or sterile. Optional arguments specify the target: no argument for the
selected unit, all for all units on the map, animals for all non-dwarf
creatures, or only:<creature> to only process matching creatures.

fixnaked

Removes all unhappy thoughts due to lack of clothing.

force

A simpler wrapper around the modtools/force script.

Usage:

	force event_type

	force event_type civ_id - civ ID required for Diplomat and Caravan
events

See modtools/force for a complete list of event types.

forum-dwarves

Saves a copy of a text screen, formatted in bbcode for posting to the
Bay12 Forums. See markdown to export for Reddit etc.

This script will attempt to read the current df-screen, and if it is a
text-viewscreen (such as the dwarf ‘thoughts’ screen or an item
‘description’) then append a marked-up version of this text to the
target file. Previous entries in the file are not overwritten, so you
may use the ‘forumdwarves’ command multiple times to create a single
document containing the text from multiple screens (eg: text screens
from several dwarves, or text screens from multiple artifacts/items,
or some combination).

The screens which have been tested and known to function properly with
this script are:

	dwarf/unit ‘thoughts’ screen

	item/art ‘description’ screen

	individual ‘historical item/figure’ screens

There may be other screens to which the script applies. It should be
safe to attempt running the script with any screen active, with an
error message to inform you when the selected screen is not appropriate
for this script.

The target file’s name is ‘forumdwarves.txt’. A reminder to this effect
will be displayed if the script is successful.

Note

The text will be encoded in CP437, which is likely to be incompatible
with the system default. This causes incorrect display of special
characters (eg. é õ ç = é õ ç). You can fix this by
opening the file in an editor such as Notepad++ and selecting the
correct encoding before using the text.

Keybinding: CtrlShiftF in dwarfmode

full-heal

Attempts to fully heal the selected unit from anything, optionally
including death. Usage:

	full-heal:	Completely heal the currently selected unit.

	full-heal -unit [unitId]:

	 	Apply command to the unit with the given ID, instead of selected unit.

	full-heal -r [-keep_corpse]:

	 	Heal the unit, raising from the dead if needed.
Add -keep_corpse to avoid removing their corpse.

For example, full-heal -r -keep_corpse -unit ID_NUM will fully heal
unit ID_NUM. If this unit was dead, it will be resurrected without deleting
the corpse - creepy!

gaydar

Shows the sexual orientation of units, useful for social engineering or checking
the viability of livestock breeding programs.

Targets:

	-all:	shows orientation of every creature

	-citizens:	shows only orientation of citizens in fort mode

	-named:	shows orientation of all named units on map

	(no target):	shows orientation of the unit under the cursor

Orientation filters:

	-notStraight:	only creatures who are not strictly straight

	-gayOnly:	only creatures who are strictly gay

	-biOnly:	only creatures who can get into romances with both sexes

	-straightOnly:	only creatures who are strictly straight

	-asexualOnly:	only creatures who are strictly asexual

growcrops

Instantly grow seeds inside farming plots.

With no argument, this command list the various seed types currently in
use in your farming plots. With a seed type, the script will grow 100 of
these seeds, ready to be harvested. Set the number with a 2nd argument.

For example, to grow 40 plump helmet spawn:

growcrops plump 40

hfs-pit

Creates a pit to the underworld at the cursor, taking three numbers as
arguments. Usage: hfs-pit <size> <walls> <stairs>

The first argument is size of the (square) pit in all directions. The second
is 1 to wall off the sides of the pit on all layers except the underworld,
or anything else to leave them open. The third parameter is 1 to add stairs.
Stairs are buggy; they will not reveal the bottom until you dig somewhere,
but underworld creatures will path in.

Examples:

hfs-pit 1 0 0
 A single-tile wide pit with no walls or stairs.
 This is the default if no numbers are given.

hfs-pit 4 0 1
 A four-across pit with no stairs but adding walls.

hfs-pit 2 1 0
 A two-across pit with stairs but no walls.

hotkey-notes

Lists the key, name, and jump position of your hotkeys in the DFHack console.

install-info

Saves information about the current DFHack installation to install-info.txt
in the current DF folder. Useful for bug reports.

item-descriptions

Exports a table with custom description text for every item in the game.
Used by view-item-info; see instructions there for how to override
for mods.

launch

Activate with a cursor on screen and you will go there rapidly. Attack
something first to send them there.

lever

Allow manipulation of in-game levers from the dfhack console.

Can list levers, including state and links, with:

lever list

To queue a job so that a dwarf will pull the lever 42, use lever pull 42.
This is the same as q querying the building and queue a P pull request.

To magically toggle the lever immediately, use:

lever pull 42 --now

load-save

When run on the title screen or “load game” screen, loads the save with the
given folder name without requiring interaction.

Example: load-save region

This can also be run when starting DFHack from the command line:

./dfhack +load-game region1

(This is currently untested on Windows)

locate-ore

Scan the map for metal ores.

Finds and designate for digging one tile of a specific metal ore.
Only works for native metal ores, does not handle reaction stuff (eg STEEL).

When invoked with the list argument, lists metal ores available on the map.

Examples:

locate-ore list
locate-ore hematite
locate-ore iron

lua

There are the following ways to invoke this command:

	lua (without any parameters)

This starts an interactive lua interpreter.

	lua -f "filename" or lua --file "filename"

This loads and runs the file indicated by filename.

	lua -s ["filename"] or lua --save ["filename"]

This loads and runs the file indicated by filename from the save
directory. If the filename is not supplied, it loads “dfhack.lua”.

	:lua lua statement...

Parses and executes the lua statement like the interactive interpreter would.

make-legendary

Makes the selected dwarf legendary in one skill, a group of skills, or all
skills. View groups with make-legendary classes, or all skills with
make-legendary list. Use make-legendary MINING when you need something
dug up, or make-legendary all when only perfection will do.

make-monarch

Make the selected unit King or Queen of your civilisation.

markdown

Save a copy of a text screen in markdown (for reddit among others).
See forum-dwarves for BBCode export (for eg. the Bay12 Forums).

This script will attempt to read the current df-screen, and if it is a
text-viewscreen (such as the dwarf ‘thoughts’ screen or an item / creature
‘description’) or an announcement list screen (such as announcements and
combat reports) then append a marked-down version of this text to the
target file (for easy pasting on reddit for example).
Previous entries in the file are not overwritten, so you
may use the``markdown`` command multiple times to create a single
document containing the text from multiple screens (eg: text screens
from several dwarves, or text screens from multiple artifacts/items,
or some combination).

Usage: markdown [/n] [filename]

	/n:	overwrites contents of output file

	filename:	if provided, save to md_filename.md instead
of the default md_export.md

The screens which have been tested and known to function properly with
this script are:

	dwarf/unit ‘thoughts’ screen

	item/art ‘description’ screen

	individual ‘historical item/figure’ screens

	manual

	announements screen

	combat reports screen

	latest news (when meeting with liaison)

There may be other screens to which the script applies. It should be
safe to attempt running the script with any screen active, with an
error message to inform you when the selected screen is not appropriate
for this script.

Note

The text will be encoded in CP437, which is likely to be incompatible
with the system default. This causes incorrect display of special
characters (eg. é õ ç = é õ ç). You can fix this by
opening the file in an editor such as Notepad++ and selecting the
correct encoding before using the text.

masspit

Designate all creatures in cages on top of a pit/pond activity zone for pitting.
Works best with an animal stockpile on top of the zone.

Works with a zone number as argument (eg Activity Zone #6 -> masspit 6)
or with the game cursor on top of the area.

migrants-now

Forces an immediate migrant wave. Only works after migrants have
arrived naturally. Equivalent to modtools/force -eventType migrants

multicmd

Run multiple dfhack commands. The argument is split around the
character ; and all parts are run sequentially as independent
dfhack commands. Useful for hotkeys.

Example:

multicmd locate-ore IRON ; digv ; digcircle 16

names

Rename units or items. Usage:

	-help:	print this help message

	-item:	if viewing an item

	-unit:	if viewing a unit

	-first [Somename | “Some Names like This”:

	 	if a first name is desired, leave blank to clear current first name

open-legends

Open a legends screen when in fortress mode.
Compatible with exportlegends.

points

Sets available points at the embark screen to the specified number. Eg.
points 1000000 would allow you to buy everything, or points 0 would
make life quite difficult.

position

Reports the current time: date, clock time, month, and season. Also reports
location: z-level, cursor position, window size, and mouse location.

pref-adjust

A two-stage script: pref-adjust clear removes preferences from all dwarves,
and pref-adjust inserts an ‘ideal’ set which is easy to satisfy:

Feb Idashzefon likes wild strawberries for their vivid red color,
fisher berries for their round shape, prickle berries for their
precise thorns, plump helmets for their rounded tops, prepared meals,
plants, drinks, doors, thrones, tables and beds. When possible, she
prefers to consume wild strawberries, fisher berries, prickle
berries, plump helmets, strawberry wine, fisher berry wine, prickle
berry wine, and dwarven wine.

prefchange

Sets preferences for mooding to include a weapon type, equipment type,
and material. If you also wish to trigger a mood, see
strangemood.

Valid options:

	show:	show preferences of all units

	c:	clear preferences of selected unit

	all:	clear preferences of all units

	axp:	likes axes, breastplates, and steel

	has:	likes hammers, mail shirts, and steel

	swb:	likes short swords, high boots, and steel

	spb:	likes spears, high boots, and steel

	mas:	likes maces, shields, and steel

	xbh:	likes crossbows, helms, and steel

	pig:	likes picks, gauntlets, and steel

	log:	likes long swords, gauntlets, and steel

	dap:	likes daggers, greaves, and steel

Feel free to adjust the values as you see fit, change the has steel to
platinum, change the axp axes to great axes, whatnot.

putontable

Makes item appear on the table, like in adventure mode shops.
Arguments: -a or --all for all items.

quicksave

If called in dwarf mode, makes DF immediately saves the game by setting a flag
normally used in seasonal auto-save.

Keybinding: CtrlAltS in dwarfmode/Default

region-pops

Show or modify the populations of animals in the region.

Usage:

	region-pops list [pattern]:

	 	Lists encountered populations of the region, possibly restricted by pattern.

	region-pops list-all [pattern]:

	 	Lists all populations of the region.

	region-pops boost <TOKEN> <factor>:

	 	Multiply all populations of TOKEN by factor.
If the factor is greater than one, increases the
population, otherwise decreases it.

	region-pops boost-all <pattern> <factor>:

	 	Same as above, but match using a pattern acceptable to list.

	region-pops incr <TOKEN> <factor>:

	 	Augment (or diminish) all populations of TOKEN by factor (additive).

	region-pops incr-all <pattern> <factor>:

	 	Same as above, but match using a pattern acceptable to list.

rejuvenate

Set the age of the selected dwarf to 20 years. Useful if valuable citizens are
getting old, or there are too many babies around...

remove-stress

Sets stress to -1,000,000; the normal range is 0 to 500,000 with very stable or
very stressed dwarves taking on negative or greater values respectively.
Applies to the selected unit, or use remove-stress -all to apply to all units.

remove-wear

Sets the wear on items in your fort to zero. Usage:

	remove-wear all:

	 	Removes wear from all items in your fort.

	remove-wear ID1 ID2 ...:

	 	Removes wear from items with the given ID numbers.

repeat

Repeatedly calls a lua script at the specified interval. This allows
neat background changes to the function of the game, especially when
invoked from an init file.

Usage examples:

repeat -name jim -time delay -timeUnits units -command [printArgs 3 1 2]
repeat -time 1 -timeUnits months -command [multicmd cleanowned scattered x; clean all] -name clean

The first example is abstract; the second will regularly remove all contaminants
and worn items from the game.

Arguments:

	-name

	sets the name for the purposes of cancelling and making sure you
don’t schedule the same repeating event twice. If not specified,
it’s set to the first argument after -command.

	-time DELAY -timeUnits UNITS

	DELAY is some positive integer, and UNITS is some valid time
unit for dfhack.timeout (default “ticks”). Units can be
in simulation-time “frames” (raw FPS) or “ticks” (only while
unpaused), while “days”, “months”, and “years” are by in-world time.

	-command [...]

	... specifies the command to be run

	-cancel NAME

	cancels the repetition with the name NAME

season-palette

Swap color palettes when the seasons change.

For this script to work you need to add at least one color palette file to
your save raw directory.

	Palette file names:

	“colors.txt”: The world “default” (worldgen and replacement) palette.
“colors_spring.txt”: The palette displayed during spring.
“colors_summer.txt”: The palette displayed during summer.
“colors_autumn.txt”: The palette displayed during autumn.
“colors_winter.txt”: The palette displayed during winter.

If you do not provide a world default palette, palette switching will be
disabled for the current world. The seasonal palettes are optional, the default
palette is not! The default palette will be used to replace any missing
seasonal palettes and during worldgen.

When the world is unloaded or this script is disabled, the system default color
palette (“/data/init/colors.txt”) will be loaded. The system default palette
will always be used in the main menu, but your custom palettes should be used
everywhere else.

Usage:

	season-palette start|enable or enable season-palette:

	Begin swapping seasonal color palettes.

	season-palette stop|disable or disable season-palette:

	Stop swapping seasonal color palettes and load the default color
palette.

If loaded as a module this script will export a single Lua function:

	LoadPalette(path):

	Load a color palette from the text file at “path”. This file must be in
the same format as “/data/init/colors.txt”. If there is an error any
changes will be reverted and this function will return false (returns
true normally).

setfps

Run setfps <number> to set the FPS cap at runtime, in case you want to watch
combat in slow motion or something.

show-unit-syndromes

Show syndromes affecting units and the remaining and maximum duration, along
with (optionally) substantial detail on the effects.

Use one or more of the following options:

	help:	Show the help message

	showall:	Show units even if not affected by any syndrome

	showeffects:	Show detailed effects of each syndrome

	showdisplayeffects:

	 	Show effects that only change the look of the unit

	selected:	Show selected unit

	dwarves:	Show dwarves

	livestock:	Show livestock

	wildanimals:	Show wild animals

	hostile:	Show hostiles (e.g. invaders, thieves, forgotten beasts etc)

	world:	Show all defined syndromes in the world

	export:	export:<filename> sends output to the given file, showing all
syndromes affecting each unit with the maximum and present duration.

siren

Wakes up sleeping units, cancels breaks and stops parties either everywhere,
or in the burrows given as arguments. In return, adds bad thoughts about
noise, tiredness and lack of protection. Also, the units with interrupted
breaks will go on break again a lot sooner. The script is intended for
emergencies, e.g. when a siege appears, and all your military is partying.

source

Create an infinite magma or water source or drain on a tile.
For more complex commands, try the liquids plugin.

This script registers a map tile as a liquid source, and every 12 game ticks
that tile receives or remove 1 new unit of flow based on the configuration.

Place the game cursor where you want to create the source (must be a
flow-passable tile, and not too high in the sky) and call:

source add [magma|water] [0-7]

The number argument is the target liquid level (0 = drain, 7 = source).

To add more than 1 unit everytime, call the command again on the same spot.

To delete one source, place the cursor over its tile and use source delete.
To remove all existing sources, call source clear.

The list argument shows all existing sources.

Examples:

source add water - water source
source add magma 7 - magma source
source add water 0 - water drain

spawnunit

Provides a simpler interface to modtools/create-unit, for creating units.

Usage: spawnunit [-command] RACE CASTE [NAME] [x y z] [...]

The -command flag prints the generated modtools/create-unit command
instead of running it. RACE and CASTE specify the race and caste
of the unit to be created. The name and coordinates of the unit are optional.
Any further arguments are simply passed on to modtools/create-unit.

startdwarf

Use at the embark screen to embark with the specified number of dwarves. Eg.
startdwarf 500 would lead to a severe food shortage and FPS issues, while
startdwarf 10 would just allow a few more warm bodies to dig in.
The number must be 7 or greater.

starvingdead

Somewhere between a “mod” and a “fps booster”, with a small impact on
vanilla gameplay. It mostly helps prevent undead cascades in the caverns,
where constant combat leads to hundreds of undead roaming the
caverns and destroying your FPS.

With this script running, all undead that have been on the map for
one month gradually decay, losing strength, speed, and toughness.
After six months, they collapse upon themselves, never to be reanimated.

Usage: starvingdead (start|stop)

stripcaged

For dumping items inside cages. Will mark selected items for dumping, then
a dwarf may come and actually dump them (or you can use autodump).

Arguments:

	list:	display the list of all cages and their item content on the console

	items:	dump items in the cage, excluding stuff worn by caged creatures

	weapons:	dump equipped weapons

	armor:	dump everything worn by caged creatures (including armor and clothing)

	all:	dump everything in the cage, on a creature or not

Without further arguments, all commands work on all cages and animal traps on
the map. With the here argument, considers only the in-game selected cage
(or the cage under the game cursor). To target only specific cages, you can
alternatively pass cage IDs as arguments:

stripcaged weapons 25321 34228

superdwarf

Similar to fastdwarf, per-creature.

To make any creature superfast, target it ingame using ‘v’ and:

superdwarf add

Other options available: del, clear, list.

This script also shortens the ‘sleeping’ and ‘on break’ periods of targets.

teleport

Teleports a unit to given coordinates. Examples:

	teleport -showunitid:

	 	prints ID of unit beneath cursor

	teleport -showpos:

	 	prints coordinates beneath cursor

	teleport -unit 1234 -x 56 -y 115 -z 26:

	 	teleports unit 1234 to 56,115,26

tidlers

Toggle between all possible positions where the idlers count can be placed.

troubleshoot-item

Print various properties of the selected item.

twaterlvl

Toggle between displaying/not displaying liquid depth as numbers.

Keybinding: CtrlW

undump-buildings

Undesignates building base materials for dumping.

unforbid

unforbid all

Options available: all, `help`

unsuspend

Unsuspend jobs in workshops, on a one-off basis. See autounsuspend
for regular use.

view-item-info

A script to extend the item or unit viewscreen with additional information
including a custom description of each item (when available), and properties
such as material statistics, weapon attacks, armor effectiveness, and more.

The associated script item-descriptions.lua supplies custom descriptions
of items. Individual descriptions can be added or overridden by a similar
script raw/scripts/more-item-descriptions.lua. Both work as sparse lists,
so missing items simply go undescribed if not defined in the fallback.

warn-starving

If any (live) units are starving, very thirsty, or very drowsy, the game will
be paused and a warning shown and logged to the console. Use with the
repeat command for regular checks.

Use warn-starving all to display a list of all problematic units.

weather

Prints a map of the local weather, or with arguments clear,
rain, and snow changes the weather.

Development Scripts

devel/* scripts are intended for developer use, but many may
be of interest to anyone investigating odd phenomema or just messing
around. They are documented to encourage such inquiry.

Some can PERMANENTLY DAMAGE YOUR SAVE if misused, so please be careful.
The warnings are real; if in doubt make backups before running the command.

Contents

	Development Scripts
	devel/all-bob

	devel/annc-monitor

	devel/check-release

	devel/clear-script-env

	devel/click-monitor

	devel/cmptiles

	devel/export-dt-ini

	devel/find-offsets

	devel/inject-raws

	devel/inspect-screen

	devel/light

	devel/list-filters

	devel/lsmem

	devel/lua-example

	devel/modstate-monitor

	devel/nuke-items

	devel/pop-screen

	devel/prepare-save

	devel/print-args

	devel/print-args2

	devel/save-version

	devel/scanitemother

	devel/send-key

	devel/spawn-unit-helper

	devel/test-perlin

	devel/unforbidall

	devel/unit-path

	devel/watch-minecarts

devel/all-bob

Changes the first name of all units to “Bob”.
Useful for testing modtools/interaction-trigger events.

devel/annc-monitor

Displays announcements and reports in the console.

	enable|start:	Begins monitoring

	disable|stop:	Stops monitoring

	interval X:	Sets the delay between checks for
new announcements to X frames

devel/check-release

Basic checks for release readiness

devel/clear-script-env

Clears the environment of the specified lua script(s).

devel/click-monitor

Displays the grid coordinates of mouse clicks in the console.
Useful for plugin/script development.

Usage: devel/click-monitor start|stop

devel/cmptiles

Lists and/or compares two tiletype material groups.

Usage: devel/cmptiles material1 [material2]

devel/export-dt-ini

Exports an ini file containing memory addresses for Dwarf Therapist.

devel/find-offsets

WARNING: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

Running this script on a new DF version will NOT
MAKE IT RUN CORRECTLY if any data structures
changed, thus possibly leading to CRASHES AND/OR
PERMANENT SAVE CORRUPTION.

Finding the first few globals requires this script to be
started immediately after loading the game, WITHOUT
first loading a world. The rest expect a loaded save,
not a fresh embark. Finding current_weather requires
a special save previously processed with devel/prepare-save
on a DF version with working dfhack.

The script expects vanilla game configuration, without
any custom tilesets or init file changes. Never unpause
the game unless instructed. When done, quit the game
without saving using ‘die’.

Arguments:

	global names to force finding them

	all to force all globals

	nofeed to block automated fake input searches

	nozoom to disable neighboring object heuristics

devel/inject-raws

WARNING: THIS SCRIPT CAN PERMANENLY DAMAGE YOUR SAVE.

This script attempts to inject new raw objects into your
world. If the injected references do not match the actual
edited raws, your save will refuse to load, or load but crash.

This script can handle reaction, item and building definitions.

The savegame contains a list of the relevant definition tokens in
the right order, but all details are read from raws every time.
This allows just adding stub definitions, and simply saving and
reloading the game.

This is useful enough for modders and some users to justify the danger.

Usage example:

devel/inject-raws trapcomp ITEM_TRAPCOMP_STEAM_PISTON workshop STEAM_ENGINE MAGMA_STEAM_ENGINE reaction STOKE_BOILER

devel/inspect-screen

Read the tiles from the screen and display info about them.

devel/light

An experimental lighting engine for DF, using the rendermax plugin.

Call devel/light static to not recalculate lighting when in game.
Press ~ to recalculate lighting. Press ` to exit.

devel/list-filters

List input items for the building currently being built.
This is where the filters in lua/dfhack/buildings.lua come from.

devel/lsmem

Prints memory ranges of the process.

devel/lua-example

An example lua script, which reports the number of times it has
been called. Useful for testing environment persistence.

devel/modstate-monitor

Display changes in key modifier state, ie Ctrl/Alt/Shift.

	enable|start:	Begin monitoring

	disable|stop:	End monitoring

devel/nuke-items

Deletes ALL items not held by units, buildings or jobs.
Intended solely for lag investigation.

devel/pop-screen

For killing bugged out gui script screens.

devel/prepare-save

WARNING: THIS SCRIPT IS STRICTLY FOR DFHACK DEVELOPERS.

This script prepares the current savegame to be used
with devel/find-offsets. It CHANGES THE GAME STATE
to predefined values, and initiates an immediate
quicksave, thus PERMANENTLY MODIFYING the save.

devel/print-args

Prints all the arguments you supply to the script on their own line.
Useful for debugging other scripts.

devel/print-args2

Prints all the arguments you supply to the script on their own line
with quotes around them.

devel/save-version

Display DF version information about the current save

devel/scanitemother

List indices in world.item.other[] where current selected item appears.

devel/send-key

Send a key to the current screen or a parent

Usage:

	devel/send-key KEY_NAME:

	 	Send KEY_NAME

	devel/send-key KEY_NAME X:

	 	Send KEY_NAME to the screen X screens above
the current screen

devel/spawn-unit-helper

Setup stuff to allow arena creature spawn after a mode change.

With Arena spawn data initialized:

	enter the k menu and change mode using
rb_eval df.gametype = :DWARF_ARENA

	spawn creatures (c ingame)

	revert to game mode using rb_eval df.gametype = #{df.gametype.inspect}

	To convert spawned creatures to livestock, select each one with
the v menu, and enter rb_eval df.unit_find.civ_id = df.ui.civ_id

devel/test-perlin

Generates an image using multiple octaves of perlin noise.

devel/unforbidall

Unforbid all items.

devel/unit-path

Show the internal path a unit is currently following.

devel/watch-minecarts

Logs minecart coordinates and speeds to console.

Usage: devel/watch-minecarts start|stop

Bugfixing Scripts

fix/* scripts fix various bugs and issues, some of them obscure.

Contents

	Bugfixing Scripts
	fix/blood-del

	fix/build-location

	fix/dead-units

	fix/diplomats

	fix/dry-buckets

	fix/fat-dwarves

	fix/feeding-timers

	fix/item-occupancy

	fix/loyaltycascade

	fix/merchants

	fix/population-cap

	fix/stable-temp

	fix/stuckdoors

	fix/tile-occupancy

fix/blood-del

Makes it so that future caravans won’t bring barrels full of blood, ichor, or goo.

fix/build-location

Fixes construction jobs that are stuck trying to build a wall while standing
on the same exact tile (Bug 5991 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=5991]), designates the tile restricted traffic to
hopefully avoid jamming it again, and unsuspends them.

fix/dead-units

Removes uninteresting dead units from the unit list. Doesn’t seem to give any
noticeable performance gain, but migrants normally stop if the unit list grows
to around 3000 units, and this script reduces it back.

fix/diplomats

Adds a Diplomat position to all Elven civilizations, allowing them to negotiate
tree cutting quotas - and you to violate them and start wars.
This was vanilla behaviour until 0.31.12, in which the “bug” was “fixed”.

fix/dry-buckets

Removes water from all buckets in your fortress, allowing them
to be used for making lye. Skips buckets in buildings (eg a well),
being carried, or currently used by a job.

fix/fat-dwarves

Avoids 5-10% FPS loss due to constant recalculation of insulation for dwarves at
maximum fatness, by reducing the cap from 1,000,000 to 999,999.
Recalculation is triggered in steps of 250 units, and very fat dwarves
constantly bounce off the maximum value while eating.

fix/feeding-timers

Reset the GiveWater and GiveFood timers of all living citizens.

fix/item-occupancy

Diagnoses and fixes issues with nonexistant ‘items occupying site’, usually
caused by autodump bugs or other hacking mishaps. Checks that:

	Item has flags.on_ground <=> it is in the correct block item list

	A tile has items in block item list <=> it has occupancy.item

	The block item lists are sorted

fix/loyaltycascade

Aborts loyalty cascades by fixing units whose own civ is the enemy.

fix/merchants

Adds the Guild Representative position to all Human civilizations,
allowing them to make trade agreements. This was the default behaviour in
0.28.181.40d and earlier.

fix/population-cap

Run this after every migrant wave to ensure your population cap is not exceeded.

The reason for population cap problems is that the population value it
is compared against comes from the last dwarven caravan that successfully
left for mountainhomes. This script instantly updates it.
Note that a migration wave can still overshoot the limit by 1-2 dwarves because
of the last migrant bringing his family. Likewise, king arrival ignores cap.

fix/stable-temp

Instantly sets the temperature of all free-lying items to be in equilibrium with
the environment, which stops temperature updates until something changes.
To maintain this efficient state, use tweak fast-heat.

fix/stuckdoors

Fix doors that are stuck open due to incorrect map occupancy flags, eg due to
incorrect use of teleport.

fix/tile-occupancy

Clears bad occupancy flags at the selected tile. Useful for getting rid of
phantom “building present” messages. Currently only supports issues with
building and unit occupancy. Requires that a tile is selected with the in-game
cursor (k).

Can be used to fix problematic tiles caused by Issue 1047 [https://github.com/DFHack/dfhack/issues/1047].

GUI Scripts

gui/* scripts implement dialogs in the main game window.

In order to avoid user confusion, as a matter of policy all these tools
display the word DFHack on the screen somewhere while active.
When that is not appropriate because they merely add keybinding hints to
existing DF screens, they deliberately use red instead of green for the key.

Contents

	GUI Scripts
	gui/advfort

	gui/advfort_items

	gui/assign-rack

	gui/autobutcher

	gui/choose-weapons

	gui/clone-uniform

	gui/companion-order

	gui/confirm-opts

	gui/create-item

	gui/dfstatus

	gui/extended-status

	gui/family-affairs

	gui/gm-editor

	gui/gm-unit

	gui/guide-path

	gui/hack-wish

	gui/hello-world

	gui/liquids

	gui/load-screen

	gui/manager-quantity

	gui/mechanisms

	gui/mod-manager

	gui/no-dfhack-init

	gui/power-meter

	gui/prerelease-warning

	gui/quickcmd

	gui/rename

	gui/room-list

	gui/settings-manager

	gui/siege-engine

	gui/stockpiles

	gui/unit-info-viewer

	gui/workflow

	gui/workshop-job

gui/advfort

This script allows to perform jobs in adventure mode. For more complete help
press ? while script is running. It’s most comfortable to use this as a
keybinding. (e.g. keybinding set Ctrl-T gui/advfort). Possible arguments:

	-a, –nodfassign:

	 	uses different method to assign items.

	-i, –inventory:

	 	checks inventory for possible items to use in the job.

	-c, –cheat:	relaxes item requirements for buildings (e.g. walls from bones). Implies -a

	job:	selects that job (e.g. Dig or FellTree)

An example of player digging in adventure mode:

[image: ../../_images/advfort.png]
WARNING: changes only persist in non procedural sites, namely: player forts, caves, and camps.

gui/advfort_items

Does something with items in adventure mode jobs.

gui/assign-rack

This script requires a binpatch, which has not
been available since DF 0.34.11

See Bug 1445 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=1445] for more info about the patches.

Keybinding: P in dwarfmode/QueryBuilding/Some/Weaponrack

gui/autobutcher

An in-game interface for autobutcher. This script must be called
from either the overall status screen or the animal list screen.

Keybinding: ShiftB in pet/List/Unit

gui/choose-weapons

Activate in the Equip->View/Customize page of the military screen.

Depending on the cursor location, it rewrites all ‘individual choice weapon’ entries
in the selected squad or position to use a specific weapon type matching the assigned
unit’s top skill. If the cursor is in the rightmost list over a weapon entry, it rewrites
only that entry, and does it even if it is not ‘individual choice’.

Rationale: individual choice seems to be unreliable when there is a weapon shortage,
and may lead to inappropriate weapons being selected.

Keybinding: CtrlW in layer_military/Equip/Customize/View

gui/clone-uniform

When invoked, the script duplicates the currently selected uniform template,
and selects the newly created copy. Activate in the Uniforms
page of the military screen with the cursor in the leftmost list.

Keybinding: CtrlC in layer_military/Uniforms

gui/companion-order

A script to issue orders for companions. Select companions with lower case chars, issue orders with upper
case. Must be in look or talk mode to issue command on tile.

[image: ../../_images/companion-order.png]

	move - orders selected companions to move to location. If companions are following they will move no more than 3 tiles from you.

	equip - try to equip items on the ground.

	pick-up - try to take items into hand (also wield)

	unequip - remove and drop equipment

	unwield - drop held items

	wait - temporarily remove from party

	follow - rejoin the party after “wait”

	leave - remove from party (can be rejoined by talking)

Keybinding: ShiftO in dungeonmode

gui/confirm-opts

A basic configuration interface for the confirm plugin.

gui/create-item

A graphical interface for creating items.

See also: createitem, modtools/create-item, Issue 735 [https://github.com/DFHack/dfhack/issues/735]

gui/dfstatus

Show a quick overview of critical stock quantities, including food, drinks, wood, and various bars.
Sections can be enabled/disabled/configured by editing dfhack-config/dfstatus.lua.

Keybinding: CtrlShiftI in dwarfmode/Default

Keybinding: CtrlShiftI in dfhack/lua/dfstatus

gui/extended-status

Adds more subpages to the z status screen.

Usage:

gui/extended-status enable|disable|help|subpage_names
enable|disable gui/extended-status

gui/family-affairs

A user-friendly interface to view romantic relationships,
with the ability to add, remove, or otherwise change them at
your whim - fantastic for depressed dwarves with a dead spouse
(or matchmaking players...).

The target/s must be alive, sane, and in fortress mode.

[image: ../../_images/family-affairs.png]

	gui/family-affairs [unitID]

	shows GUI for the selected unit, or the specified unit ID

	gui/family-affairs divorce [unitID]

	removes all spouse and lover information from the unit
and it’s partner, bypassing almost all checks.

	gui/family-affairs [unitID] [unitID]

	divorces the two specificed units and their partners,
then arranges for the two units to marry, bypassing
almost all checks. Use with caution.

gui/gm-editor

This editor allows to change and modify almost anything in df. Press ? for
in-game help. There are three ways to open this editor:

	Callling gui/gm-editor from a command or keybinding opens the editor
on whatever is selected or viewed (e.g. unit/item description screen)

	using gui/gm-editor <lua command> - executes lua command and opens editor on
its results (e.g. gui/gm-editor "df.global.world.items.all" shows all items)

	using gui/gm-editor dialog - shows an in game dialog to input lua command. Works
the same as version above.

	using gui/gm-editor toggle - will hide (if shown) and show (if hidden) editor at
the same position you left it

[image: ../../_images/gm-editor.png]

gui/gm-unit

An editor for various unit attributes.

gui/guide-path

Activate in the Hauling menu with the cursor over
a Guide order.

[image: ../../_images/guide-path.png]
The script displays the cached path that will be used by the order; the game
computes it when the order is executed for the first time.

Keybinding: AltP in dwarfmode/Hauling/DefineStop/Cond/Guide

gui/hack-wish

An alias for gui/create-item. Deprecated.

gui/hello-world

A basic example for testing, or to start your own script from.

gui/liquids

This script is a gui front-end to liquids and works similarly,
allowing you to add or remove water & magma, and create obsidian walls & floors.

[image: ../../_images/liquids.png]

Warning

There is no undo support. Bugs in this plugin have been
known to create pathfinding problems and heat traps.

The b key changes how the affected area is selected. The default Rectangle
mode works by selecting two corners like any ordinary designation. The p
key chooses between adding water, magma, obsidian walls & floors, or just
tweaking flags.

When painting liquids, it is possible to select the desired level with +-,
and choose between setting it exactly, only increasing or only decreasing
with s.

In addition, f allows disabling or enabling the flowing water computations
for an area, and r operates on the “permanent flow” property that makes
rivers power water wheels even when full and technically not flowing.

After setting up the desired operations using the described keys, use Enter to apply them.

Keybinding: AltL in dwarfmode/LookAround

gui/load-screen

A replacement for the “continue game” screen.

Usage: gui/load-screen enable|disable

gui/manager-quantity

Sets the quantity of the selected manager job

Sample usage:

keybinding add Alt-Q@jobmanagement gui/manager-quantity

Keybinding: AltQ in jobmanagement

gui/mechanisms

Lists mechanisms connected to the building, and their links. Navigating
the list centers the view on the relevant linked buildings.

[image: ../../_images/mechanisms.png]
To exit, press Esc or Enter; Esc recenters on
the original building, while Enter leaves focus on the current
one. ShiftEnter has an effect equivalent to pressing
Enter, and then re-entering the mechanisms UI.

Keybinding: CtrlM in dwarfmode/QueryBuilding/Some

gui/mod-manager

A simple way to install and remove small mods, which are not included
in DFHack. Examples are available here [https://github.com/warmist/df-mini-mods].

[image: ../../_images/mod-manager.png]
Each mod is a lua script located in <DF>/mods/, which MUST define
the following variables:

	name:	a name that is displayed in list

	author:	mod author, also displayed

	description:	a description of the mod

Of course, this doesn’t actually make a mod - so one or more of the
following should also be defined:

	raws_list:	a list (table) of file names that need to be copied over to df raws

	patch_entity:	a chunk of text to patch entity
TODO: add settings to which entities to add

	patch_init:	a chunk of lua to add to lua init

	patch_dofile:	a list (table) of files to add to lua init as “dofile”

	patch_files:	a table of files to patch

	filename:	a filename (in raws folder) to patch

	patch:	what to add

	after:	a string after which to insert

	guard:	a token that is used in raw files to find additions and remove them on uninstall

	guard_init:	a token for lua file

	[pre|post]_(un)install:

	 	Callback functions, which can trigger more complicated behavior

gui/no-dfhack-init

Shows a warning at startup if no valid dfhack.init file is found.

gui/power-meter

Activate an in-game interface for power-meter after selecting
Pressure Plate in the build menu.

[image: ../../_images/power-meter.png]
The script follows the general look and feel of the regular pressure
plate build configuration page, but configures parameters relevant to
the modded power meter building.

Keybinding: CtrlShiftM in dwarfmode/Build/Position/Trap

gui/prerelease-warning

Shows a warning on world load for pre-release builds.

With no arguments passed, the warning is shown unless the “do not show again”
option has been selected. With the force argument, the warning is always
shown.

gui/quickcmd

A list of commands which you can edit while in-game, and which you can execute
quickly and easily. For stuff you use often enough to not want to type it, but
not often enough to be bothered to find a free keybinding.

gui/rename

Backed by rename, this script allows entering the desired name
via a simple dialog in the game ui.

	gui/rename [building] in q mode changes the name of a building.

[image: ../../_images/rename-bld.png]
The selected building must be one of stockpile, workshop, furnace, trap, or siege engine.
It is also possible to rename zones from the i menu.

	gui/rename [unit] with a unit selected changes the nickname.

Unlike the built-in interface, this works even on enemies and animals.

	gui/rename unit-profession changes the selected unit’s custom profession name.

[image: ../../_images/rename-prof.png]
Likewise, this can be applied to any unit, and when used on animals it overrides
their species string.

The building or unit options are automatically assumed when in relevant UI state.

Keybinding: CtrlShiftN

Keybinding: CtrlShiftT -> "gui/rename unit-profession"

gui/room-list

Activate in q mode, either immediately or after opening the
assign owner page.

[image: ../../_images/room-list.png]
The script lists other rooms owned by the same owner, or by the unit
selected in the assign list, and allows unassigning them.

Keybinding: AltR in dwarfmode/QueryBuilding/Some

gui/settings-manager

An in-game manager for settings defined in init.txt and d_init.txt.

Keybinding: AltS in title

Keybinding: AltS in dwarfmode/Default

gui/siege-engine

Activate an in-game interface for siege-engine, after selecting
a siege engine in q mode.

[image: ../../_images/siege-engine.png]
The main mode displays the current target, selected ammo item
type, linked stockpiles and the allowed operator skill range. The
map tile color is changed to signify if it can be hit by the
selected engine: green for fully reachable, blue for out of
range, red for blocked, yellow for partially blocked.

Pressing r changes into the target selection mode, which
works by highlighting two points with Enter like all
designations. When a target area is set, the engine projectiles
are aimed at that area, or units within it (this doesn’t actually
change the original aiming code, instead the projectile
trajectory parameters are rewritten as soon as it appears).

After setting the target in this way for one engine, you can
‘paste’ the same area into others just by pressing p in
the main page of this script. The area to paste is kept until you
quit DF, or select another area manually.

Pressing t switches to a mode for selecting a stockpile to
take ammo from.

Exiting from the siege engine script via Esc reverts the
view to the state prior to starting the script.
ShiftEsc retains the current viewport, and also
exits from the q mode to main menu.

Keybinding: AltA in dwarfmode/QueryBuilding/Some/SiegeEngine

gui/stockpiles

An in-game interface for stocksettings, to
load and save stockpile settings from the q menu.

Usage:

	gui/stockpiles -save:

	 	to save the current stockpile

	gui/stockpiles -load:

	 	to load settings into the current stockpile

	gui/stockpiles -dir <path>:

	 	set the default directory to save settings into

	gui/stockpiles -help:

	 	to see this message

Don’t forget to enable stockpiles and create the stocksettings directory in
the DF folder before trying to use the GUI.

Keybinding: AltL -> "gui/stockpiles -load" in dwarfmode/QueryBuilding/Some/Stockpile

Keybinding: AltS -> "gui/stockpiles -save" in dwarfmode/QueryBuilding/Some/Stockpile

gui/unit-info-viewer

Displays age, birth, maxage, shearing, milking, grazing, egg laying, body size,
and death info about a unit. Recommended keybinding AltI.

gui/workflow

Bind to a key (the example config uses Alt-W), and activate with a job selected
in a workshop in q mode.

[image: ../../_images/workflow.png]
This script provides a simple interface to constraints managed by workflow.
When active, it displays a list of all constraints applicable to the
current job, and their current status.

A constraint specifies a certain range to be compared against either individual
item or whole stack count, an item type and optionally a material. When the
current count is below the lower bound of the range, the job is resumed; if it
is above or equal to the top bound, it will be suspended. Within the range, the
specific constraint has no effect on the job; others may still affect it.

Pressing i switches the current constraint between counting stacks or items.
Pressing r lets you input the range directly;
e, r, d, f adjust the
bounds by 5, 10, or 20 depending on the direction and the i setting (counting
items and expanding the range each gives a 2x bonus).

Pressing a produces a list of possible outputs of this job as guessed by
workflow, and lets you create a new constraint by choosing one as template. If you
don’t see the choice you want in the list, it likely means you have to adjust
the job material first using job item-material or gui/workshop-job,
as described in the workflow documentation. In this manner, this feature
can be used for troubleshooting jobs that don’t match the right constraints.

[image: ../../_images/workflow-new1.png]
If you select one of the outputs with Enter, the matching constraint is simply
added to the list. If you use ShiftEnter, the interface proceeds to the
next dialog, which allows you to edit the suggested constraint parameters to
suit your need, and set the item count range.

[image: ../../_images/workflow-new2.png]
Pressing s (or, with the example config, Alt-W in the z stocks screen)
opens the overall status screen:

[image: ../../_images/workflow-status.png]
This screen shows all currently existing workflow constraints, and allows
monitoring and/or changing them from one screen. The constraint list can
be filtered by typing text in the field below.

The color of the stock level number indicates how “healthy” the stock level
is, based on current count and trend. Bright green is very good, green is good,
red is bad, bright red is very bad.

The limit number is also color-coded. Red means that there are currently no
workshops producing that item (i.e. no jobs). If it’s yellow, that means the
production has been delayed, possibly due to lack of input materials.

The chart on the right is a plot of the last 14 days (28 half day plots) worth
of stock history for the selected item, with the rightmost point representing
the current stock value. The bright green dashed line is the target
limit (maximum) and the dark green line is that minus the gap (minimum).

Keybinding: AltW in dwarfmode/QueryBuilding/Some/Workshop/Job

Keybinding: AltW -> "gui/workflow status" in overallstatus

Keybinding: AltW -> "gui/workflow status" in dfhack/lua/status_overlay

gui/workshop-job

Run with a job selected in a workshop in the q mode.

[image: ../../_images/workshop-job.png]
The script shows a list of the input reagents of the selected job, and allows changing
them like the job item-type and job item-material commands.

Specifically, pressing the i key pops up a dialog that lets you select an item
type from a list.

[image: ../../_images/workshop-job-item.png]
Pressing m, unless the item type does not allow a material,
lets you choose a material.

[image: ../../_images/workshop-job-material.png]
Since there are a lot more materials than item types, this dialog is more complex
and uses a hierarchy of sub-menus. List choices that open a sub-menu are marked
with an arrow on the left.

Warning

Due to the way input reagent matching works in DF, you must select an item type
if you select a material, or the material will be matched incorrectly in some cases.
If you press m without choosing an item type, the script will auto-choose
if there is only one valid choice, or pop up an error message box instead of the
material selection dialog.

Note that both materials and item types presented in the dialogs are filtered
by the job input flags, and even the selected item type for material selection,
or material for item type selection. Many jobs would let you select only one
input item type.

For example, if you choose a plant input item type for your prepare meal job,
it will only let you select cookable materials.

If you choose a barrel item instead (meaning things stored in barrels, like
drink or milk), it will let you select any material, since in this case the
material is matched against the barrel itself. Then, if you select, say, iron,
and then try to change the input item type, now it won’t let you select plant;
you have to unset the material first.

Keybinding: AltA in dwarfmode/QueryBuilding/Some/Workshop/Job

Scripts for Modders

modtools/* scripts provide tools for modders, often with changes
to the raw files, and are not intended to be called manually by end-users.

They all have standard arguments: arguments are of the form tool -argName1 argVal1
-argName2 argVal2. This is equivalent to tool -argName2 argVal2 -argName1
argVal1. It is not necessary to provide a value to an argument name: tool
-argName3 is fine.

Argument names are preceded with a dash, and supplying the same argument
name multiple times will result in an error.

The -help argument to any modtools script will print a descriptive
usage string describing the arguments, similar to the documentation here.

For multiple word argument values, brackets must be used: tool
-argName4 [sadf1 sadf2 sadf3]. In order to allow passing literal braces as
part of the argument, backslashes are used: tool -argName4 [\] asdf \foo]
sets argName4 to \] asdf foo. The *-trigger scripts have a similar
policy with backslashes.

Contents

	Scripts for Modders
	modtools/add-syndrome

	modtools/anonymous-script

	modtools/change-build-menu

	modtools/create-item

	modtools/create-unit

	modtools/equip-item

	modtools/extra-gamelog

	modtools/force

	modtools/if-entity

	modtools/interaction-trigger

	modtools/invader-item-destroyer

	modtools/item-trigger

	modtools/moddable-gods

	modtools/outside-only

	modtools/projectile-trigger

	modtools/random-trigger

	modtools/raw-lint

	modtools/reaction-product-trigger

	modtools/reaction-trigger

	modtools/reaction-trigger-transition

	modtools/skill-change

	modtools/spawn-flow

	modtools/syndrome-trigger

	modtools/transform-unit

modtools/add-syndrome

This allows adding and removing syndromes from units.

Arguments:

-syndrome name
 the name of the syndrome to operate on
 examples:
 "gila monster bite"
-resetPolicy policy
 specify a policy of what to do if the unit already has an
 instance of the syndrome. examples:
 NewInstance
 default behavior: create a new instance of the syndrome
 DoNothing
 ResetDuration
 AddDuration
-erase
 instead of adding an instance of the syndrome, erase one
-eraseAll
 erase every instance of the syndrome
-eraseClass SYN_CLASS
 erase every instance of every syndrome with the given SYN_CLASS
-target id
 the unit id of the target unit
 examples:
 0
 28
-skipImmunities
 add the syndrome to the target even if it is immune to the syndrome

modtools/anonymous-script

This allows running a short simple Lua script passed as an argument instead of
running a script from a file. This is useful when you want to do something too
complicated to make with the existing modtools, but too simple to be worth its
own script file. Example:

anonymous-script "print(args[1])" arg1 arg2
prints "arg1"

modtools/change-build-menu

Change the build sidebar menus.

This script provides a flexible and comprehensive system for adding and removing
items from the build sidebar menus. You can add or remove workshops/furnaces by
text ID, or you can add/remove ANY building via a numeric building ID triplet.

Changes made with this script do not survive a save/load. You will need to redo
your changes each time the world loads.

Just to be clear: You CANNOT use this script AT ALL if there is no world
loaded!

Usage:

modtools/change-build-menu start|enable:

enable modtools/change-build-menu:

Start the ticker. This needs to be done before any changes will take
effect. Note that you can make changes before or after starting the
ticker, both options should work equally well.

modtools/change-build-menu stop|disable:

disable modtools/change-build-menu:

Stop the ticker. Does not clear stored changes. The ticker will
automatically stop when the current world is unloaded.

modtools/change-build-menu add <ID> <CATEGORY> [<KEY>]:

Add the workshop or furnace with the ID <ID> to <CATEGORY>.
<KEY> is an optional DF hotkey ID.

	<CATEGORY> may be one of:

	
	MAIN_PAGE

	SIEGE_ENGINES

	TRAPS

	WORKSHOPS

	FURNACES

	CONSTRUCTIONS

	MACHINES

	CONSTRUCTIONS_TRACK

	Valid <ID> values for hardcoded buildings are as follows:

	
	CARPENTERS

	FARMERS

	MASONS

	CRAFTSDWARFS

	JEWELERS

	METALSMITHSFORGE

	MAGMAFORGE

	BOWYERS

	MECHANICS

	SIEGE

	BUTCHERS

	LEATHERWORKS

	TANNERS

	CLOTHIERS

	FISHERY

	STILL

	LOOM

	QUERN

	KENNELS

	ASHERY

	KITCHEN

	DYERS

	TOOL

	MILLSTONE

	WOOD_FURNACE

	SMELTER

	GLASS_FURNACE

	MAGMA_SMELTER

	MAGMA_GLASS_FURNACE

	MAGMA_KILN

	KILN

modtools/change-build-menu remove <ID> <CATEGORY>:

Remove the workshop or furnace with the ID <ID> from <CATEGORY>.

<CATEGORY> and <ID> may have the same values as for the “add”
option.

modtools/change-build-menu revert <ID> <CATEGORY>:

Revert an earlier remove or add operation. It is NOT safe to “remove”
an “add”ed building or vice versa, use this option to reverse any
changes you no longer want/need.

Module Usage:

To use this script as a module put the following somewhere in your own script:

local buildmenu = reqscript "change-build-menu"

Then you can call the functions documented here like so:

	Example: Remove the carpenters workshop:

buildmenu.ChangeBuilding("CARPENTERS", "WORKSHOPS", false)

	Example: Make it impossible to build walls (not recommended!):

local typ, styp = df.building_type.Construction, df.construction_type.Wall
buildmenu.ChangeBuildingAdv(typ, styp, -1, "CONSTRUCTIONS", false)

Note that to allow any of your changes to take effect you need to start the
ticker. See the “Command Usage” section.

Global Functions:

	GetWShopID(btype, bsubtype, bcustom):

	GetWShopID returns a workshop’s or furnace’s string ID based on its
numeric ID triplet. This string ID should match what is expected
by eventful for hardcoded buildings.

	GetWShopType(id):

	GetWShopIDs returns a workshop or furnace’s ID numbers as a table.
The passed in ID should be the building’s string identifier, it makes
no difference if it is a custom building or a hardcoded one.
The return table is structured like so: {type, subtype, custom}

	IsEntityPermitted(id):

	IsEntityPermitted returns true if DF would normally allow you to build
a workshop or furnace. Use this if you want to change a building, but
only if it is permitted in the current entity. You do not need to
specify an entity, the current fortress race is used.

ChangeBuilding(id, category, [add, [key]]):

	ChangeBuildingAdv(typ, subtyp, custom, category, [add, [key]]):

	These two functions apply changes to the build sidebar menus. If “add”
is true then the building is added to the specified category, else it
is removed. When adding you may specify “key”, a string DF hotkey ID.

The first version of this function takes a workshop or furnace ID as a
string, the second takes a numeric ID triplet (which can specify any
building, not just workshops or furnaces).

RevertBuildingChanges(id, category):

	RevertBuildingChangesAdv(typ, subtyp, custom, category):

	These two functions revert changes made by “ChangeBuilding” and
“ChangeBuildingAdv”. Like those two functions there are two versions,
a simple one that takes a string ID and one that takes a numeric ID
triplet.

modtools/create-item

Replaces the createitem plugin, with standard
arguments. The other versions will be phased out in a later version.

Arguments:

-creator id
 specify the id of the unit who will create the item,
 or \\LAST to indicate the unit with id df.global.unit_next_id-1
 examples:
 0
 2
 \\LAST
-material matstring
 specify the material of the item to be created
 examples:
 INORGANIC:IRON
 CREATURE_MAT:DWARF:BRAIN
 PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK
-item itemstr
 specify the itemdef of the item to be created
 examples:
 WEAPON:ITEM_WEAPON_PICK
-matchingShoes
 create two of this item
-matchingGloves
 create two of this item, and set handedness appropriately

modtools/create-unit

Creates a unit. Usage:

-race raceName
 specify the race of the unit to be created
 examples:
 DWARF
 HUMAN
-caste casteName
 specify the caste of the unit to be created
 examples:
 MALE
 FEMALE
-domesticate
 if the unit can't learn or can't speak, make it a friendly animal
-setUnitToFort
 Sets the groupId and civId to the local fort.
-civId id
 Make the created unit a member of the specified civ
 (or none if id = -1). If id is \\LOCAL, make it a member of the
 civ associated with the fort; otherwise id must be an integer
-groupId id
 Make the created unit a member of the specified group
 (or none if id = -1). If id is \\LOCAL, make it a member of the
 group associated with the fort; otherwise id must be an integer
-name entityRawName
 set the unit's name to be a random name appropriate for the
 given entity. examples:
 MOUNTAIN
-nick nickname
 set the unit's nickname directly
-location [x y z]
 create the unit at the specified coordinates
-age howOld
 set the birth date of the unitby current age
-flagSet [flag1 flag2 ...]
 set the specified unit flags in the new unit to true
 flags may be selected from df.unit_flags1, df.unit_flags2,
 or df.unit_flags3
-flagClear [flag1 flag2 ...]
 set the specified unit flags in the new unit to false
 flags may be selected from df.unit_flags1, df.unit_flags2,
 or df.unit_flags3

modtools/equip-item

Force a unit to equip an item with a particular body part; useful in
conjunction with the create scripts above. See also forceequip.

modtools/extra-gamelog

This script writes extra information to the gamelog.
This is useful for tools like Soundsense [http://www.bay12forums.com/smf/index.php?topic=106497].

modtools/force

This tool triggers events like megabeasts, caravans, and migrants.

Usage:

-eventType event
 specify the type of the event to trigger
 examples:
 MegaBeast
 Migrants
 Caravan
 Diplomat
 WildlifeCurious
 WildlifeMischievous
 WildlifeFlier
 NightCreature
-civ entity
 specify the civ of the event, if applicable
 examples:
 player
 MOUNTAIN
 EVIL
 28

modtools/if-entity

Run a command if the current entity matches a given ID.

To use this script effectively it needs to be called from “raw/onload.init”.
Calling this from the main dfhack.init file will do nothing, as no world has
been loaded yet.

Usage:

	
	id:

	Specify the entity ID to match

	
	cmd [commandStrs]:

	Specify the command to be run if the current entity matches the entity
given via -id

All arguments are required.

Example:

Print a message if you load an elf fort, but not a dwarf, human, etc
fort.
if-entity -id “FOREST” -cmd [lua “print(‘Dirty hippies.’)”]

modtools/interaction-trigger

This triggers events when a unit uses an interaction on another. It works by
scanning the announcements for the correct attack verb, so the attack verb
must be specified in the interaction. It includes an option to suppress this
announcement after it finds it.

Usage:

-clear
 unregisters all triggers
-onAttackStr str
 trigger the command when the attack verb is "str". both onAttackStr and onDefendStr MUST be specified
-onDefendStr str
 trigger the command when the defend verb is "str". both onAttackStr and onDefendStr MUST be specified
-suppressAttack
 delete the attack announcement from the combat logs
-suppressDefend
 delete the defend announcement from the combat logs
-command [commandStrs]
 specify the command to be executed
 commandStrs
 \\ATTACK_VERB
 \\DEFEND_VERB
 \\ATTACKER_ID
 \\DEFENDER_ID
 \\ATTACK_REPORT
 \\DEFEND_REPORT
 \\anything -> \anything
 anything -> anything

You must specify both an attack string and a defend string to guarantee
correct performance. Either will trigger the script when it happens, but
it will not be triggered twice in a row if both happen.

modtools/invader-item-destroyer

This tool configurably destroys invader items to prevent clutter or to prevent
the player from getting tools exclusive to certain races.

Arguments:

-clear
 reset all registered data
-allEntities [true/false]
 set whether it should delete items from invaders from any civ
-allItems [true/false]
 set whether it should delete all invader items regardless of
 type when an appropriate invader dies
-item itemdef
 set a particular itemdef to be destroyed when an invader
 from an appropriate civ dies. examples:
 ITEM_WEAPON_PICK
-entity entityName
 set a particular entity up so that its invaders destroy their
 items shortly after death. examples:
 MOUNTAIN
 EVIL

modtools/item-trigger

This powerful tool triggers DFHack commands when a unit equips, unequips, or
attacks another unit with specified item types, specified item materials, or
specified item contaminants.

Arguments:

-clear
 clear all registered triggers
-checkAttackEvery n
 check the attack event at least every n ticks
-checkInventoryEvery n
 check inventory event at least every n ticks
-itemType type
 trigger the command for items of this type
 examples:
 ITEM_WEAPON_PICK
 RING
-onStrike
 trigger the command on appropriate weapon strikes
-onEquip
 trigger the command when someone equips an appropriate item
-onUnequip
 trigger the command when someone unequips an appropriate item
-material mat
 trigger the commmand on items with the given material
 examples
 INORGANIC:IRON
 CREATURE_MAT:DWARF:BRAIN
 PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK
-contaminant mat
 trigger the command on items with a given material contaminant
 examples
 INORGANIC:IRON
 CREATURE_MAT:DWARF:BRAIN
 PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK
-command [commandStrs]
 specify the command to be executed
 commandStrs
 \\ATTACKER_ID
 \\DEFENDER_ID
 \\ITEM_MATERIAL
 \\ITEM_MATERIAL_TYPE
 \\ITEM_ID
 \\ITEM_TYPE
 \\CONTAMINANT_MATERIAL
 \\CONTAMINANT_MATERIAL_TYPE
 \\CONTAMINANT_MATERIAL_INDEX
 \\MODE
 \\UNIT_ID
 \\anything -> \anything
 anything -> anything

modtools/moddable-gods

This is a standardized version of Putnam’s moddableGods script. It allows you
to create gods on the command-line.

Arguments:

-name godName
 sets the name of the god to godName
 if there's already a god of that name, the script halts
-spheres [sphereList]
 define a space-separated list of spheres of influence of the god
-depictedAs str
 often depicted as a str
-domain str
 set the domain of the god
-description str
 set the description of the god

modtools/outside-only

This allows you to specify certain custom buildings as outside only, or inside
only. If the player attempts to build a building in an inappropriate location,
the building will be destroyed.

Arguments:

-clear
 clears the list of registered buildings
-checkEvery n
 set how often existing buildings are checked for whether they
 are in the appropriate location to n ticks
-type [EITHER, OUTSIDE_ONLY, INSIDE_ONLY]
 specify what sort of restriction to put on the building
-building name
 specify the id of the building

modtools/projectile-trigger

This triggers dfhack commands when projectiles hit their targets. Usage:

-clear
 unregister all triggers
-material
 specify a material for projectiles that will trigger the command
 examples:
 INORGANIC:IRON
 CREATURE_MAT:DWARF:BRAIN
 PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK
-command [commandList]
 \\LOCATION
 \\PROJECTILE_ID
 \\FIRER_ID
 \\anything -> \anything
 anything -> anything

modtools/random-trigger

Trigger random dfhack commands with specified probabilities.
Register a few scripts, then tell it to “go” and it will pick one
based on the probability weights you specified.

Events are mutually-exclusive - register a list of scripts along with
relative weights, then tell the script to select and run one with the
specified probabilities. The weights must be positive integers, but
they do NOT have to sum to any particular number.

The outcomes are mutually exclusive: only one will be triggered. If you
want multiple independent random events, call the script multiple times.

99% of the time, you won’t need to worry about this, but just in case,
you can specify a name of a list of outcomes to prevent interference from
other scripts that call this one. That also permits situations where you
don’t know until runtime what outcomes you want. For example, you could
make a modtools/reaction-trigger that registers the worker as a mayor
candidate, then run this script to choose a random mayor from the list of
units that did the mayor reaction.

Arguments:

-outcomeListName name
 specify the name of this list of outcomes to prevent interference
 if two scripts are registering outcomes at the same time. If none
 is specified, the default outcome list is selected automatically.
-command [commandStrs]
 specify the command to be run if this outcome is selected
 must be specified unless the -trigger argument is given
-weight n
 the relative probability weight of this outcome
 n must be a non-negative integer
 if not specified, n=1 is used by default
-trigger
 selects a random script based on the specified outcomeList
 (or the default one if none is specified)
-preserveList
 when combined with trigger, preserves the list of outcomes so you
 don't have to register them again.
-withProbability p
 p is a real number between 0 and 1 inclusive
 triggers the command immediately with this probability
-seed s
 sets the random seed for debugging purposes
 (guarantees the same sequence of random numbers will be produced)
 use
-listOutcomes
 lists the currently registered list of outcomes of the outcomeList
 along with their probability weights, for debugging purposes
-clear
 unregister everything

Note

-preserveList is something of a beta feature, which should be
avoided by users without a specific reason to use it.

It is highly recommended that you always specify -outcomeListName
when you give this command to prevent almost certain interference.
If you want to trigger one of 5 outcomes three times, you might want
this option even without -outcomeListName.

The list is NOT retained across game save/load, as nobody has yet had
a use for this feature. Contact expwnent if you would use it; it’s
not that hard but if nobody wants it he won’t bother.

modtools/raw-lint

Checks for simple issues with raw files. Can be run automatically.

modtools/reaction-product-trigger

This triggers dfhack commands when reaction products are produced, once per
product. Usage:

-clear
 unregister all reaction hooks
-reactionName name
 specify the name of the reaction
-command [commandStrs]
 specify the command to be run on the target(s)
 special args
 \\WORKER_ID
 \\REACTION
 \\BUILDING_ID
 \\LOCATION
 \\INPUT_ITEMS
 \\OUTPUT_ITEMS
 \\anything -> \anything
 anything -> anything

modtools/reaction-trigger

Triggers dfhack commands when custom reactions complete, regardless of whether
it produced anything, once per completion. Arguments:

-clear
 unregister all reaction hooks
-reactionName name
 specify the name of the reaction
-syndrome name
 specify the name of the syndrome to be applied to the targets
-allowNonworkerTargets
 allow other units in the same building to be targetted by
 either the script or the syndrome
-allowMultipleTargets
 allow multiple targets to the script or syndrome
 if absent:
 if running a script, only one target will be used
 if applying a syndrome, then only one target will be infected
-resetPolicy policy
 the policy in the case that the syndrome is already present
 policy
 NewInstance (default)
 DoNothing
 ResetDuration
 AddDuration
-command [commandStrs]
 specify the command to be run on the target(s)
 special args
 \\WORKER_ID
 \\TARGET_ID
 \\BUILDING_ID
 \\LOCATION
 \\REACTION_NAME
 \\anything -> \anything
 anything -> anything

modtools/reaction-trigger-transition

Prints useful things to the console and a file to help modders
transition from autoSyndrome to modtools/reaction-trigger.

This script is basically an apology for breaking backward
compatibility in June 2014, and will be removed eventually.

modtools/skill-change

Sets or modifies a skill of a unit. Args:

	-skill skillName:

	 	set the skill that we’re talking about

	-mode (add/set):

	 	are we adding experience/levels or setting them?

	-granularity (experience/level):

	 	direct experience, or experience levels?

	-unit id:	id of the target unit

	-value amount:	how much to set/add

modtools/spawn-flow

Creates flows at the specified location.

Arguments:

-material mat
 specify the material of the flow, if applicable
 examples:
 INORGANIC:IRON
 CREATURE_MAT:DWARF:BRAIN
 PLANT_MAT:MUSHROOM_HELMET_PLUMP:DRINK
-location [x y z]
 the location to spawn the flow
-flowType type
 specify the flow type
 examples:
 Miasma
 Steam
 Mist
 MaterialDust
 MagmaMist
 Smoke
 Dragonfire
 Fire
 Web
 MaterialGas
 MaterialVapor
 OceanWave
 SeaFoam
-flowSize size
 specify how big the flow is

modtools/syndrome-trigger

Triggers dfhack commands when syndromes are applied to units.

Arguments:

-clear
 clear all triggers
-syndrome name
 specify the name of a syndrome
-command [commandStrs]
 specify the command to be executed after infection
 args
 \\SYNDROME_ID
 \\UNIT_ID
 \\LOCATION
 \\anything -> \anything
 anything -> anything

modtools/transform-unit

Transforms a unit into another unit type, possibly permanently.
Warning: this will crash arena mode if you view the unit on the
same tick that it transforms. If you wait until later, it will be fine.

Arguments:

-clear
 clear records of normal races
-unit id
 set the target unit
-duration ticks
 how long it should last, or "forever"
-setPrevRace
 make a record of the previous race so that you can
 change it back with -untransform
-keepInventory
 move items back into inventory after transformation
-race raceName
-caste casteName
-suppressAnnouncement
 don't show the Unit has transformed into a Blah! event
-untransform
 turn the unit back into what it was before

List of Authors

The following is a list of people who have contributed to DFHack, in
alphabetical order.

If you should be here and aren’t, please get in touch on IRC or the forums,
or make a pull request!

	Name
	Github
	Other

	8Z
	8Z
	

	acwatkins
	acwatkins
	

	Alexander Gavrilov
	angavrilov
	ag

	Amostubal
	Amostubal
	

	AndreasPK
	AndreasPK
	

	Angus Mezick
	amezick
	

	Antalia
	tamarakorr
	

	Anuradha Dissanayake
	falconne
	

	AtomicChicken
	AtomicChicken
	

	belal
	jimhester
	

	Ben Lubar
	BenLubar
	

	Ben Rosser
	TC01
	

	brndd
	brndd
	

	Caldfir
	caldfir
	

	Carter Bray
	Qartar
	

	Chris Dombroski
	cdombroski
	

	Clayton Hughes
	
	

	David Corbett
	dscorbett
	

	David Seguin
	dseguin
	

	Deon
	
	

	DoctorVanGogh
	DoctorVanGogh
	

	Donald Ruegsegger
	hashaash
	

	doomchild
	doomchild
	

	enjia2000
	
	

	Eric Wald
	eswald
	

	Erik Youngren
	Artanis
	

	Espen Wiborg
	
	

	expwnent
	expwnent
	

	Feng
	
	

	figment
	figment
	

	gchristopher
	gchristopher
	

	Harlan Playford
	playfordh
	

	Hayati Ayguen
	hayguen
	

	IndigoFenix
	
	

	James Logsdon
	jlogsdon
	

	Japa
	JapaMala
	

	Jared Adams
	
	

	Jim Lisi
	stonetoad
	

	jj
	jjyg
	jj``

	John Beisley
	huin
	

	John Shade
	gsvslto
	

	Jonas Ask
	
	

	kane-t
	kane-t
	

	Kelly Kinkade
	ab9rf
	

	Kris Parker
	kaypy
	

	Kurik Amudnil
	
	

	Lethosor
	lethosor
	

	Mason11987
	Mason11987
	

	Matthew Cline
	
	

	Matthew Lindner
	mlindner
	

	Max
	maxthyme
	Max^TM

	melkor217
	melkor217
	

	Meneth32
	
	

	Meph
	
	

	Michael Casadevall
	NCommander
	

	Michael Crouch
	creidieki
	

	Michon van Dooren
	MaienM
	

	miffedmap
	miffedmap
	

	Mike Stewart
	thewonderidiot
	

	Mikko Juola
	Noeda
	Adeon

	Milo Christiansen
	milochristiansen
	

	MithrilTuxedo
	MithrilTuxedo
	

	mizipzor
	mizipzor
	

	moversti
	moversti
	

	Neil Little
	nmlittle
	

	Nick Rart
	nickrart
	comestible

	Nikolay Amiantov
	abbradar
	

	nocico
	nocico
	

	Omniclasm
	
	

	Paul Fenwick
	pjf
	

	PeridexisErrant
	PeridexisErrant
	

	Petr Mrázek
	peterix
	

	potato
	
	

	Priit Laes
	plaes
	

	Putnam
	Putnam3145
	

	Quietust
	quietust
	_Q

	Raidau
	Raidau
	

	Ramblurr
	Ramblurr
	

	rampaging-poet
	
	

	Raoul van Putten
	
	

	Raoul XQ
	raoulxq
	

	reverb
	
	

	Rich Rauenzahn
	rrauenza
	

	Rinin
	Rinin
	

	rndmvar
	rndmvar
	

	Robert Heinrich
	rh73
	

	Robert Janetzko
	robertjanetzko
	

	rofl0r
	rofl0r
	

	root
	
	

	Roses
	Pheosics
	

	Ross M
	RossM
	

	rout
	
	

	rubybrowncoat
	rubybrowncoat
	

	Rumrusher
	rumrusher
	

	RusAnon
	RusAnon
	

	sami
	
	

	scamtank
	scamtank
	

	Sebastian Wolfertz
	Enkrod
	

	Seth Woodworth
	sethwoodworth
	

	simon
	
	

	Simon Jackson
	sizeak
	

	stolencatkarma
	
	

	sv-esk
	sv-esk
	

	Tacomagic
	
	

	TheHologram
	TheHologram
	

	Tim Walberg
	twalberg
	

	Timothy Collett
	danaris
	

	Tom Jobbins
	TheBloke
	

	Tom Prince
	
	

	Travis Hoppe
	thoppe
	orthographic-pedant

	txtsd
	txtsd
	

	U-glouglou\simon
	
	

	Valentin Ochs
	Cat-Ion
	

	Vjek
	
	

	Warmist
	warmist
	

	Wes Malone
	wesQ3
	

	Will Rogers
	wjrogers
	

	Zhentar
	Zhentar
	

	zilpin
	zilpin
	

Licenses

DFHack is distributed under the Zlib license, with some MIT-
and BSD-licensed components. These licenses protect your right
to use DFhack for any purpose, distribute copies, and so on.

The core, plugins, scripts, and other DFHack code all use the
ZLib license unless noted otherwise. By contributing to DFHack,
authors release the contributed work under this license.

DFHack also draws on several external packages.
Their licenses are summarised here and reproduced below.

	Component
	License
	Copyright

	DFHack [https://github.com/DFHack/dfhack]
	Zlib
	(c) 2009-2012, Petr Mrázek

	clsocket [https://github.com/DFHack/clsocket]
	BSD 3-clause
	(c) 2007-2009, CarrierLabs, LLC.

	dirent [https://github.com/tronkko/dirent]
	MIT
	(c) 2006, Toni Ronkko

	JSON.lua [http://regex.info/blog/lua/json]
	CC-BY-SA [http://creativecommons.org/licenses/by/3.0/deed.en_US]
	(c) 2010-2014, Jeffrey Friedl

	jsoncpp [https://github.com/open-source-parsers/jsoncpp]
	MIT
	(c) 2007-2010, Baptiste Lepilleur

	linenoise [http://github.com/antirez/linenoise]
	BSD 2-clause
	(c) 2010, Salvatore Sanfilippo & Pieter Noordhuis

	lua [http://www.lua.org]
	MIT
	(c) 1994-2008, Lua.org, PUC-Rio.

	luafilesystem [https://github.com/keplerproject/luafilesystem]
	MIT
	(c) 2003-2014, Kepler Project

	protobuf [https://github.com/google/protobuf]
	BSD 3-clause
	(c) 2008, Google Inc.

	tinythread [http://tinythreadpp.bitsnbites.eu/]
	Zlib
	(c) 2010, Marcus Geelnard

	tinyxml [http://www.sourceforge.net/projects/tinyxml]
	Zlib
	(c) 2000-2006, Lee Thomason

	UTF-8-decoder [http://bjoern.hoehrmann.de/utf-8/decoder/dfa]
	MIT
	(c) 2008-2010, Bjoern Hoehrmann

Zlib License

See https://en.wikipedia.org/wiki/Zlib_License

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.

Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must
 not claim that you wrote the original software. If you use this
 software in a product, an acknowledgment in the product
 documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and
 must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
 distribution.

MIT License

See https://en.wikipedia.org/wiki/MIT_License

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

BSD Licenses

See https://en.wikipedia.org/wiki/BSD_licenses

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

linenoise adds no further clauses.

protobuf adds the following clause:

3. Neither the name of Google Inc. nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

clsocket adds the following clauses:

3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

4. The name "CarrierLabs" must not be used to endorse or promote
 products derived from this software without prior written
 permission. For written permission, please contact
 mark@carrierlabs.com

Changelog

Contents

	Changelog
	DFHack 0.43.05-r1

	DFHack 0.43.03-r1

	DFHack 0.42.06-r1

	DFHack 0.40.24-r5

	DFHack 0.40.24-r4

	DFHack 0.40.24-r3

	DFHack 0.40.24-r2

	DFHack 0.40.24-r1

	DFHack 0.40.24-r0

	Older Changelogs

DFHack 0.43.05-r1

Internals

	64-bit support on all platforms

	Several structure fixes to match 64-bit DF’s memory layout

	Added DFHack::Job::removeJob() function

	New module: Designations - handles designation creation (currently for plants only)

	Added Gui::getSelectedPlant()

	Added Units::getMainSocialActivity(), Units::getMainSocialEvent()

	Visual Studio 2015 now required to build on Windows instead of 2010

	GCC 4.8 or newer required to build on Linux and OS X (and now supported on OS X)

	Updated TinyXML from 2.5.3 to 2.6.2

	Added the ability to download files manually before building

Lua

	Lua has been updated to 5.3 - see http://www.lua.org/manual/5.3/readme.html for details

	Floats are no longer implicitly converted to integers in DFHack API calls

	df.new() supports more types: char, intptr_t, uintptr_t, long, unsigned long

	String representations of vectors and a few other containers now include their lengths

	Added a tile-material module

	Added a Painter:key_string() method

	Made dfhack.gui.revealInDwarfmodeMap() available

Ruby

	Added support for loading ruby 2.x libraries

New Plugins

	dwarfvet enables animal caretaking

	generated-creature-renamer: Renames generated creature IDs for use with graphics packs

	labormanager (formerly autolabor2): a more advanced alternative to autolabor

	misery: re-added and updated for the 0.4x series

	title-folder: shows DF folder name in window title bar when enabled

New Scripts

	adv-rumors: improves the “Bring up specific incident or rumor” menu in adventure mode

	fix/tile-occupancy: Clears bad occupancy flags on the selected tile.

	install-info: Logs basic troubleshooting information about the current DFHack installation

	load-save: loads a save non-interactively

	modtools/change-build-menu: Edit the build mode sidebar menus

	modtools/if-entity: Run a command if the current entity matches a given ID

	season-palette: Swap color palettes with the changes of the seasons

	unforbid: Unforbids all items

New Tweaks

	tweak condition-material: fixes a crash in the work order condition material list

	tweak hotkey-clear: adds an option to clear bindings from DF hotkeys

Fixes

	The DF path on OS X can now contain spaces and : characters

	Buildings::setOwner() changes now persist properly when saved

	ls now lists scripts in folders other than hack/scripts, when applicable

	Fixed plug output alignment for plugins with long names

	add-thought: fixed support for emotion names

	autochop:

	fixed several issues with job creation and removal

	stopped designating the center tile (unreachable) for large trees

	stopped options from moving when enabling and disabling burrows

	fixed display of unnamed burrows

	devel/find-offsets: fixed a crash when vtables used by globals aren’t available

	getplants:

	fixed several issues with job creation and removal

	stopped designating the center tile (unreachable) for large trees

	gui/workflow: added extra keybinding to work with gui/extended-status

	manipulator:

	Fixed crash when selecting a profession from an empty list

	Custom professions are now sorted alphabetically more reliably

	modtools/create-item:

	made gloves usable by specifying handedness

	now creates pairs of boots and gloves

	modtools/create-unit:

	stopped permanently overwriting the creature creation menu in arena mode

	now uses non-English names

	added -setUnitToFort option to make a unit a civ/group member more easily

	fixed some issues where units would appear in unrevealed areas of the map

	modtools/item-trigger: fixed errors with plant growths

	remotefortressreader: fixed a crash when serializing the local map

	ruby: fixed a crash when unloading the plugin on Windows

	Stonesense: disabled overlay in STANDARD-based print modes to prevent crashes

	title-version: now hidden when loading an arena

Misc Improvements

	Documented all default keybindings (from dfhack.init-example) in the
docs for the relevant commands; updates enforced by build system.

	autounsuspend: reduced update frequency to address potential performance issues

	gui/extended-status: added a feature to queue beds

	lua and gui/gm-editor now support the same aliases (scr, unit, etc.)

	manipulator: added social activities to job column

	remotefortressreader: Added support for

	world map snow coverage

	spatters

	wall info

	site towers, world buildings

	surface material

	building items

	DF version info

	title-version: Added a prerelease indicator

	workflow: Re-added Alt-W keybindings

DFHack 0.43.03-r1

Lua

	Label widgets can now easily register handlers for mouse clicks

New Features

	add-thought: allow syndrome name as -thought argument

	gui/gm-editor

	Added ability to insert default types into containers. For primitive types leave the type entry empty, and for references use *.

	Added shift-esc binding to fully exit from editor

	Added gui/gm-editor toggle command to toggle editor visibility (saving position)

	modtools/create-unit:

	Added an option to attach units to an existing wild animal population

	Added an option to attach units to a map feature

Fixes

	autofarm: Can now handle crops that grow for more than a season

	combine-plants: Fixed recursion into sub-containers

	createitem: Now moves multiple created items to cursor correctly

	exportlegends: Improved handling of unknown enum items (fixes many errors)

	gui/create-item: Fixed quality when creating multiple items

	gui/mod-manager: Fixed error when mods folder doesn’t exist

	modtools/item-trigger: Fixed handling of items with subtypes

	reveal: revflood now handles constructed stairs with floors in generated fortresses

	stockflow:

	Can order metal mechanisms

	Fixed material category of thread-spinning jobs

Misc Improvements

	The built-in ls command now wraps the descriptions of commands

	catsplosion: now a lua script instead of a plugin

	fix/diplomats: replaces fixdiplomats

	fix/merchants: replaces fixmerchants

	prefchange: added a help option

	probe: now displays raw tiletype names

	Unified script documentation and in-terminal help options

Removed

	tweak manager-quantity: no longer needed

DFHack 0.42.06-r1

Internals

	Commands to run on startup can be specified on the command line with +

Example:

./dfhack +devel/print-args example
"Dwarf Fortress.exe" +devel/print-args example

	Prevented plugins with active viewscreens from being unloaded and causing a crash

	Additional script search paths can be specified in dfhack-config/script-paths.txt

Lua

	Building-hacks now supports auto_gears flags. It automatically finds and animates gears in building definition

	Changed how Eventful triggers reaction complete. Now it has onReactionComplete and onReactionCompleting. Second one can be canceled

New Plugins

	autogems: Creates a new Workshop Order setting, automatically cutting rough gems

New Scripts

	devel/save-version: Displays DF version information about the current save

	modtools/extra-gamelog: replaces log-region, soundsense-season, and soundsense

New Features

	buildingplan: Support for floodgates, grates, and bars

	colonies: new place subcommand and supports any vermin (default honey bees)

	confirm: Added a confirmation for retiring locations

	exportlegends: Exports more information (poetic/musical/dance forms, written/artifact content, landmasses, extra histfig information, and more)

	search: Support for new screens:

	location occupation assignment

	civilization animal training knowledge

	animal trainer assignment

	tweak:

	tweak block-labors: Prevents labors that can’t be used from being toggled

	tweak hide-priority: Adds an option to hide designation priority indicators

	tweak title-start-rename: Adds a safe rename option to the title screen “Start Playing” menu

	zone:

	Added unassign subcommand

	Added only option to assign subcommand

Fixes

	Fixed a crash bug caused by the historical figures DFHack uses to store persistent data.

	More plugins should recognize non-dwarf citizens

	Fixed a possible crash from cloning jobs

	moveToBuilding() now sets flags for items that aren’t a structural part of the building properly

	autotrade, stocks: Made trading work when multiple caravans are present but only some can trade

	confirm note-delete: No longer interferes with name entry

	exportlegends: Handles entities without specific races, and a few other fixes for things new to v0.42

	fastdwarf: Fixed a bug involving teleporting mothers but not the babies they’re holding.

	gaydar: Fixed text display on OS X/Linux and failure with soul-less creatures

	manipulator:

	allowed editing of non-dwarf citizens

	stopped ghosts and visitors from being editable

	fixed applying last custom profession

	modtools/create-unit: Stopped making units without civs historical figures

	modtools/force:

	Removed siege option

	Prevented a crash resulting from a bad civilization option

	showmood: Fixed name display on OS X/Linux

	view-item-info: Fixed density units

Misc Improvements

	autochop: Can now edit log minimum/maximum directly and remove limit entirely

	autolabor, autohauler, manipulator: Added support for new jobs/labors/skills

	colonies: now implemented by a script

	createitem: Can now create items anywhere without specifying a unit, as long as a unit exists on the map

	devel/export-dt-ini: Updated for 0.42.06

	devel/find-offsets: Automated several more scans

	gui/gm-editor: Now supports finding some items with a numeric ID (with i)

	lua: Now supports some built-in variables like gui/gm-editor, e.g. unit, screen

	remotefortressreader: Can now trigger keyboard events

	stockflow: Now offers better control over individual craft jobs

	weather: now implemented by a script

	zone: colored output

Removed

	DFusion: legacy script system, obsolete or replaced by better alternatives

DFHack 0.40.24-r5

New Features

	confirm:

	Added a uniform-delete option for military uniform deletion

	Added a basic in-game configuration UI

Fixes

	Fixed a rare crash that could result from running keybinding in onLoadWorld.init

	Script help that doesn’t start with a space is now recognized correctly

	confirm: Fixed issues with haul-delete, route-delete, and squad-disband confirmations intercepting keys too aggressively

	emigration should work now

	fix-unit-occupancy: Significantly optimized - up to 2,000 times faster in large fortresses

	gui/create-item: Allow exiting quantity prompt

	gui/family-affairs: Fixed an issue where lack of relationships wasn’t recognized and other issues

	modtools/create-unit: Fixed a possible issue in reclaim fortress mode

	search: Fixed a crash on the military screen

	tweak max-wheelbarrow: Fixed a minor display issue with large numbers

	workflow: Fixed a crash related to job postings (and added a fix for existing, broken jobs)

Misc Improvements

	Unrecognized command feedback now includes more information about plugins

	fix/dry-buckets: replaces the drybuckets plugin

	feature: now implemented by a script

DFHack 0.40.24-r4

Internals

	A method for caching screen output is now available to Lua (and C++)

	Developer plugins can be ignored on startup by setting the DFHACK_NO_DEV_PLUGINS environment variable

	The console on Linux and OS X now recognizes keyboard input between prompts

	JSON libraries available (C++ and Lua)

	More DFHack build information used in plugin version checks and available to plugins and lua scripts

	Fixed a rare overflow issue that could cause crashes on Linux and OS X

	Stopped DF window from receiving input when unfocused on OS X

	Fixed issues with keybindings involving CtrlA and CtrlZ,
as well as AltE/U/N on OS X

	Multiple contexts can now be specified when adding keybindings

	Keybindings can now use F10-F12 and 0-9

	Plugin system is no longer restricted to plugins that exist on startup

	dfhack.init file locations significantly generalized

Lua

	Scripts can be enabled with the built-in enable/disable commands

	A new function, reqscript(), is available as a safer alternative to script_environment()

	Lua viewscreens can choose not to intercept the OPTIONS keybinding

New internal commands

	kill-lua: Interrupt running Lua scripts

	type: Show where a command is implemented

New plugins

	confirm: Adds confirmation dialogs for several potentially dangerous actions

	fix-unit-occupancy: Fixes issues with unit occupancy, such as faulty “unit blocking tile” messages (Bug 3499 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=3499])

	title-version (formerly vshook): Display DFHack version on title screen

New scripts

	armoks-blessing: Adjust all attributes, personality, age and skills of all dwarves in play

	brainwash: brainwash a dwarf (modifying their personality)

	burial: sets all unowned coffins to allow burial (“-pets” to allow pets too)

	deteriorateclothes: make worn clothes on the ground wear far faster to boost FPS

	deterioratecorpses: make body parts wear away far faster to boost FPS

	deterioratefood: make food vanish after a few months if not used

	elevate-mental: elevate all the mental attributes of a unit

	elevate-physical: elevate all the physical attributes of a unit

	emigration: stressed dwarves may leave your fortress if they see a chance

	fix-ster: changes fertility/sterility of animals or dwarves

	gui/family-affairs: investigate and alter romantic relationships

	make-legendary: modify skill(s) of a single unit

	modtools/create-unit: create new units from nothing

	modtools/equip-item: a script to equip items on units

	points: set number of points available at embark screen

	pref-adjust: Adjust all preferences of all dwarves in play

	rejuvenate: make any “old” dwarf 20 years old

	starvingdead: make undead weaken after one month on the map, and crumble after six

	view-item-info: adds information and customisable descriptions to item viewscreens

	warn-starving: check for starving, thirsty, or very drowsy units and pause with warning if any are found

New tweaks

	embark-profile-name: Allows the use of lowercase letters when saving embark profiles

	kitchen-keys: Fixes DF kitchen meal keybindings

	kitchen-prefs-color: Changes color of enabled items to green in kitchen preferences

	kitchen-prefs-empty: Fixes a layout issue with empty kitchen tabs

Fixes

	Plugins with vmethod hooks can now be reloaded on OS X

	Lua’s os.system() now works on OS X

	Fixed default arguments in Lua gametype detection functions

	Circular lua dependencies (reqscript/script_environment) fixed

	Prevented crash in Items::createItem()

	buildingplan: Now supports hatch covers

	gui/create-item: fixed assigning quality to items, made Esc work properly

	gui/gm-editor: handles lua tables properly

	help: now recognizes built-in commands, like help

	manipulator: fixed crash when selecting custom professions when none are found

	remotefortressreader: fixed crash when attempting to send map info when no map was loaded

	search: fixed crash in unit list after cancelling a job; fixed crash when disabling stockpile category after searching in a subcategory

	stocksettings: now checks/sanitizes filenames when saving

	stocks: fixed a crash when right-clicking

	steam-engine: fixed a crash on arena load; number keys (e.g. 2/8) take priority over cursor keys when applicable

	tweak fps-min fixed

	tweak farm-plot-select: Stopped controls from appearing when plots weren’t fully built

	workflow: Fixed some issues with stuck jobs. Existing stuck jobs must be cancelled and re-added

	zone: Fixed a crash when using zone set (and a few other potential crashes)

Misc Improvements

	DFHack documentation:

	massively reorganised, into files of more readable size

	added many missing entries

	indexes, internal links, offline search all documents

	includes documentation of linked projects (df-structures, third-party scripts)

	better HTML generation with Sphinx

	documentation for scripts now located in source files

	autolabor:

	Stopped modification of labors that shouldn’t be modified for brokers/diplomats

	Prioritize skilled dwarves more efficiently

	Prevent dwarves from running away with tools from previous jobs

	automaterial: Fixed several issues with constructions being allowed/disallowed incorrectly when using box-select

	dwarfmonitor:

	widgets’ positions, formats, etc. are now customizable

	weather display now separated from the date display

	New mouse cursor widget

	gui/dfstatus: Can enable/disable individual categories and customize metal bar list

	full-heal: -r option removes corpses

	gui/gm-editor

	Pointers can now be displaced

	Added some useful aliases: “item” for the selected item, “screen” for the current screen, etc.

	Now avoids errors with unrecognized types

	gui/hack-wish: renamed to gui/create-item

	keybinding list accepts a context

	lever:

	Lists lever names

	lever pull can be used to pull the currently-selected lever

	memview: Fixed display issue

	modtools/create-item: arguments are named more clearly, and you can specify the creator to be the unit with id df.global.unit_next_id-1 (useful in conjunction with modtools/create-unit)

	nyan: Can now be stopped with dfhack-run

	plug: lists all plugins; shows state and number of commands in plugins

	prospect: works from within command-prompt

	quicksave: Restricted to fortress mode

	remotefortressreader: Exposes more information

	search:

	Supports noble suggestion screen (e.g. suggesting a baron)

	Supports fortress mode loo[k] menu

	Recognizes ? and ; keys

	stocks: can now match beginning and end of item names

	teleport: Fixed cursor recognition

	tidlers, twaterlvl: now implemented by scripts instead of a plugin

	tweak:

	debug output now logged to stderr.log instead of console - makes DFHack start faster

	farm-plot-select: Fixed issues with selecting undiscovered crops

	workflow: Improved handling of plant reactions

Removed

	embark-tools nano: 1x1 embarks are now possible in vanilla 0.40.24

DFHack 0.40.24-r3

Internals

	Ruby library now included on OS X - Ruby scripts should work on OS X 10.10

	libstdc++ should work with older versions of OS X

	Added support for onMapLoad.init / onMapUnload.init scripts

	game type detection functions are now available in the World module

	The DFHACK_LOG_MEM_RANGES environment variable can be used to log information to stderr.log on OS X

	Fixed adventure mode menu names

	Fixed command usage information for some commands

Lua

	Lua scripts will only be reloaded if necessary

	Added a df2console() wrapper, useful for printing DF (CP437-encoded) text to the console in a portable way

	Added a strerror() wrapper

New Internal Commands

	hide, show: hide and show the console on Windows

	sc-script: Allows additional scripts to be run when certain events occur (similar to onLoad*.init scripts)

New Plugins

	autohauler: A hauling-only version of autolabor

New Scripts

	modtools/reaction-product-trigger: triggers callbacks when products are produced (contrast with when reactions complete)

New Tweaks

	fps-min: Fixes the in-game minimum FPS setting

	shift-8-scroll: Gives Shift+8 (or *) priority when scrolling menus, instead of scrolling the map

	tradereq-pet-gender: Displays pet genders on the trade request screen

Fixes

	Fixed game type detection in 3dveins, gui/create-item, reveal, seedwatch

	PRELOAD_LIB: More extensible on Linux

	add-spatter, Eventful: Fixed crash on world load

	add-thought: Now has a proper subthought arg.

	Building-hacks: Made buildings produce/consume correct amount of power

	fix-armory: compiles and is available again (albeit with issues)

	gui/gm-editor: Added search option (accessible with “s”)

	hack-wish: Made items stack properly.

	modtools/skill-change: Made level granularity work properly.

	show-unit-syndromes: should work

	stockflow:
	Fixed error message in Arena mode

	no longer checks the DF version

	fixed ballistic arrow head orders

	convinces the bookkeeper to update records more often

	zone: Stopped crash when scrolling cage owner list

Misc Improvements

	autolabor: A negative pool size can be specified to use the most unskilled dwarves

	Building-hacks:
	Added a way to allow building to work even if it consumes more power than is available.

	Added setPower/getPower functions.

	catsplosion: Can now trigger pregnancies in (most) other creatures

	exportlegends: info and all options export legends_plus.xml with more data for legends utilities

	manipulator:
	Added ability to edit nicknames/profession names

	added “Job” as a View Type, in addition to “Profession” and “Squad”

	added custom profession templates with masking

	remotefortressreader: Exposes more information

DFHack 0.40.24-r2

Internals

	Lua scripts can set environment variables of each other with dfhack.run_script_with_env

	Lua scripts can now call each others internal nonlocal functions with dfhack.script_environment(scriptName).functionName(arg1,arg2)

	Eventful: Lua reactions no longer require LUA_HOOK as a prefix; you can register a callback for the completion of any reaction with a name

	Filesystem module now provides file access/modification times and can list directories (normally and recursively)

	Units Module: New functions:

isWar
isHunter
isAvailableForAdoption
isOwnCiv
isOwnRace
getRaceName
getRaceNamePlural
getRaceBabyName
getRaceChildName
isBaby
isChild
isAdult
isEggLayer
isGrazer
isMilkable
isTrainableWar
isTrainableHunting
isTamable
isMale
isFemale
isMerchant
isForest
isMarkedForSlaughter

	Buildings Module: New Functions:

isActivityZone
isPenPasture
isPitPond
isActive
findPenPitAt

Fixes

	dfhack.run_script should correctly find save-specific scripts now.

	add-thought: updated to properly affect stress.

	hfs-pit: should work now

	autobutcher: takes gelding into account

	init.lua existence checks should be more reliable (notably when using non-English locales)

Misc Improvements

Multiline commands are now possible inside dfhack.init scripts. See dfhack.init-example for example usage.

DFHack 0.40.24-r1

Internals

CMake shouldn’t cache DFHACK_RELEASE anymore. People may need to manually update/delete their CMake cache files to get rid of it.

DFHack 0.40.24-r0

Internals

	Events from EventManager: fixed crash error with EQUIPMENT_CHANGE event.

	key modifier state exposed to Lua (ie Ctrl, Alt, Shift)

Fixes

dfhack.sh can now be run from other directories on OS X

New Plugins

	blueprint: export part of your fortress to quickfort .csv files

New Scripts

	hotkey-notes: print key, name, and jump position of hotkeys

Removed

	needs_porting/*

Misc Improvements

Added support for searching more lists

Older Changelogs

Are kept in a seperate file: HISTORY - old changelogs

How to contribute to DFHack

Contents

	How to contribute to DFHack
	Contributing Code
	Code Format

	How to get new code into DFHack

	Memory research

	Using the library as a developer
	DF data structure definitions

	Remote access interface

	Documentation Standards

	Other ways to help

Contributing Code

Several things should be kept in mind when contributing code to DFHack.

Code Format

	Four space indents for C++. Never use tabs for indentation in any language.

	LF (Unix style) line terminators

	Avoid trailing whitespace

	UTF-8 encoding

	For C++:
	Opening and closing braces on their own lines or opening brace at the end of the previous line

	Braces placed at original indent level if on their own lines

	#includes should be sorted. C++ libraries first, then dfhack modules, then df structures,
then local includes. Within each category they should be sorted alphabetically.

How to get new code into DFHack

	Submit pull requests to the develop branch, not the master branch.
(The master branch always points at the most recent release)

	Use a new branch for each feature or bugfix so that your changes can be merged independently
(i.e. not the master or develop branch of your fork).

	If possible, compile on multiple platforms when changing anything that compiles

	It must pass CI - run python travis/all.py to check this.

	Update NEWS.rst and docs/Authors.rst when applicable.

	Create a GitHub pull request once finished

	Submit ideas and bug reports as issues on GitHub [https://github.com/DFHack/dfhack/issues/].
Posts in the forum thread can easily get missed or forgotten.

	Work on reported problems [https://github.com/DFHack/dfhack/issues/?q=is:open+-label:idea]
will take priority over ideas or suggestions.

Memory research

If you want to do memory research, you’ll need some tools and some knowledge.
In general, you’ll need a good memory viewer and optionally something
to look at machine code without getting crazy :)
Using publicly known information and analyzing the game’s data is preferred.

Good windows tools include:

	Cheat Engine

	IDA Pro 5.0 (freely available for non-commercial use)

Good linux tools:

	angavrilov’s df-structures gui (visit us on IRC for details).

	edb (Evan’s Debugger)

	IDA Pro 5.0 running under Wine

	Some of the tools residing in the legacy dfhack branch.

Using the library as a developer

Currently, the most direct way to use the library is to write a script or plugin that can be loaded by it.
All the plugins can be found in the ‘plugins’ folder. There’s no in-depth documentation
on how to write one yet, but it should be easy enough to copy one and just follow the pattern.
plugins/skeleton/skeleton.cpp is provided for this purpose.

Other than through plugins, it is possible to use DFHack via remote access interface,
or by writing scripts in Lua or Ruby. There are plenty of examples in the scripts folder.
The DFHack Lua API is quite well documented.

The most important parts of DFHack are the Core, Console, Modules and Plugins.

	Core acts as the centerpiece of DFHack - it acts as a filter between DF and
SDL and synchronizes the various plugins with DF.

	Console is a thread-safe console that can be used to invoke commands exported by Plugins.

	Modules actually describe the way to access information in DF’s memory. You
can get them from the Core. Most modules are split into two parts: high-level
and low-level. High-level is mostly method calls, low-level publicly visible
pointers to DF’s data structures.

	Plugins are the tools that use all the other stuff to make things happen.
A plugin can have a list of commands that it exports and an onupdate function
that will be called each DF game tick.

Rudimentary API documentation can be built using doxygen (see build options
in CMakeCache.txt or with ccmake or cmake-gui). The full DFHack
documentation is built with Sphinx [http://www.sphinx-doc.org], which runs automatically at compile time.

DFHack consists of variously licensed code, but invariably weak copyleft.
The main license is zlib/libpng, some bits are MIT licensed, and some are
BSD licensed. See the Licenses for more information.

Feel free to add your own extensions and plugins. Contributing back to
the DFHack repository is welcome and the right thing to do :)

DF data structure definitions

DFHack uses information about the game data structures, represented via xml files
in the library/xml/ submodule.

See https://github.com/DFHack/df-structures, and the documentation linked in the index.

Data structure layouts are described in files following the df.*.xml name pattern.
This information is transformed by a perl script into C++ headers describing the
structures, and associated metadata for the Lua wrapper. These headers and data
are then compiled into the DFHack libraries, thus necessitating a compatibility
break every time layouts change; in return it significantly boosts the efficiency
and capabilities of DFHack code.

Global object addresses are stored in symbols.xml, which is copied to the dfhack
release package and loaded as data at runtime.

Remote access interface

DFHack supports remote access by exchanging Google protobuf messages via a TCP
socket. Both the core and plugins can define remotely accessible methods. The
dfhack-run command uses this interface to invoke ordinary console commands.

Currently the supported set of requests is limited, because the developers don’t
know what exactly is most useful. remotefortressreader provides a fairly
comprehensive interface for visualisers such as Armok Vision [http://www.bay12forums.com/smf/index.php?topic=146473].

Documentation Standards

DFHack documentation is built with Sphinx [http://www.sphinx-doc.org], and configured automatically
through CMake. If you want to build the docs only, use this command:

sphinx-build . docs/html

Whether you’re adding new code or just fixing old documentation (and there’s plenty),
there are a few important standards for completeness and consistent style. Treat
this section as a guide rather than iron law, match the surrounding text, and you’ll
be fine.

Each command should have a short (~54 character) help string, which is shown
by the ls command. For scripts, this is a comment on the first line
(the comment marker and whitespace is stripped). For plugins it’s the second
argument to PluginCommand. Please make this brief but descriptive!

Everything should be documented! If it’s not clear where a particular
thing should be documented, ask on IRC or in the DFHack thread on Bay12 -
as well as getting help, you’ll be providing valuable feedback that
makes it easier for future readers!

Scripts can use a custom autodoc function, based on the Sphinx include
directive - anything between the tokens is copied into the appropriate scripts
documentation page. For Ruby, we follow the built-in docstring convention
(=begin and =end). For Lua, the tokens are [====[and]====]
- ordinary multi-line strings. It is highly encouraged to reuse this string
as the in-console documentation by (eg.) printing it when a -help argument
is given.

The docs must have a heading which exactly matches the command, underlined
with ===== to the same length. For example, a lua file would have:

local helpstr = [====[

add-thought
===========
Adds a thought or emotion to the selected unit. Can be used by other scripts,
or the gui invoked by running ``add-thought gui`` with a unit selected.

]====]

Where the heading for a section is also the name of a command, the spelling
and case should exactly match the command to enter in the DFHack command line.

Try to keep lines within 80-100 characters, so it’s readable in plain text
in the terminal - Sphinx (our documentation system) will make sure
paragraphs flow.

If there aren’t many options or examples to show, they can go in a paragraph of
text. Use double-backticks to put commands in monospaced font, like this:

You can use ``cleanowned scattered x`` to dump tattered or abandoned items.

If the command takes more than three arguments, format the list as a table
called Usage. The table only lists arguments, not full commands.
Input values are specified in angle brackets. Example:

Usage:

:arg1: A simple argument.
:arg2 <input>: Does something based on the input value.
:Very long argument:
 Is very specific.

To demonstrate usage - useful mainly when the syntax is complicated, list the
full command with arguments in monospaced font, then indent the next line and
describe the effect:

``resume all``
 Resumes all suspended constructions.

If it would be helpful to mention another DFHack command, don’t just type the
name - add a hyperlink! Specify the link target in backticks, and it will be
replaced with the corresponding title and linked: eg `autolabor`
=> autolabor. Link targets should be equivalent to the command
described (without file extension), and placed above the heading of that
section like this:

.. _autolabor:

autolabor
=========

Add link targets if you need them, but otherwise plain headings are preferred.
Scripts have link targets created automatically.

Other ways to help

DFHack is a software project, but there’s a lot more to it than programming.
If you’re not comfortable programming, you can help by:

	reporting bugs and incomplete documentation

	improving the documentation

	finding third-party scripts to add

	writing tutorials for newbies

All those things are crucial, and often under-represented. So if that’s
your thing, go get started!

Compiling DFHack

You don’t need to compile DFHack unless you’re developing plugins or working on the core.

For users, modders, and authors of scripts it’s better to download
and install the latest release instead.

Contents

	Compiling DFHack
	How to get the code

	Contributing to DFHack

	Build settings

	Linux

	Mac OS X

	Windows

	Building the documentation

	Misc. Notes

How to get the code

DFHack doesn’t have any kind of system of code snapshots in place, so you will have to
get code from the GitHub repository using Git. How to get Git is described under
the instructions for each platform.

To get the latest release code (master branch):

git clone --recursive https://github.com/DFHack/dfhack
cd dfhack

If your version of Git does not support the --recursive flag, you will need to omit it and run
git submodule update --init after entering the dfhack directory.

To get the latest development code (develop branch), clone as above and then:

git checkout develop
git submodule update

Generally, you should only need to clone DFHack once.

Important note regarding submodule update and changing branches:

You must run git submodule update every time you change branches,
such as when switching between the master and develop branches or vice versa.
If a submodule only exists on the newer branch, you also need to run
git submodule update --init. Failure to do this may result in strange
build errors or “not a known DF version” errors.

More notes:

	Note on building DFHack offline - read this if your build machine may not have an internet connection!

	Note on using very old git versions with pre-0.43.03 DFHack versions

Contributing to DFHack

If you want to get involved with the development, create an account on
GitHub, make a clone there and then use that as your remote repository instead.

We’d love that; join us on IRC [https://webchat.freenode.net/?channels=dfhack] (#dfhack channel on freenode) for discussion,
and whenever you need help.

(Note: for submodule issues, please see the above instructions first!)

For lots more details on contributing to DFHack, including pull requests, code format,
and more, please see Contributing Code.

Build settings

Build type

cmake allows you to pick a build type by changing the CMAKE_BUILD_TYPE variable:

cmake .. -DCMAKE_BUILD_TYPE:string=BUILD_TYPE

Without specifying a build type or ‘None’, cmake uses the
CMAKE_CXX_FLAGS variable for building.

Valid and useful build types include ‘Release’, ‘Debug’ and
‘RelWithDebInfo’.
‘Debug’ is not available on Windows; use ‘RelWithDebInfo’ instead.

Target architecture (32-bit vs. 64-bit)

Set DFHACK_BUILD_ARCH to either 32 or 64 to build a 32-bit or 64-bit
version of DFHack (respectively). The default is currently 32, but this may
change, so specifying it explicitly is a good idea.

cmake .. -DDFHACK_BUILD_ARCH=32

or

cmake .. -DDFHACK_BUILD_ARCH=64

Note that the scripts in the “build” folder on Windows will set the architecture
automatically.

Other settings

There are a variety of other settings which you can find in CMakeCache.txt in
your build folder or by running ccmake (or another CMake GUI). Most
DFHack-specific settings begin with BUILD_ and control which parts of DFHack
are built.

Linux

On Linux, DFHack acts as a library that shadows parts of the SDL API using LD_PRELOAD.

Dependencies

DFHack is meant to be installed into an existing DF folder, so get one ready.

We assume that any Linux platform will have git available (though it may
need to be installed with your package manager.)

To build DFHack you need GCC version 4.8 or later. GCC 4.8 is easiest to work
with due to avoiding libstdc++ issues (see below), but any version from 4.8
onwards (including 5.x) will work.

Before you can build anything, you’ll also need cmake. It is advisable to
also get ccmake on distributions that split the cmake package into multiple
parts.

You also need perl and the XML::LibXML and XML::LibXSLT perl packages (for the code generation parts).
You should be able to find them in your distro repositories.

To build Stonesense, you’ll also need OpenGL headers.

Here are some package install commands for various platforms:

	On Arch linux:

	For the required Perl modules: perl-xml-libxml and perl-xml-libxslt (or through cpan)

	On Ubuntu:

apt-get install gcc cmake git zlib1g-dev libxml-libxml-perl libxml-libxslt-perl

	Debian and derived distros should have similar requirements to Ubuntu.

Multilib dependencies

If you want to compile 32-bit DFHack on 64-bit distributions, you’ll need the
multilib development tools and libraries:

	gcc-multilib and g++-multilib

	If you have installed a non-default version of GCC - for example, GCC 4.8 on a
distribution that defaults to 5.x - you may need to add the version number to
the multilib packages.
	For example, gcc-4.8-multilib and g++-4.8-multilib if installing for GCC 4.8
on a system that uses a later GCC version.

	This is definitely required on Ubuntu/Debian, check if using a different distribution.

	zlib1g-dev:i386 (or a similar i386 zlib-dev package)

Note that installing a 32-bit GCC on 64-bit systems (e.g. gcc:i386 on
Debian) will typically not work, as it depends on several other 32-bit
libraries that conflict with system libraries. Alternatively, you might be able
to use lxc to
create a virtual 32-bit environment [http://www.bay12forums.com/smf/index.php?topic=139553.msg5435310#msg5435310].

Build

Building is fairly straightforward. Enter the build folder (or create an
empty folder in the DFHack directory to use instead) and start the build like this:

cd build
cmake .. -DCMAKE_BUILD_TYPE:string=Release -DCMAKE_INSTALL_PREFIX=<path to DF>
make install # or make -jX install on multi-core systems to compile with X parallel processes

<path to DF> should be a path to a copy of Dwarf Fortress, of the appropriate
version for the DFHack you are building. This will build the library along
with the normal set of plugins and install them into your DF folder.

Alternatively, you can use ccmake instead of cmake:

cd build
ccmake ..
make install

This will show a curses-based interface that lets you set all of the
extra options. You can also use a cmake-friendly IDE like KDevelop 4
or the cmake-gui program.

Incompatible libstdc++

When compiling dfhack yourself, it builds against your system libstdc++. When
Dwarf Fortress runs, it uses a libstdc++ shipped with the binary, which comes
from GCC 4.8 and is incompatible with code compiled with newer GCC versions. If
you compile DFHack with a GCC version newer than 4.8, you will see an error
message such as:

./libs/Dwarf_Fortress: /pathToDF/libs/libstdc++.so.6: version
 `GLIBCXX_3.4.18' not found (required by ./hack/libdfhack.so)

To fix this you can compile with GCC 4.8 or remove the libstdc++ shipped with
DF, which causes DF to use your system libstdc++ instead:

cd /path/to/DF/
rm libs/libstdc++.so.6

Note that distributing binaries compiled with newer GCC versions requires end-
users to delete libstdc++ themselves and have a libstdc++ on their system from
the same GCC version or newer. For this reason, distributing anything compiled
with GCC versions newer than 4.8 is discouraged. In the future we may start
bundling a later libstdc++ as part of the DFHack package, so as to enable
compilation-for-distribution with a GCC newer than 4.8.

Mac OS X

DFHack functions similarly on OS X and Linux, and the majority of the
information above regarding the build process (cmake and make) applies here
as well.

DFHack can officially be built on OS X with GCC 4.8. Anything newer than 4.8
will require you to perform extra steps to get DFHack to run (see Notes for GCC 4.9+ or OS X 10.10+ users),
and your build will likely not be redistributable.

Notes for GCC 4.9+ or OS X 10.10+ users

If none of these situations apply to you, skip to Dependencies and system set-up.

If you have issues building on OS X 10.10 (Yosemite) or above, try definining
the following environment variable:

export MACOSX_DEPLOYMENT_TARGET=10.9

If you build with a GCC version newer than 4.8, DFHack will probably crash
immediately on startup, or soon after. To fix this, you will need to replace
hack/libstdc++.6.dylib with a symlink to the libstdc++.6.dylib included
in your version of GCC:

cd <path to df>/hack && mv libstdc++.6.dylib libstdc++.6.dylib.orig &&
ln -s [PATH_TO_LIBSTDC++] .

For example, with GCC 5.2.0, PATH_TO_LIBSTDC++ would be:

/usr/local/Cellar/gcc5/5.2.0/lib/gcc/5/libstdc++.6.dylib # for 64-bit DFHack
/usr/local/Cellar/gcc5/5.2.0/lib/gcc/5/i386/libstdc++.6.dylib # for 32-bit DFHack

Note: If you build with a version of GCC that requires this, your DFHack
build will not be redistributable. (Even if you copy the libstdc++.6.dylib
from your GCC version and distribute that too, it will fail on older OS X
versions.) For this reason, if you plan on distributing DFHack, it is highly
recommended to use GCC 4.8.

Dependencies and system set-up

	Download and unpack a copy of the latest DF

	Install Xcode from the Mac App Store

	Install the XCode Command Line Tools by running the following command:

xcode-select --install

	Install dependencies

It is recommended to use Homebrew instead of MacPorts, as it is generally
cleaner, quicker, and smarter. For example, installing MacPort’s GCC will
install more than twice as many dependencies as Homebrew’s will, and all in
both 32-bit and 64-bit variants. Homebrew also doesn’t require constant use
of sudo.

Using Homebrew [http://brew.sh/] (recommended):

brew tap homebrew/versions
brew install git
brew install cmake
brew install gcc@4.8

Using MacPorts [https://www.macports.org]:

sudo port install gcc48 +universal cmake +universal git-core +universal

Macports will take some time - maybe hours. At some point it may ask
you to install a Java environment; let it do so.

	Install Perl dependencies

	Using system Perl

	sudo cpan

If this is the first time you’ve run cpan, you will need to go through the setup
process. Just stick with the defaults for everything and you’ll be fine.

If you are running OS X 10.6 (Snow Leopard) or earlier, good luck!
You’ll need to open a separate Terminal window and run:

sudo ln -s /usr/include/libxml2/libxml /usr/include/libxml

	install XML::LibXML

	install XML::LibXSLT

	In a separate, local Perl install

Rather than using system Perl, you might also want to consider
the Perl manager, Perlbrew [http://perlbrew.pl].

This manages Perl 5 locally under ~/perl5/, providing an easy
way to install Perl and run CPAN against it without sudo.
It can maintain multiple Perl installs and being local has the
benefit of easy migration and insulation from OS issues and upgrades.

See http://perlbrew.pl/ for more details.

Building

	Get the DFHack source as per section How to get the code, above.

	Set environment variables

Homebrew (if installed elsewhere, replace /usr/local with $(brew --prefix)):

export CC=/usr/local/bin/gcc-4.8
export CXX=/usr/local/bin/g++-4.8

Macports:

export CC=/opt/local/bin/gcc-mp-4.8
export CXX=/opt/local/bin/g++-mp-4.8

Change the version numbers appropriately if you installed a different version of GCC.

	Build dfhack:

mkdir build-osx
cd build-osx
cmake .. -DCMAKE_BUILD_TYPE:string=Release -DCMAKE_INSTALL_PREFIX=<path to DF>
make install # or make -j X install on multi-core systems to compile with X parallel processes

<path to DF> should be a path to a copy of Dwarf Fortress, of the appropriate
version for the DFHack you are building.

Windows

On Windows, DFHack replaces the SDL library distributed with DF.

Dependencies

You will need the following:

	Microsoft Visual Studio 2015, with the C++ language

	Git

	CMake

	Perl with XML::LibXML and XML::LibXSLT
	It is recommended to install StrawberryPerl, which includes both.

	Python (for documentation; optional, except for release builds)

Microsoft Visual Studio 2015

DFHack has to be compiled with the Microsoft Visual C++ 2015 toolchain; other
versions won’t work against Dwarf Fortress due to ABI and STL incompatibilities.

At present, the only way to obtain the MSVC C++ 2015 toolchain is to install a
full copy of Microsoft Visual Studio 2015. The free Community version is
sufficient.

Additional dependencies: installing with the Chocolatey Package Manager

The remainder of dependencies - Git, CMake, StrawberryPerl, and Python - can be
most easily installed using the Chocolatey Package Manger. Chocolatey is a
*nix-style package manager for Windows. It’s fast, small (8-20MB on disk)
and very capable. Think “apt-get for Windows.”

Chocolatey is a recommended way of installing the required dependencies
as it’s quicker, requires less effort, and will install known-good utilities
guaranteed to have the correct setup (especially PATH).

To install Chocolatey and the required dependencies:

	Go to https://chocolatey.org in a web browser

	At the top of the page it will give you the install command to copy

	Copy the first one, which starts @powershell ...

	It won’t be repeated here in case it changes in future Chocolatey releases.

	Open an elevated (Admin) cmd.exe window

	On Windows 8 and later this can be easily achieved by:
	right-clicking on the Start Menu, or pressing Win+X.

	choosing “Command Prompt (Admin)”

	On earlier Windows: find cmd.exe in Start Menu, right click
and choose Open As Administrator.

	Paste in the Chocolatey install command and hit enter

	Close this cmd.exe window and open another Admin cmd.exe in the same way

	Run the following command:

choco install git cmake.portable strawberryperl -y

	Close the Admin cmd.exe window; you’re done!

You can now use all of these utilities from any normal cmd.exe window.
You only need Admin/elevated cmd.exe for running choco install commands;
for all other purposes, including compiling DFHack, you should use
a normal cmd.exe (or, better, an improved terminal like Cmder [http://cmder.net/];
details below, under Build.)

NOTE: you can run the above choco install command even if you already have
Git, CMake or StrawberryPerl installed. Chocolatey will inform you if any software
is already installed and won’t re-install it. In that case, please check the PATHs
are correct for that utility as listed in the manual instructions below. Or, better,
manually uninstall the version you have already and re-install via Chocolatey,
which will ensure the PATH are set up right and will allow Chocolatey to manage
that program for you in future.

Additional dependencies: installing manually

If you prefer to install manually rather than using Chocolatey, details and
requirements are as below. If you do install manually, please ensure you
have all PATHs set up correctly.

Git

Some examples:

	Git for Windows [https://git-for-windows.github.io] (command-line and GUI)

	tortoisegit [https://tortoisegit.org] (GUI and File Explorer integration)

CMake

You can get the win32 installer version from
the official site [http://www.cmake.org/cmake/resources/software.html].
It has the usual installer wizard. Make sure you let it add its binary folder
to your binary search PATH so the tool can be later run from anywhere.

Perl / Strawberry Perl

For the code generation parts you’ll need Perl 5 with XML::LibXML and XML::LibXSLT.
Strawberry Perl [http://strawberryperl.com] is recommended as it includes
all of the required packages in a single, easy install.

After install, ensure Perl is in your user’s PATH. This can be edited from
Control Panel -> System -> Advanced System Settings -> Environment Variables.

The following three directories must be in PATH, in this order:

	<path to perl>\c\bin

	<path to perl>\perl\site\bin

	<path to perl>\perl\bin

Be sure to close and re-open any existing cmd.exe windows after updating
your PATH.

If you already have a different version of Perl (for example the one from Cygwin),
you can run into some trouble. Either remove the other Perl install from PATH, or
install XML::LibXML and XML::LibXSLT for it using CPAN.

Build

There are several different batch files in the win32 and win64
subfolders in the build folder, along with a script that’s used for picking
the DF path. Use the subfolder corresponding to the architecture that you want
to build for.

First, run set_df_path.vbs and point the dialog that pops up at
a suitable DF installation which is of the appropriate version for the DFHack
you are compiling. The result is the creation of the file DF_PATH.txt in
the build directory. It contains the full path to the destination directory.
You could therefore also create this file manually - or copy in a pre-prepared
version - if you prefer.

Next, run one of the scripts with generate prefix. These create the MSVC
solution file(s):

	all will create a solution with everything enabled (and the kitchen sink).

	gui will pop up the CMake GUI and let you choose what to build.
This is probably what you want most of the time. Set the options you are interested
in, then hit configure, then generate. More options can appear after the configure step.

	minimal will create a minimal solution with just the bare necessities -
the main library and standard plugins.

	release will create a solution with everything that should be included in
release builds of DFHack. Note that this includes documentation, which requires
Python.

Then you can either open the solution with MSVC or use one of the msbuild scripts:

Building/installing from the command line:

In the build directory you will find several .bat files:

	Scripts with build prefix will only build DFHack.

	Scripts with install prefix will build DFHack and install it to the previously selected DF path.

	Scripts with package prefix will build and create a .zip package of DFHack.

Compiling from the command line is generally the quickest and easiest option.
However be aware that due to the limitations of cmd.exe - especially in
versions of Windows prior to Windows 10 - it can be very hard to see what happens
during a build. If you get a failure, you may miss important errors or warnings
due to the tiny window size and extremely limited scrollback. For that reason you
may prefer to compile in the IDE which will always show all build output.

Alternatively (or additionally), consider installing an improved Windows terminal
such as Cmder [http://cmder.net/]. Easily installed through Chocolatey with:
choco install cmder -y.

Note for Cygwin/msysgit users: It is also possible to compile DFHack from a
Bash command line. This has three potential benefits:

	When you’ve installed Git and are using its Bash, but haven’t added Git to your path:
	You can load Git’s Bash and as long as it can access Perl and CMake, you can
use it for compile without adding Git to your system path.

	When you’ve installed Cygwin and its SSH server:
	You can now SSH in to your Windows install and compile from a remote terminal;
very useful if your Windows installation is a local VM on a *nix host OS.

	In general: you can use Bash as your compilation terminal, meaning you have a decent
sized window, scrollback, etc.
	Whether you’re accessing it locally as with Git’s Bash, or remotely through
Cygwin’s SSH server, this is far superior to using cmd.exe.

You don’t need to do anything special to compile from Bash. As long as your PATHs
are set up correctly, you can run the same generate- and build/install/package- bat
files as detailed above.

Building/installing from the Visual Studio IDE:

After running the CMake generate script you will have a new folder called VC2015
or VC2015_32, depending on the architecture you specified. Open the file
dfhack.sln inside that folder. If you have multiple versions of Visual
Studio installed, make sure you open with Visual Studio 2015.

The first thing you must then do is change the build type. It defaults to Debug,
but this cannot be used on Windows. Debug is not binary-compatible with DF.
If you try to use a debug build with DF, you’ll only get crashes and for this
reason the Windows “debug” scripts actually do RelWithDebInfo builds.
After loading the Solution, change the Build Type to either Release
or RelWithDebInfo.

Then build the INSTALL target listed under CMakePredefinedTargets.

Building the documentation

DFHack documentation, like the file you are reading now, is created as .rst files,
which are in reStructuredText (reST) [http://sphinx-doc.org/rest.html] format.
This is a documenation format that has come from the Python community. It is very
similar in concept - and in syntax - to Markdown, as found on GitHub and many other
places. However it is more advanced than Markdown, with more features available when
compiled to HTML, such as automatic tables of contents, cross-linking, special
external links (forum, wiki, etc) and more. The documentation is compiled by a
Python tool, Sphinx [http://sphinx-doc.org].

The DFHack build process will compile the documentation but this has been disabled
by default. You only need to build the docs if you’re changing them, or perhaps
if you want a local HTML copy; otherwise, read them easily online at
ReadTheDoc’s DFHack hosted documentation [https://dfhack.readthedocs.org].

(Note that even if you do want a local copy, it is certainly not necesesary to
compile the documentation in order to read it. Like Markdown, reST documents are
designed to be just as readable in a plain-text editor as they are in HTML format.
The main thing you lose in plain text format is hyperlinking.)

Enabling documentation building

First, make sure you have followed all the necessary steps for your platform as
outlined in the rest of this document.

To compile documentation with DFHack, add the following flag to your cmake command:

-DBUILD_DOCS:bool=ON

For example:

cmake .. -DCMAKE_BUILD_TYPE:string=Release -DBUILD_DOCS:bool=ON -DCMAKE_INSTALL_PREFIX=<path to DF>

Alternatively you can use the CMake GUI which allows options to be changed easily.

On Windows you should either use generate-msvc-gui.bat and set the option
through the GUI, or else if you want to use an alternate file, such as
generate-msvc-all.bat, you will need to edit it to add the flag.
Or you could just run cmake on the command line like in other platforms.

Required dependencies

In order to build the documentation, you must have Python with Sphinx
version 1.3.1 or later. Both Python 2.x and 3.x are supported.

When installing Sphinx from OS package managers, be aware that there is
another program called Sphinx, completely unrelated to documentation management.
Be sure you are installing the right Sphinx; it may be called python-sphinx,
for example. To avoid doubt, pip can be used instead as detailed below.

Linux

Most Linux distributions will include Python as standard.

Check your package manager to see if Sphinx 1.3.1 or later is available,
but at the time of writing Ubuntu for example only has 1.2.x.

You can instead install Sphinx with the pip package manager. This may need
to be installed from your OS package manager; this is the case on Ubuntu.
On Ubuntu/Debian, use the following to first install pip:

sudo apt-get install python-pip

Once pip is available, you can then install the Python Sphinx module with:

pip install sphinx

If you run this as a normal user it will install a local copy for your user only.
Run it with sudo if you want a system-wide install. Either is fine for DFHack,
however if installing locally do check that sphinx-build is in your path.
It may be installed in a directory such as ~/.local/bin/, so after pip
install, find sphinx-build and ensure its directory is in your local $PATH.

Mac OS X

OS X has Python 2.7 installed by default, but it does not have the pip package manager.

You can install Homebrew’s Python 3, which includes pip, and then install the
latest Sphinx using pip:

brew install python3
pip3 install sphinx

Alternatively, you can simply install Sphinx 1.3.x directly from Homebrew:

brew install sphinx-doc

This will install Sphinx for OS X’s system Python 2.7, without needing pip.

Either method works; if you plan to use Python for other purposes, it might best
to install Homebrew’s Python 3 so that you have the latest Python as well as pip.
If not, just installing sphinx-doc for OS X’s system Python 2.7 is fine.

Windows

Use the Chocolatey package manager to install Python and pip,
then use pip to install Sphinx.

Run the following commands from an elevated (Admin) cmd.exe, after installing
Chocolatey as outlined in the Windows section:

choco install python pip -y

Then close that Admin cmd.exe, re-open another Admin cmd.exe, and run:

pip install sphinx

Misc. Notes

Note on building DFHack offline

As of 0.43.05, DFHack downloads several files during the build process, depending
on your target OS and architecture. If your build machine’s internet connection
is unreliable, or nonexistent, you can download these files in advance.

First, you must locate the files you will need. These can be found in the
dfhack-bin repo [https://github.com/DFHack/dfhack-bin/releases]. Look for the
most recent version number before or equal to the DF version which you are
building for. For example, suppose “0.43.05” and “0.43.07” are listed. You should
choose “0.43.05” if you are building for 0.43.05 or 0.43.06, and “0.43.07” if
you are building for 0.43.07 or 0.43.08.

Then, download all of the files you need, and save them to <path to DFHack
clone>/CMake/downloads/<any filename>. The destination filename you choose
does not matter, as long as the files end up in the CMake/downloads folder.
You need to download all of the files for the architecture(s) you are building
for. For example, if you are building for 32-bit Linux and 64-bit Windows,
download all files starting with linux32 and win64. GitHub should sort
files alphabetically, so all the files you need should be next to each other.

It is recommended that you create a build folder and run CMake to verify that
you have downloaded everything at this point, assuming your download machine has
CMake installed. This involves running a “generate” batch script on Windows, or
a command starting with cmake .. on Linux and OS X. CMake should
automatically locate files that you placed in CMake/downloads, and use them
instead of attempting to download them.

Note on using very old git versions with pre-0.43.03 DFHack versions

If you are using git 1.8.0 or older, and cloned DFHack before commit 85a920d
(around DFHack v0.43.03-alpha1), you may run into fatal git errors when updating
submodules after switching branches. This is due to those versions of git being
unable to handle our change from “scripts/3rdparty/name” submodules to a single
“scripts” submodule. This may be fixable by renaming .git/modules/scripts to
something else and re-running git submodule update --init on the branch with
the single scripts submodule (and running it again when switching back to the
one with multiple submodules, if necessary), but it is usually much simpler to
upgrade your git version.

Development Changelog

Contents

	Development Changelog
	DFHack 0.43.05-beta2

	DFHack 0.43.05-beta1

	DFHack 0.43.05-alpha4

	DFHack 0.43.05-alpha3

DFHack 0.43.05-beta2

Fixes

	Fixed Buildings::updateBuildings(), along with building creation/deletion events

	Fixed plug output alignment for plugins with long names

	Fixed a crash that happened when a LUA_PATH environment variable was set

	add-thought: fixed number conversion

	gui/workflow: fixed range editing producing the wrong results for certain numbers

	modtools/create-unit: now uses non-English names

	modtools/item-trigger: fixed errors with plant growths

	remotefortressreader: fixed a crash when serializing the local map

	stockflow: fixed an issue with non-integer manager order limits

	title-folder: fixed compatibility issues with certain SDL libraries on macOS

Structures

	Added some missing renderer VTable addresses on macOS

	entity.resources.organic: identified parchment

	entity_sell_category: added Parchment and CupsMugsGoblets

	ui_advmode_menu: added Build

	ui_unit_view_mode: added PrefOccupation

	unit_skill: identified natural_skill_lvl (was unk_1c)

	viewscreen_jobmanagementst: identified max_workshops

	viewscreen_overallstatusst: made visible_pages an enum

	viewscreen_pricest: identified fields

	viewscreen_workquota_conditionst: gave some fields unk names

API Changes

	Allowed the Lua API to accept integer-like floats and strings when expecting an integer

	Lua: New Painter:key_string() method

	Lua: Added dfhack.getArchitecture() and dfhack.getArchitectureName()

Additions/Removals:

	Added adv-rumors script: improves the “Bring up specific incident or rumor” menu in adventure mode

	Added install-info script for basic troubleshooting

	Added tweak condition-material: fixes a crash in the work order condition material list

	Added tweak hotkey-clear: adds an option to clear bindings from DF hotkeys

	autofarm: reverted local biome detection (from 0.43.05-alpha3)

Other Changes

	Added a DOWNLOAD_RUBY CMake option, to allow use of a system/external ruby library

	Added the ability to download files manually before building

	gui/extended-status: added a feature to queue beds

	remotefortressreader: added building items, DF version info

	Stonesense: Added support for 64-bit macOS and Linux

DFHack 0.43.05-beta1

Fixes

	Fixed various crashes on 64-bit Windows related to DFHack screens, notably manipulator

	Fixed addresses of next_id globals on 64-bit Linux (fixes an automaterial/box-select crash)

	ls now lists scripts in folders other than hack/scripts, when applicable

	modtools/create-unit: stopped permanently overwriting the creature creation
menu in arena mode

	season-palette: fixed an issue where only part of the screen was redrawn
after changing the color scheme

	title-version: now hidden when loading an arena

Structures

	file_compressorst: fixed field sizes on x64

	historical_entity: fixed alignment on x64

	ui_sidebar_menus.command_line: fixed field sizes on x64

	viewscreen_choose_start_sitest: added 3 missing fields, renamed in_embark_only_warning

	viewscreen_layer_arena_creaturest: identified more fields

	world.math: identified

	world.murky_pools: identified

Additions/Removals

	generated-creature-renamer: Renames generated creature IDs for use with graphics packs

Other Changes

	title-version: Added a prerelease indicator

DFHack 0.43.05-alpha4

Fixes

	Fixed an issue with uninitialized bitfields that was causing several issues
(disappearing buildings in buildingplan‘s planning mode, strange behavior in
the extended stocks screen, and likely other problems). This issue was
introduced in 0.43.05-alpha3.

	stockflow: Fixed an “integer expected” error

Structures

	Located several globals on 64-bit Linux: flows, timed_events, ui_advmode,
ui_building_assign_type, ui_building_assign_is_marked,
ui_building_assign_units, ui_building_assign_items, and ui_look_list. This
fixes search, zone, and force, among others.

	ui_sidebar_menus: Fixed some x64 alignment issues

Additions/Removals

	Added fix/tile-occupancy: Clears bad occupancy flags on the selected tile.
Useful for fixing blocked tiles introduced by the above buildingplan issue.

	Added a Lua tile-material module

Other Changes

	labormanager: Add support for shell crafts

	manipulator: Custom professions are now sorted alphabetically more reliably

DFHack 0.43.05-alpha3

Fixes

	add-thought: fixed support for emotion names

	autofarm: Made surface farms detect local biome

	devel/export-dt-ini: fixed squad_schedule_entry size

	labormanager:

	Now accounts for unit attributes

	Made instrument-building jobs work (constructed instruments)

	Fixed deconstructing constructed instruments

	Fixed jobs in bowyer’s shops

	Fixed trap component jobs

	Fixed multi-material construction jobs

	Fixed deconstruction of buildings containing items

	Fixed interference caused by “store item in vehicle” jobs

	manipulator: Fixed crash when selecting a profession from an empty list

	ruby:

	Fixed crash on Win64 due to truncated global addresses

	Fixed compilation on Win64

	Use correct raw string length with encodings

Structures

	Changed many comment XML attributes with version numbers to use new
since attribute instead

	activity_event_conflictst.sides: named many fields

	building_def.build_key: fixed size on 64-bit Linux and OS X

	historical_kills:

	unk_30 -> killed_underground_region

	unk_40 -> killed_region

	historical_kills.killed_undead: removed skeletal flag

	ui_advmode: aligned enough so that it doesn’t crash (64-bit OS X/Linux)

	ui_advmode.show_menu: changed from bool to enum

	unit_personality.emotions.flags: now a bitfield

API Changes

	Added DFHack::Job::removeJob() function

	C++: Removed bitfield constructors that take an initial value. These kept
bitfields from being used in unions. Set bitfield.whole directly instead.

	Lua: bitfield.whole now returns an integer, not a decimal

Additions/Removals

	Removed source for treefarm plugin (wasn’t built)

	Added modtools/change-build-menu: Edit the build mode sidebar menus

	Added modtools/if-entity: Run a command if the current entity matches a
given ID

	Added season-palette: Swap color palettes with the changes of the seasons

Other changes

	Changed minimum GCC version to 4.8 on OS X and Linux (earlier versions
wouldn’t have worked on Linux anyway)

	Updated TinyXML from 2.5.3 to 2.6.2

DFHack Lua API

DFHack has extensive support for
the Lua [http://www.lua.org] scripting language, providing access to:

	Raw data structures used by the game.

	Many C++ functions for high-level access to these
structures, and interaction with dfhack itself.

	Some functions exported by C++ plugins.

Lua code can be used both for writing scripts, which
are treated by DFHack command line prompt almost as
native C++ commands, and invoked by plugins written in C++.

This document describes native API available to Lua in detail.
It does not describe all of the utility functions
implemented by Lua files located in hack/lua/*
(library/lua/* in the git repo).

Contents

	DFHack Lua API
	DF data structure wrapper
	Typed object references

	Named types

	Global functions

	Recursive table assignment

	DFHack API
	Native utilities

	C++ function wrappers

	Core interpreter context

	Lua Modules
	Global environment

	utils

	dumper

	class

	In-game UI Library
	gui

	gui.widgets

	Plugins
	burrows

	sort

	Eventful

	Building-hacks

	Luasocket

	Scripts
	Enabling and disabling scripts

	Save init script

DF data structure wrapper

	Typed object references
	Primitive references

	Struct references

	Container references

	Bitfield references

	Named types

	Global functions

	Recursive table assignment

Data structures of the game are defined in XML files located in library/xml
(and online [http://github.com/DFHack/df-structures], and automatically exported
to lua code as a tree of objects and functions under the df global, which
also broadly maps to the df namespace in the headers generated for C++.

Warning

The wrapper provides almost raw access to the memory
of the game, so mistakes in manipulating objects are as likely to
crash the game as equivalent plain C++ code would be.

eg. NULL pointer access is safely detected, but dangling pointers aren’t.

Objects managed by the wrapper can be broadly classified into the following groups:

	Typed object pointers (references).

References represent objects in DF memory with a known type.

In addition to fields and methods defined by the wrapped type,
every reference has some built-in properties and methods.

	Untyped pointers

Represented as lightuserdata.

In assignment to a pointer NULL can be represented either as
nil, or a NULL lightuserdata; reading a NULL pointer field
returns nil.

	Named types

Objects in the df tree that represent identity of struct, class,
enum and bitfield types. They host nested named types, static
methods, builtin properties & methods, and, for enums and bitfields,
the bi-directional mapping between key names and values.

	The global object

df.global corresponds to the df::global namespace, and
behaves as a mix between a named type and a reference, containing
both nested types and fields corresponding to global symbols.

In addition to the global object and top-level types the df
global also contains a few global builtin utility functions.

Typed object references

The underlying primitive lua object is userdata with a metatable.
Every structured field access produces a new userdata instance.

All typed objects have the following built-in features:

	ref1 == ref2, tostring(ref)

References implement equality by type & pointer value, and string conversion.

	pairs(ref)

Returns an iterator for the sequence of actual C++ field names
and values. Fields are enumerated in memory order. Methods and
lua wrapper properties are not included in the iteration.

Warning

a few of the data structures (like ui_look_list)
contain unions with pointers to different types with vtables.
Using pairs on such structs is an almost sure way to crash with
an access violation.

	ref._kind

Returns one of: primitive, struct, container,
or bitfield, as appropriate for the referenced object.

	ref._type

Returns the named type object or a string that represents
the referenced object type.

	ref:sizeof()

Returns size, address

	ref:new()

Allocates a new instance of the same type, and copies data
from the current object.

	ref:delete()

Destroys the object with the C++ delete operator.
If destructor is not available, returns false.

Warning

the lua reference object remains as a dangling
pointer, like a raw C++ pointer would.

	ref:assign(object)

Assigns data from object to ref. Object must either be another
ref of a compatible type, or a lua table; in the latter case
special recursive assignment rules are applied.

	ref:_displace(index[,step])

Returns a new reference with the pointer adjusted by index*step.
Step defaults to the natural object size.

Primitive references

References of the _kind 'primitive' are used for objects
that don’t fit any of the other reference types. Such
references can only appear as a value of a pointer field,
or as a result of calling the _field() method.

They behave as structs with one field value of the right type.

To make working with numeric buffers easier, they also allow
numeric indices. Note that other than excluding negative values
no bound checking is performed, since buffer length is not available.
Index 0 is equivalent to the value field.

Struct references

Struct references are used for class and struct objects.

They implement the following features:

	ref.field, ref.field = value

Valid fields of the structure may be accessed by subscript.

Primitive typed fields, i.e. numbers & strings, are converted
to/from matching lua values. The value of a pointer is a reference
to the target, or nil/NULL. Complex types are represented by
a reference to the field within the structure; unless recursive
lua table assignment is used, such fields can only be read.

Note

In case of inheritance, superclass fields have precedence
over the subclass, but fields shadowed in this way can still
be accessed as ref['subclasstype.field'].

This shadowing order is necessary because vtable-based classes
are automatically exposed in their exact type, and the reverse
rule would make access to superclass fields unreliable.

	ref._field(field)

Returns a reference to a valid field. That is, unlike regular
subscript, it returns a reference to the field within the structure
even for primitive typed fields and pointers.

	ref:vmethod(args...)

Named virtual methods are also exposed, subject to the same
shadowing rules.

	pairs(ref)

Enumerates all real fields (but not methods) in memory
order, which is the same as declaration order.

Container references

Containers represent vectors and arrays, possibly resizable.

A container field can associate an enum to the container
reference, which allows accessing elements using string keys
instead of numerical indices.

Note that two-dimensional arrays in C++ (ie pointers to pointers)
are exposed to lua as one-dimensional. The best way to handle this
is probably array[x].value:_displace(y).

Implemented features:

	ref._enum

If the container has an associated enum, returns the matching
named type object.

	#ref

Returns the length of the container.

	ref[index]

Accesses the container element, using either a 0-based numerical
index, or, if an enum is associated, a valid enum key string.

Accessing an invalid index is an error, but some container types
may return a default value, or auto-resize instead for convenience.
Currently this relaxed mode is implemented by df-flagarray aka BitArray.

	ref._field(index)

Like with structs, returns a pointer to the array element, if possible.
Flag and bit arrays cannot return such pointer, so it fails with an error.

	pairs(ref), ipairs(ref)

If the container has no associated enum, both behave identically,
iterating over numerical indices in order. Otherwise, ipairs still
uses numbers, while pairs tries to substitute enum keys whenever
possible.

	ref:resize(new_size)

Resizes the container if supported, or fails with an error.

	ref:insert(index,item)

Inserts a new item at the specified index. To add at the end,
use #ref, or just '#' as index.

	ref:erase(index)

Removes the element at the given valid index.

Bitfield references

Bitfields behave like special fixed-size containers.
Consider them to be something in between structs and
fixed-size vectors.

The _enum property points to the bitfield type.
Numerical indices correspond to the shift value,
and if a subfield occupies multiple bits, the
ipairs order would have a gap.

Since currently there is no API to allocate a bitfield
object fully in GC-managed lua heap, consider using the
lua table assignment feature outlined below in order to
pass bitfield values to dfhack API functions that need
them, e.g. matinfo:matches{metal=true}.

Named types

Named types are exposed in the df tree with names identical
to the C++ version, except for the :: vs . difference.

All types and the global object have the following features:

	type._kind

Evaluates to one of struct-type, class-type, enum-type,
bitfield-type or global.

	type._identity

Contains a lightuserdata pointing to the underlying
DFHack::type_instance object.

Types excluding the global object also support:

	type:sizeof()

Returns the size of an object of the type.

	type:new()

Creates a new instance of an object of the type.

	type:is_instance(object)

Returns true if object is same or subclass type, or a reference
to an object of same or subclass type. It is permissible to pass
nil, NULL or non-wrapper value as object; in this case the
method returns nil.

In addition to this, enum and bitfield types contain a
bi-directional mapping between key strings and values, and
also map _first_item and _last_item to the min and
max values.

Struct and class types with instance-vector attribute in the
xml have a type.find(key) function that wraps the find
method provided in C++.

Global functions

The df table itself contains the following functions and values:

	NULL, df.NULL

Contains the NULL lightuserdata.

	df.isnull(obj)

Evaluates to true if obj is nil or NULL; false otherwise.

	df.isvalid(obj[,allow_null])

For supported objects returns one of type, voidptr, ref.

If allow_null is true, and obj is nil or NULL, returns null.

Otherwise returns nil.

	df.sizeof(obj)

For types and refs identical to obj:sizeof().
For lightuserdata returns nil, address

	df.new(obj), df.delete(obj), df.assign(obj, obj2)

Equivalent to using the matching methods of obj.

	df._displace(obj,index[,step])

For refs equivalent to the method, but also works with
lightuserdata (step is mandatory then).

	df.is_instance(type,obj)

Equivalent to the method, but also allows a reference as proxy for its type.

	df.new(ptype[,count])

Allocate a new instance, or an array of built-in types.
The ptype argument is a string from the following list:
string, int8_t, uint8_t, int16_t, uint16_t,
int32_t, uint32_t, int64_t, uint64_t, bool,
float, double. All of these except string can be
used with the count argument to allocate an array.

	df.reinterpret_cast(type,ptr)

Converts ptr to a ref of specified type. The type may be anything
acceptable to df.is_instance. Ptr may be nil, a ref,
a lightuserdata, or a number.

Returns nil if NULL, or a ref.

Recursive table assignment

Recursive assignment is invoked when a lua table is assigned
to a C++ object or field, i.e. one of:

	ref:assign{...}

	ref.field = {...}

The general mode of operation is that all fields of the table
are assigned to the fields of the target structure, roughly
emulating the following code:

function rec_assign(ref,table)
 for key,value in pairs(table) do
 ref[key] = value
 end
end

Since assigning a table to a field using = invokes the same
process, it is recursive.

There are however some variations to this process depending
on the type of the field being assigned to:

	If the table contains an assign field, it is
applied first, using the ref:assign(value) method.
It is never assigned as a usual field.

	When a table is assigned to a non-NULL pointer field
using the ref.field = {...} syntax, it is applied
to the target of the pointer instead.

If the pointer is NULL, the table is checked for a new field:

	If it is nil or false, assignment fails with an error.

	If it is true, the pointer is initialized with a newly
allocated object of the declared target type of the pointer.

	Otherwise, table.new must be a named type, or an
object of a type compatible with the pointer. The pointer
is initialized with the result of calling table.new:new().

After this auto-vivification process, assignment proceeds
as if the pointer wasn’t NULL.

Obviously, the new field inside the table is always skipped
during the actual per-field assignment processing.

	If the target of the assignment is a container, a separate
rule set is used:

	If the table contains neither assign nor resize
fields, it is interpreted as an ordinary 1-based lua
array. The container is resized to the #-size of the
table, and elements are assigned in numeric order:

ref:resize(#table);
for i=1,#table do ref[i-1] = table[i] end

	Otherwise, resize must be true, false, or
an explicit number. If it is not false, the container
is resized. After that the usual struct-like ‘pairs’
assignment is performed.

In case resize is true, the size is computed
by scanning the table for the largest numeric key.

This means that in order to reassign only one element of
a container using this system, it is necessary to use:

{ resize=false, [idx]=value }

Since nil inside a table is indistinguishable from missing key,
it is necessary to use df.NULL as a null pointer value.

This system is intended as a way to define a nested object
tree using pure lua data structures, and then materialize it in
C++ memory in one go. Note that if pointer auto-vivification
is used, an error in the middle of the recursive walk would
not destroy any objects allocated in this way, so the user
should be prepared to catch the error and do the necessary
cleanup.

DFHack API

	Native utilities
	Input & Output

	Exception handling

	Miscellaneous

	Locking and finalization

	Persistent configuration storage

	Material info lookup

	Random number generation

	C++ function wrappers
	Gui module

	Job module

	Units module

	Items module

	Maps module

	Burrows module

	Buildings module
	General

	Low-level

	High-level

	Constructions module

	Screen API

	PenArray class

	Filesystem module

	Internal API

	Core interpreter context
	Event type

DFHack utility functions are placed in the dfhack global tree.

Native utilities

Input & Output

	dfhack.print(args...)

Output tab-separated args as standard lua print would do,
but without a newline.

	print(args...), dfhack.println(args...)

A replacement of the standard library print function that
works with DFHack output infrastructure.

	dfhack.printerr(args...)

Same as println; intended for errors. Uses red color and logs to stderr.log.

	dfhack.color([color])

Sets the current output color. If color is nil or -1, resets to default.
Returns the previous color value.

	dfhack.is_interactive()

Checks if the thread can access the interactive console and returns true or false.

	dfhack.lineedit([prompt[,history_filename]])

If the thread owns the interactive console, shows a prompt
and returns the entered string. Otherwise returns nil, error.

Depending on the context, this function may actually yield the
running coroutine and let the C++ code release the core suspend
lock. Using an explicit dfhack.with_suspend will prevent
this, forcing the function to block on input with lock held.

	dfhack.interpreter([prompt[,history_filename[,env]]])

Starts an interactive lua interpreter, using the specified prompt
string, global environment and command-line history file.

If the interactive console is not accessible, returns nil, error.

Exception handling

	dfhack.error(msg[,level[,verbose]])

Throws a dfhack exception object with location and stack trace.
The verbose parameter controls whether the trace is printed by default.

	qerror(msg[,level])

Calls dfhack.error() with verbose being false. Intended to
be used for user-caused errors in scripts, where stack traces are not
desirable.

	dfhack.pcall(f[,args...])

Invokes f via xpcall, using an error function that attaches
a stack trace to the error. The same function is used by SafeCall
in C++, and dfhack.safecall.

	safecall(f[,args...]), dfhack.safecall(f[,args...])

Just like pcall, but also prints the error using printerr before
returning. Intended as a convenience function.

	dfhack.saferesume(coroutine[,args...])

Compares to coroutine.resume like dfhack.safecall vs pcall.

	dfhack.exception

Metatable of error objects used by dfhack. The objects have the
following properties:

	err.where

	The location prefix string, or nil.

	err.message

	The base message string.

	err.stacktrace

	The stack trace string, or nil.

	err.cause

	A different exception object, or nil.

	err.thread

	The coroutine that has thrown the exception.

	err.verbose

	Boolean, or nil; specifies if where and stacktrace should be printed.

	tostring(err), or err:tostring([verbose])

	Converts the exception to string.

	dfhack.exception.verbose

The default value of the verbose argument of err:tostring().

Miscellaneous

	dfhack.VERSION

DFHack version string constant.

	dfhack.curry(func,args...), or curry(func,args...)

Returns a closure that invokes the function with args combined
both from the curry call and the closure call itself. I.e.
curry(func,a,b)(c,d) equals func(a,b,c,d).

Locking and finalization

	dfhack.with_suspend(f[,args...])

Calls f with arguments after grabbing the DF core suspend lock.
Suspending is necessary for accessing a consistent state of DF memory.

Returned values and errors are propagated through after releasing
the lock. It is safe to nest suspends.

Every thread is allowed only one suspend per DF frame, so it is best
to group operations together in one big critical section. A plugin
can choose to run all lua code inside a C++-side suspend lock.

	dfhack.call_with_finalizer(num_cleanup_args,always,cleanup_fn[,cleanup_args...],fn[,args...])

Invokes fn with args, and after it returns or throws an
error calls cleanup_fn with cleanup_args. Any return values from
fn are propagated, and errors are re-thrown.

The num_cleanup_args integer specifies the number of cleanup_args,
and the always boolean specifies if cleanup should be called in any case,
or only in case of an error.

	dfhack.with_finalize(cleanup_fn,fn[,args...])

Calls fn with arguments, then finalizes with cleanup_fn.
Implemented using call_with_finalizer(0,true,...).

	dfhack.with_onerror(cleanup_fn,fn[,args...])

Calls fn with arguments, then finalizes with cleanup_fn on any thrown error.
Implemented using call_with_finalizer(0,false,...).

	dfhack.with_temp_object(obj,fn[,args...])

Calls fn(obj,args...), then finalizes with obj:delete().

Persistent configuration storage

This api is intended for storing configuration options in the world itself.
It probably should be restricted to data that is world-dependent.

Entries are identified by a string key, but it is also possible to manage
multiple entries with the same key; their identity is determined by entry_id.
Every entry has a mutable string value, and an array of 7 mutable ints.

	dfhack.persistent.get(key), entry:get()

Retrieves a persistent config record with the given string key,
or refreshes an already retrieved entry. If there are multiple
entries with the same key, it is undefined which one is retrieved
by the first version of the call.

Returns entry, or nil if not found.

	dfhack.persistent.delete(key), entry:delete()

Removes an existing entry. Returns true if succeeded.

	dfhack.persistent.get_all(key[,match_prefix])

Retrieves all entries with the same key, or starting with key..’/’.
Calling get_all('',true) will match all entries.

If none found, returns nil; otherwise returns an array of entries.

	dfhack.persistent.save({key=str1, ...}[,new]), entry:save([new])

Saves changes in an entry, or creates a new one. Passing true as
new forces creation of a new entry even if one already exists;
otherwise the existing one is simply updated.
Returns entry, did_create_new

Since the data is hidden in data structures owned by the DF world,
and automatically stored in the save game, these save and retrieval
functions can just copy values in memory without doing any actual I/O.
However, currently every entry has a 180+-byte dead-weight overhead.

It is also possible to associate one bit per map tile with an entry,
using these two methods:

	entry:getTilemask(block[, create])

Retrieves the tile bitmask associated with this entry in the given map
block. If create is true, an empty mask is created if none exists;
otherwise the function returns nil, which must be assumed to be the same
as an all-zero mask.

	entry:deleteTilemask(block)

Deletes the associated tile mask from the given map block.

Note that these masks are only saved in fortress mode, and also that deleting
the persistent entry will NOT delete the associated masks.

Material info lookup

A material info record has fields:

	type, index, material

DF material code pair, and a reference to the material object.

	mode

One of 'builtin', 'inorganic', 'plant', 'creature'.

	inorganic, plant, creature

If the material is of the matching type, contains a reference to the raw object.

	figure

For a specific creature material contains a ref to the historical figure.

Functions:

	dfhack.matinfo.decode(type,index)

Looks up material info for the given number pair; if not found, returs nil.

decode(matinfo),decode(item),decode(obj)

Uses matinfo.type/matinfo.index, item getter vmethods,
or obj.mat_type/obj.mat_index to get the code pair.

	dfhack.matinfo.find(token[,token...])

Looks up material by a token string, or a pre-split string token sequence.

	dfhack.matinfo.getToken(...), info:getToken()

Applies decode and constructs a string token.

	info:toString([temperature[,named]])

Returns the human-readable name at the given temperature.

	info:getCraftClass()

Returns the classification used for craft skills.

	info:matches(obj)

Checks if the material matches job_material_category or job_item.
Accept dfhack_material_category auto-assign table.

Random number generation

	dfhack.random.new([seed[,perturb_count]])

Creates a new random number generator object. Without any
arguments, the object is initialized using current time.
Otherwise, the seed must be either a non-negative integer,
or a list of such integers. The second argument may specify
the number of additional randomization steps performed to
improve the initial state.

	rng:init([seed[,perturb_count]])

Re-initializes an already existing random number generator object.

	rng:random([limit])

Returns a random integer. If limit is specified, the value
is in the range [0, limit); otherwise it uses the whole 32-bit
unsigned integer range.

	rng:drandom()

Returns a random floating-point number in the range [0,1).

	rng:drandom0()

Returns a random floating-point number in the range (0,1).

	rng:drandom1()

Returns a random floating-point number in the range [0,1].

	rng:unitrandom()

Returns a random floating-point number in the range [-1,1].

	rng:unitvector([size])

Returns multiple values that form a random vector of length 1,
uniformly distributed over the corresponding sphere surface.
The default size is 3.

	fn = rng:perlin([dim]); fn(x[,y[,z]])

Returns a closure that computes a classical Perlin noise function
of dimension dim, initialized from this random generator.
Dimension may be 1, 2 or 3 (default).

C++ function wrappers

Thin wrappers around C++ functions, similar to the ones for virtual methods.
One notable difference is that these explicit wrappers allow argument count
adjustment according to the usual lua rules, so trailing false/nil arguments
can be omitted.

	dfhack.getOSType()

Returns the OS type string from symbols.xml.

	dfhack.getDFVersion()

Returns the DF version string from symbols.xml.

	dfhack.getDFHackVersion()

	dfhack.getDFHackRelease()

	dfhack.getCompiledDFVersion()

	dfhack.getGitDescription()

	dfhack.getGitCommit()

	dfhack.isRelease()

Return information about the DFHack build in use.

Note

getCompiledDFVersion() returns the DF version specified at compile time,
while getDFVersion() returns the version and typically the OS as well.
These do not necessarily match - for example, DFHack 0.34.11-r5 worked with
DF 0.34.10 and 0.34.11, so the former function would always return 0.34.11
while the latter would return v0.34.10 <platform> or v0.34.11 <platform>.

	dfhack.getDFPath()

Returns the DF directory path.

	dfhack.getHackPath()

Returns the dfhack directory path, i.e. ".../df/hack/".

	dfhack.getSavePath()

Returns the path to the current save directory, or nil if no save loaded.

	dfhack.getTickCount()

Returns the tick count in ms, exactly as DF ui uses.

	dfhack.isWorldLoaded()

Checks if the world is loaded.

	dfhack.isMapLoaded()

Checks if the world and map are loaded.

	dfhack.TranslateName(name[,in_english,only_last_name])

Convert a language_name or only the last name part to string.

	dfhack.df2utf(string)

Convert a string from DF’s CP437 encoding to UTF-8.

	dfhack.df2console()

Convert a string from DF’s CP437 encoding to the correct encoding for the
DFHack console.

	dfhack.utf2df(string)

Convert a string from UTF-8 to DF’s CP437 encoding.

Note: When printing CP437-encoded text to the console (for example, names
returned from TranslateName()), use print(dfhack.df2console(text) to ensure
proper display on all platforms.

Gui module

	dfhack.gui.getCurViewscreen([skip_dismissed])

Returns the topmost viewscreen. If skip_dismissed is true,
ignores screens already marked to be removed.

	dfhack.gui.getFocusString(viewscreen)

Returns a string representation of the current focus position
in the ui. The string has a “screen/foo/bar/baz...” format.

	dfhack.gui.getCurFocus([skip_dismissed])

Returns the focus string of the current viewscreen.

	dfhack.gui.getViewscreenByType(type [, depth])

Returns the topmost viewscreen out of the top depth viewscreens with
the specified type (e.g. df.viewscreen_titlest), or nil if none match.
If depth is not specified or is less than 1, all viewscreens are checked.

	dfhack.gui.getSelectedWorkshopJob([silent])

When a job is selected in q mode, returns the job, else
prints error unless silent and returns nil.

	dfhack.gui.getSelectedJob([silent])

Returns the job selected in a workshop or unit/jobs screen.

	dfhack.gui.getSelectedUnit([silent])

Returns the unit selected via v, k, unit/jobs, or
a full-screen item view of a cage or suchlike.

	dfhack.gui.getSelectedItem([silent])

Returns the item selected via v ->inventory, k, t, or
a full-screen item view of a container. Note that in the
last case, the highlighted contained item is returned, not
the container itself.

	dfhack.gui.getSelectedBuilding([silent])

Returns the building selected via q, t, k or i.

	dfhack.gui.getSelectedPlant([silent])

Returns the plant selected via k.

	dfhack.gui.writeToGamelog(text)

Writes a string to gamelog.txt without doing an announcement.

	dfhack.gui.makeAnnouncement(type,flags,pos,text,color[,is_bright])

Adds an announcement with given announcement_type, text, color, and brightness.
The is_bright boolean actually seems to invert the brightness.

The announcement is written to gamelog.txt. The announcement_flags
argument provides a custom set of announcements.txt options,
which specify if the message should actually be displayed in the
announcement list, and whether to recenter or show a popup.

Returns the index of the new announcement in df.global.world.status.reports, or -1.

	dfhack.gui.addCombatReport(unit,slot,report_index)

Adds the report with the given index (returned by makeAnnouncement)
to the specified group of the given unit. Returns true on success.

	dfhack.gui.addCombatReportAuto(unit,flags,report_index)

Adds the report with the given index to the appropriate group(s)
of the given unit, as requested by the flags.

	dfhack.gui.showAnnouncement(text,color[,is_bright])

Adds a regular announcement with given text, color, and brightness.
The is_bright boolean actually seems to invert the brightness.

	dfhack.gui.showZoomAnnouncement(type,pos,text,color[,is_bright])

Like above, but also specifies a position you can zoom to from the announcement menu.

	dfhack.gui.showPopupAnnouncement(text,color[,is_bright])

Pops up a titan-style modal announcement window.

	dfhack.gui.showAutoAnnouncement(type,pos,text,color[,is_bright,unit1,unit2])

Uses the type to look up options from announcements.txt, and calls the above
operations accordingly. The units are used to call addCombatReportAuto.

Job module

	dfhack.job.cloneJobStruct(job)

Creates a deep copy of the given job.

	dfhack.job.printJobDetails(job)

Prints info about the job.

	dfhack.job.printItemDetails(jobitem,idx)

Prints info about the job item.

	dfhack.job.getGeneralRef(job, type)

Searches for a general_ref with the given type.

	dfhack.job.getSpecificRef(job, type)

Searches for a specific_ref with the given type.

	dfhack.job.getHolder(job)

Returns the building holding the job.

	dfhack.job.getWorker(job)

Returns the unit performing the job.

	dfhack.job.setJobCooldown(building,worker,timeout)

Prevent the worker from taking jobs at the specified workshop for the specified time.
This doesn’t decrease the timeout in any circumstances.

	dfhack.job.removeWorker(job,timeout)

Removes the worker from the specified workshop job, and sets the cooldown.
Returns true on success.

	dfhack.job.checkBuildingsNow()

Instructs the game to check buildings for jobs next frame and assign workers.

	dfhack.job.checkDesignationsNow()

Instructs the game to check designations for jobs next frame and assign workers.

	dfhack.job.is_equal(job1,job2)

Compares important fields in the job and nested item structures.

	dfhack.job.is_item_equal(job_item1,job_item2)

Compares important fields in the job item structures.

	dfhack.job.linkIntoWorld(job,new_id)

Adds job into df.global.job_list, and if new_id
is true, then also sets its id and increases
df.global.job_next_id

	dfhack.job.listNewlyCreated(first_id)

Returns the current value of df.global.job_next_id, and
if there are any jobs with first_id <= id < job_next_id,
a lua list containing them.

	dfhack.job.isSuitableItem(job_item, item_type, item_subtype)

Does basic sanity checks to verify if the suggested item type matches
the flags in the job item.

	dfhack.job.isSuitableMaterial(job_item, mat_type, mat_index)

Likewise, if replacing material.

	dfhack.job.getName(job)

Returns the job’s description, as seen in the Units and Jobs screens.

Units module

	dfhack.units.getPosition(unit)

Returns true x,y,z of the unit, or nil if invalid; may be not equal to unit.pos if caged.

	dfhack.units.getGeneralRef(unit, type)

Searches for a general_ref with the given type.

	dfhack.units.getSpecificRef(unit, type)

Searches for a specific_ref with the given type.

	dfhack.units.getContainer(unit)

Returns the container (cage) item or nil.

	dfhack.units.setNickname(unit,nick)

Sets the unit’s nickname properly.

	dfhack.units.getVisibleName(unit)

Returns the language_name object visible in game, accounting for false identities.

	dfhack.units.getIdentity(unit)

Returns the false identity of the unit if it has one, or nil.

	dfhack.units.getNemesis(unit)

Returns the nemesis record of the unit if it has one, or nil.

	dfhack.units.isHidingCurse(unit)

Checks if the unit hides improved attributes from its curse.

	dfhack.units.getPhysicalAttrValue(unit, attr_type)

	dfhack.units.getMentalAttrValue(unit, attr_type)

Computes the effective attribute value, including curse effect.

	dfhack.units.isCrazed(unit)

	dfhack.units.isOpposedToLife(unit)

	dfhack.units.hasExtravision(unit)

	dfhack.units.isBloodsucker(unit)

Simple checks of caste attributes that can be modified by curses.

	dfhack.units.getMiscTrait(unit, type[, create])

Finds (or creates if requested) a misc trait object with the given id.

	dfhack.units.isDead(unit)

The unit is completely dead and passive, or a ghost.

	dfhack.units.isAlive(unit)

The unit isn’t dead or undead.

	dfhack.units.isSane(unit)

The unit is capable of rational action, i.e. not dead, insane, zombie, or active werewolf.

	dfhack.units.isDwarf(unit)

The unit is of the correct race of the fortress.

	dfhack.units.isCitizen(unit)

The unit is an alive sane citizen of the fortress; wraps the
same checks the game uses to decide game-over by extinction.

	dfhack.units.getAge(unit[,true_age])

Returns the age of the unit in years as a floating-point value.
If true_age is true, ignores false identities.

	dfhack.units.getNominalSkill(unit, skill[, use_rust])

Retrieves the nominal skill level for the given unit. If use_rust
is true, subtracts the rust penalty.

	dfhack.units.getEffectiveSkill(unit, skill)

Computes the effective rating for the given skill, taking into account exhaustion, pain etc.

	dfhack.units.getExperience(unit, skill[, total])

Returns the experience value for the given skill. If total is true, adds experience implied by the current rating.

	dfhack.units.computeMovementSpeed(unit)

Computes number of frames * 100 it takes the unit to move in its current state of mind and body.

	dfhack.units.computeSlowdownFactor(unit)

Meandering and floundering in liquid introduces additional slowdown. It is
random, but the function computes and returns the expected mean factor as a float.

	dfhack.units.getNoblePositions(unit)

Returns a list of tables describing noble position assignments, or nil.
Every table has fields entity, assignment and position.

	dfhack.units.getProfessionName(unit[,ignore_noble,plural])

Retrieves the profession name using custom profession, noble assignments
or raws. The ignore_noble boolean disables the use of noble positions.

	dfhack.units.getCasteProfessionName(race,caste,prof_id[,plural])

Retrieves the profession name for the given race/caste using raws.

	dfhack.units.getProfessionColor(unit[,ignore_noble])

Retrieves the color associated with the profession, using noble assignments
or raws. The ignore_noble boolean disables the use of noble positions.

	dfhack.units.getCasteProfessionColor(race,caste,prof_id)

Retrieves the profession color for the given race/caste using raws.

Items module

	dfhack.items.getPosition(item)

Returns true x,y,z of the item, or nil if invalid; may be not equal to item.pos if in inventory.

	dfhack.items.getDescription(item, type[, decorate])

Returns the string description of the item, as produced by the getItemDescription
method. If decorate is true, also adds markings for quality and improvements.

	dfhack.items.getGeneralRef(item, type)

Searches for a general_ref with the given type.

	dfhack.items.getSpecificRef(item, type)

Searches for a specific_ref with the given type.

	dfhack.items.getOwner(item)

Returns the owner unit or nil.

	dfhack.items.setOwner(item,unit)

Replaces the owner of the item. If unit is nil, removes ownership.
Returns false in case of error.

	dfhack.items.getContainer(item)

Returns the container item or nil.

	dfhack.items.getContainedItems(item)

Returns a list of items contained in this one.

	dfhack.items.getHolderBuilding(item)

Returns the holder building or nil.

	dfhack.items.getHolderUnit(item)

Returns the holder unit or nil.

	dfhack.items.moveToGround(item,pos)

Move the item to the ground at position. Returns false if impossible.

	dfhack.items.moveToContainer(item,container)

Move the item to the container. Returns false if impossible.

	dfhack.items.moveToBuilding(item,building[,use_mode[,force_in_building])

Move the item to the building. Returns false if impossible.

use_mode defaults to 0. If set to 2, the item will be treated as part of the building.

If force_in_building is true, the item will be considered to be stored by the building
(used for items temporarily used in traps in vanilla DF)

	dfhack.items.moveToInventory(item,unit,use_mode,body_part)

Move the item to the unit inventory. Returns false if impossible.

	dfhack.items.remove(item[, no_uncat])

Removes the item, and marks it for garbage collection unless no_uncat is true.

	dfhack.items.makeProjectile(item)

Turns the item into a projectile, and returns the new object, or nil if impossible.

	dfhack.items.isCasteMaterial(item_type)

Returns true if this item type uses a creature/caste pair as its material.

	dfhack.items.getSubtypeCount(item_type)

Returns the number of raw-defined subtypes of the given item type, or -1 if not applicable.

	dfhack.items.getSubtypeDef(item_type, subtype)

Returns the raw definition for the given item type and subtype, or nil if invalid.

	dfhack.items.getItemBaseValue(item_type, subtype, material, mat_index)

Calculates the base value for an item of the specified type and material.

	dfhack.items.getValue(item)

Calculates the Basic Value of an item, as seen in the View Item screen.

Maps module

	dfhack.maps.getSize()

Returns map size in blocks: x, y, z

	dfhack.maps.getTileSize()

Returns map size in tiles: x, y, z

	dfhack.maps.getBlock(x,y,z)

Returns a map block object for given x,y,z in local block coordinates.

	dfhack.maps.isValidTilePos(coords), or isValidTilePos(x,y,z)

Checks if the given df::coord or x,y,z in local tile coordinates are valid.

	dfhack.maps.getTileBlock(coords), or getTileBlock(x,y,z)

Returns a map block object for given df::coord or x,y,z in local tile coordinates.

	dfhack.maps.ensureTileBlock(coords), or ensureTileBlock(x,y,z)

Like getTileBlock, but if the block is not allocated, try creating it.

	dfhack.maps.getTileType(coords), or getTileType(x,y,z)

Returns the tile type at the given coordinates, or nil if invalid.

	dfhack.maps.getTileFlags(coords), or getTileFlags(x,y,z)

Returns designation and occupancy references for the given coordinates, or nil, nil if invalid.

	dfhack.maps.getRegionBiome(region_coord2d), or getRegionBiome(x,y)

Returns the biome info struct for the given global map region.

	dfhack.maps.enableBlockUpdates(block[,flow,temperature])

Enables updates for liquid flow or temperature, unless already active.

	dfhack.maps.spawnFlow(pos,type,mat_type,mat_index,dimension)

Spawns a new flow (i.e. steam/mist/dust/etc) at the given pos, and with
the given parameters. Returns it, or nil if unsuccessful.

	dfhack.maps.getGlobalInitFeature(index)

Returns the global feature object with the given index.

	dfhack.maps.getLocalInitFeature(region_coord2d,index)

Returns the local feature object with the given region coords and index.

	dfhack.maps.getTileBiomeRgn(coords), or getTileBiomeRgn(x,y,z)

Returns x, y for use with getRegionBiome.

	dfhack.maps.canWalkBetween(pos1, pos2)

Checks if a dwarf may be able to walk between the two tiles,
using a pathfinding cache maintained by the game.

Note

This cache is only updated when the game is unpaused, and thus
can get out of date if doors are forbidden or unforbidden, or
tools like liquids or tiletypes are used. It also cannot possibly
take into account anything that depends on the actual units, like
burrows, or the presence of invaders.

	dfhack.maps.hasTileAssignment(tilemask)

Checks if the tile_bitmask object is not nil and contains any set bits; returns true or false.

	dfhack.maps.getTileAssignment(tilemask,x,y)

Checks if the tile_bitmask object is not nil and has the relevant bit set; returns true or false.

	dfhack.maps.setTileAssignment(tilemask,x,y,enable)

Sets the relevant bit in the tile_bitmask object to the enable argument.

	dfhack.maps.resetTileAssignment(tilemask[,enable])

Sets all bits in the mask to the enable argument.

Burrows module

	dfhack.burrows.findByName(name)

Returns the burrow pointer or nil.

	dfhack.burrows.clearUnits(burrow)

Removes all units from the burrow.

	dfhack.burrows.isAssignedUnit(burrow,unit)

Checks if the unit is in the burrow.

	dfhack.burrows.setAssignedUnit(burrow,unit,enable)

Adds or removes the unit from the burrow.

	dfhack.burrows.clearTiles(burrow)

Removes all tiles from the burrow.

	dfhack.burrows.listBlocks(burrow)

Returns a table of map block pointers.

	dfhack.burrows.isAssignedTile(burrow,tile_coord)

Checks if the tile is in burrow.

	dfhack.burrows.setAssignedTile(burrow,tile_coord,enable)

Adds or removes the tile from the burrow. Returns false if invalid coords.

	dfhack.burrows.isAssignedBlockTile(burrow,block,x,y)

Checks if the tile within the block is in burrow.

	dfhack.burrows.setAssignedBlockTile(burrow,block,x,y,enable)

Adds or removes the tile from the burrow. Returns false if invalid coords.

Buildings module

General

	dfhack.buildings.getGeneralRef(building, type)

Searches for a general_ref with the given type.

	dfhack.buildings.getSpecificRef(building, type)

Searches for a specific_ref with the given type.

	dfhack.buildings.setOwner(item,unit)

Replaces the owner of the building. If unit is nil, removes ownership.
Returns false in case of error.

	dfhack.buildings.getSize(building)

Returns width, height, centerx, centery.

	dfhack.buildings.findAtTile(pos), or findAtTile(x,y,z)

Scans the buildings for the one located at the given tile.
Does not work on civzones. Warning: linear scan if the map
tile indicates there are buildings at it.

	dfhack.buildings.findCivzonesAt(pos), or findCivzonesAt(x,y,z)

Scans civzones, and returns a lua sequence of those that touch
the given tile, or nil if none.

	dfhack.buildings.getCorrectSize(width, height, type, subtype, custom, direction)

Computes correct dimensions for the specified building type and orientation,
using width and height for flexible dimensions.
Returns is_flexible, width, height, center_x, center_y.

	dfhack.buildings.checkFreeTiles(pos,size[,extents,change_extents,allow_occupied])

Checks if the rectangle defined by pos and size, and possibly extents,
can be used for placing a building. If change_extents is true, bad tiles
are removed from extents. If allow_occupied, the occupancy test is skipped.

	dfhack.buildings.countExtentTiles(extents,defval)

Returns the number of tiles included by extents, or defval.

	dfhack.buildings.containsTile(building, x, y[, room])

Checks if the building contains the specified tile, either directly, or as room.

	dfhack.buildings.hasSupport(pos,size)

Checks if a bridge constructed at specified position would have
support from terrain, and thus won’t collapse if retracted.

	dfhack.buildings.getStockpileContents(stockpile)

Returns a list of items stored on the given stockpile.
Ignores empty bins, barrels, and wheelbarrows assigned as storage and transport for that stockpile.

Low-level

Low-level building creation functions:

	dfhack.buildings.allocInstance(pos, type, subtype, custom)

Creates a new building instance of given type, subtype and custom type,
at specified position. Returns the object, or nil in case of an error.

	dfhack.buildings.setSize(building, width, height, direction)

Configures an object returned by allocInstance, using specified
parameters wherever appropriate. If the building has fixed size along
any dimension, the corresponding input parameter will be ignored.
Returns false if the building cannot be placed, or true, width,
height, rect_area, true_area. Returned width and height are the
final values used by the building; true_area is less than rect_area
if any tiles were removed from designation.

	dfhack.buildings.constructAbstract(building)

Links a fully configured object created by allocInstance into the
world. The object must be an abstract building, i.e. a stockpile or civzone.
Returns true, or false if impossible.

	dfhack.buildings.constructWithItems(building, items)

Links a fully configured object created by allocInstance into the
world for construction, using a list of specific items as material.
Returns true, or false if impossible.

	dfhack.buildings.constructWithFilters(building, job_items)

Links a fully configured object created by allocInstance into the
world for construction, using a list of job_item filters as inputs.
Returns true, or false if impossible. Filter objects are claimed
and possibly destroyed in any case.
Use a negative quantity field value to auto-compute the amount
from the size of the building.

	dfhack.buildings.deconstruct(building)

Destroys the building, or queues a deconstruction job.
Returns true if the building was destroyed and deallocated immediately.

High-level

More high-level functions are implemented in lua and can be loaded by
require('dfhack.buildings'). See hack/lua/dfhack/buildings.lua.

Among them are:

	dfhack.buildings.getFiltersByType(argtable,type,subtype,custom)

Returns a sequence of lua structures, describing input item filters
suitable for the specified building type, or nil if unknown or invalid.
The returned sequence is suitable for use as the job_items argument
of constructWithFilters.
Uses tables defined in buildings.lua.

Argtable members material (the default name), bucket, barrel,
chain, mechanism, screw, pipe, anvil, weapon are used to
augment the basic attributes with more detailed information if the
building has input items with the matching name (see the tables for naming details).
Note that it is impossible to override any properties this way, only supply those that
are not mentioned otherwise; one exception is that flags2.non_economic
is automatically cleared if an explicit material is specified.

	dfhack.buildings.constructBuilding{...}

Creates a building in one call, using options contained
in the argument table. Returns the building, or nil, error.

Note

Despite the name, unless the building is abstract,
the function creates it in an ‘unconstructed’ stage, with
a queued in-game job that will actually construct it. I.e.
the function replicates programmatically what can be done
through the construct building menu in the game ui, except
that it does less environment constraint checking.

The following options can be used:

	pos = coordinates, or x = ..., y = ..., z = ...

Mandatory. Specifies the left upper corner of the building.

	type = df.building_type.FOO, subtype = ..., custom = ...

Mandatory. Specifies the type of the building. Obviously, subtype
and custom are only expected if the type requires them.

	fields = { ... }

Initializes fields of the building object after creation with df.assign.

	width = ..., height = ..., direction = ...

Sets size and orientation of the building. If it is
fixed-size, specified dimensions are ignored.

	full_rectangle = true

For buildings like stockpiles or farm plots that can normally
accomodate individual tile exclusion, forces an error if any
tiles within the specified width*height are obstructed.

	items = { item, item ... }, or filters = { {...}, {...}... }

Specifies explicit items or item filters to use in construction.
It is the job of the user to ensure they are correct for the building type.

	abstract = true

Specifies that the building is abstract and does not require construction.
Required for stockpiles and civzones; an error otherwise.

	material = {...}, mechanism = {...}, ...

If none of items, filter, or abstract is used,
the function uses getFiltersByType to compute the input
item filters, and passes the argument table through. If no filters
can be determined this way, constructBuilding throws an error.

Constructions module

	dfhack.constructions.designateNew(pos,type,item_type,mat_index)

Designates a new construction at given position. If there already is
a planned but not completed construction there, changes its type.
Returns true, or false if obstructed.
Note that designated constructions are technically buildings.

	dfhack.constructions.designateRemove(pos), or designateRemove(x,y,z)

If there is a construction or a planned construction at the specified
coordinates, designates it for removal, or instantly cancels the planned one.
Returns true, was_only_planned if removed; or false if none found.

Screen API

The screen module implements support for drawing to the tiled screen of the game.
Note that drawing only has any effect when done from callbacks, so it can only
be feasibly used in the core context.

Basic painting functions:

	dfhack.screen.getWindowSize()

Returns width, height of the screen.

	dfhack.screen.getMousePos()

Returns x,y of the tile the mouse is over.

	dfhack.screen.inGraphicsMode()

Checks if [GRAPHICS:YES] was specified in init.

	dfhack.screen.paintTile(pen,x,y[,char,tile])

Paints a tile using given parameters. See below for a description of pen.

Returns false if coordinates out of bounds, or other error.

	dfhack.screen.readTile(x,y)

Retrieves the contents of the specified tile from the screen buffers.
Returns a pen object, or nil if invalid or TrueType.

	dfhack.screen.paintString(pen,x,y,text)

Paints the string starting at x,y. Uses the string characters
in sequence to override the ch field of pen.

Returns true if painting at least one character succeeded.

	dfhack.screen.fillRect(pen,x1,y1,x2,y2)

Fills the rectangle specified by the coordinates with the given pen.
Returns true if painting at least one character succeeded.

	dfhack.screen.findGraphicsTile(pagename,x,y)

Finds a tile from a graphics set (i.e. the raws used for creatures),
if in graphics mode and loaded.

Returns: tile, tile_grayscale, or nil if not found.
The values can then be used for the tile field of pen structures.

	dfhack.screen.clear()

Fills the screen with blank background.

	dfhack.screen.invalidate()

Requests repaint of the screen by setting a flag. Unlike other
functions in this section, this may be used at any time.

	dfhack.screen.getKeyDisplay(key)

Returns the string that should be used to represent the given
logical keybinding on the screen in texts like “press Key to ...”.

	dfhack.screen.keyToChar(key)

Returns the integer character code of the string input
character represented by the given logical keybinding,
or nil if not a string input key.

	dfhack.screen.charToKey(charcode)

Returns the keybinding representing the given string input
character, or nil if impossible.

The “pen” argument used by functions above may be represented by
a table with the following possible fields:

	ch

	Provides the ordinary tile character, as either a 1-character string or a number.
Can be overridden with the char function parameter.

	fg

	Foreground color for the ordinary tile. Defaults to COLOR_GREY (7).

	bg

	Background color for the ordinary tile. Defaults to COLOR_BLACK (0).

	bold

	Bright/bold text flag. If nil, computed based on (fg & 8); fg is masked to 3 bits.
Otherwise should be true/false.

	tile

	Graphical tile id. Ignored unless [GRAPHICS:YES] was in init.txt.

	tile_color = true

	Specifies that the tile should be shaded with fg/bg.

	tile_fg, tile_bg

	If specified, overrides tile_color and supplies shading colors directly.

Alternatively, it may be a pre-parsed native object with the following API:

	dfhack.pen.make(base[,pen_or_fg,bg,bold])

Creates a new pre-parsed pen by combining its arguments according to the
following rules:

	The base argument may be a pen object, a pen table as specified above,
or a single color value. In the single value case, it is split into
fg and bold properties, and others are initialized to 0.
This argument will be converted to a pre-parsed object and returned
if there are no other arguments.

	If the pen_or_fg argument is specified as a table or object, it
completely replaces the base, and is returned instead of it.

	Otherwise, the non-nil subset of the optional arguments is used
to update the fg, bg and bold properties of the base.
If the bold flag is nil, but pen_or_fg is a number, bold
is deduced from it like in the simple base case.

This function always returns a new pre-parsed pen, or nil.

	dfhack.pen.parse(base[,pen_or_fg,bg,bold])

Exactly like the above function, but returns base or pen_or_fg
directly if they are already a pre-parsed native object.

	pen.property, pen.property = value, pairs(pen)

Pre-parsed pens support reading and setting their properties,
but don’t behave exactly like a simple table would; for instance,
assigning to pen.tile_color also resets pen.tile_fg and
pen.tile_bg to nil.

In order to actually be able to paint to the screen, it is necessary
to create and register a viewscreen (basically a modal dialog) with
the game.

Warning

As a matter of policy, in order to avoid user confusion, all
interface screens added by dfhack should bear the “DFHack” signature.

Screens are managed with the following functions:

	dfhack.screen.show(screen[,below])

Displays the given screen, possibly placing it below a different one.
The screen must not be already shown. Returns true if success.

	dfhack.screen.dismiss(screen[,to_first])

Marks the screen to be removed when the game enters its event loop.
If to_first is true, all screens up to the first one will be deleted.

	dfhack.screen.isDismissed(screen)

Checks if the screen is already marked for removal.

Apart from a native viewscreen object, these functions accept a table
as a screen. In this case, show creates a new native viewscreen
that delegates all processing to methods stored in that table.

Note

Lua-implemented screens are only supported in the core context.

Supported callbacks and fields are:

	screen._native

Initialized by show with a reference to the backing viewscreen
object, and removed again when the object is deleted.

	function screen:onShow()

Called by dfhack.screen.show if successful.

	function screen:onDismiss()

Called by dfhack.screen.dismiss if successful.

	function screen:onDestroy()

Called from the destructor when the viewscreen is deleted.

	function screen:onResize(w, h)

Called before onRender or onIdle when the window size has changed.

	function screen:onRender()

Called when the viewscreen should paint itself. This is the only context
where the above painting functions work correctly.

If omitted, the screen is cleared; otherwise it should do that itself.
In order to make a see-through dialog, call self._native.parent:render().

	function screen:onIdle()

Called every frame when the screen is on top of the stack.

	function screen:onHelp()

Called when the help keybinding is activated (usually ‘?’).

	function screen:onInput(keys)

Called when keyboard or mouse events are available.
If any keys are pressed, the keys argument is a table mapping them to true.
Note that this refers to logical keybingings computed from real keys via
options; if multiple interpretations exist, the table will contain multiple keys.

The table also may contain special keys:

	_STRING

	Maps to an integer in range 0-255. Duplicates a separate “STRING_A???” code for convenience.

	_MOUSE_L, _MOUSE_R

	If the left or right mouse button is being pressed.

	_MOUSE_L_DOWN, _MOUSE_R_DOWN

	If the left or right mouse button was just pressed.

If this method is omitted, the screen is dismissed on receival of the LEAVESCREEN key.

	function screen:onGetSelectedUnit()

	function screen:onGetSelectedItem()

	function screen:onGetSelectedJob()

	function screen:onGetSelectedBuilding()

Implement these to provide a return value for the matching
dfhack.gui.getSelected... function.

PenArray class

Screens that require significant computation in their onRender() method can use
a dfhack.penarray instance to cache their output.

	dfhack.penarray.new(w, h)

Creates a new penarray instance with an internal buffer of w * h tiles.
These dimensions currently cannot be changed after a penarray is instantiated.

	penarray:clear()

Clears the internal buffer, similar to dfhack.screen.clear().

	penarray:get_dims()

Returns the x and y dimensions of the internal buffer.

	penarray:get_tile(x, y)

Returns a pen corresponding to the tile at (x, y) in the internal buffer.
Note that indices are 0-based.

	penarray:set_tile(x, y, pen)

Sets the tile at (x, y) in the internal buffer to the pen given.

	penarray:draw(x, y, w, h, bufferx, buffery)

Draws the contents of the internal buffer, beginning at
(bufferx, buffery) and spanning w columns and h rows, to the
screen starting at (x, y). Any invalid screen and buffer coordinates
are skipped.

bufferx and buffery default to 0.

Filesystem module

Most of these functions return true on success and false on failure,
unless otherwise noted.

	dfhack.filesystem.exists(path)

Returns true if path exists.

	dfhack.filesystem.isfile(path)

Returns true if path exists and is a file.

	dfhack.filesystem.isdir(path)

Returns true if path exists and is a directory.

	dfhack.filesystem.getcwd()

Returns the current working directory. To retrieve the DF path, use dfhack.getDFPath() instead.

	dfhack.filesystem.chdir(path)

Changes the current directory to path. Use with caution.

	dfhack.filesystem.mkdir(path)

Creates a new directory. Returns false if unsuccessful, including if path already exists.

	dfhack.filesystem.rmdir(path)

Removes a directory. Only works if the directory is already empty.

	dfhack.filesystem.mtime(path)

Returns the modification time (in seconds) of the file or directory specified by path,
or -1 if path does not exist. This depends on the system clock and should only be used locally.

	dfhack.filesystem.atime(path)

	dfhack.filesystem.ctime(path)

Return values vary across operating systems - return the st_atime and st_ctime
fields of a C++ stat struct, respectively.

	dfhack.filesystem.listdir(path)

Lists files/directories in a directory. Returns {} if path does not exist.

	dfhack.filesystem.listdir_recursive(path [, depth = 10])

Lists all files/directories in a directory and its subdirectories. All directories
are listed before their contents. Returns a table with subtables of the format:

{path: 'path to file', isdir: true|false}

Note that listdir() returns only the base name of each directory entry, while
listdir_recursive() returns the initial path and all components following it
for each entry.

Internal API

These functions are intended for the use by dfhack developers,
and are only documented here for completeness:

	dfhack.internal.scripts

The table used by dfhack.run_script() to give every script its own
global environment, persistent between calls to the script.

	dfhack.internal.getPE()

Returns the PE timestamp of the DF executable (only on Windows)

	dfhack.internal.getMD5()

Returns the MD5 of the DF executable (only on OS X and Linux)

	dfhack.internal.getAddress(name)

Returns the global address name, or nil.

	dfhack.internal.setAddress(name, value)

Sets the global address name. Returns the value of getAddress before the change.

	dfhack.internal.getVTable(name)

Returns the pre-extracted vtable address name, or nil.

	dfhack.internal.getImageBase()

Returns the mmap base of the executable.

	dfhack.internal.getRebaseDelta()

Returns the ASLR rebase offset of the DF executable.

	dfhack.internal.adjustOffset(offset[,to_file])

Returns the re-aligned offset, or nil if invalid.
If to_file is true, the offset is adjusted from memory to file.
This function returns the original value everywhere except windows.

	dfhack.internal.getMemRanges()

Returns a sequence of tables describing virtual memory ranges of the process.

	dfhack.internal.patchMemory(dest,src,count)

Like memmove below, but works even if dest is read-only memory, e.g. code.
If destination overlaps a completely invalid memory region, or another error
occurs, returns false.

	dfhack.internal.patchBytes(write_table[, verify_table])

The first argument must be a lua table, which is interpreted as a mapping from
memory addresses to byte values that should be stored there. The second argument
may be a similar table of values that need to be checked before writing anything.

The function takes care to either apply all of write_table, or none of it.
An empty write_table with a nonempty verify_table can be used to reasonably
safely check if the memory contains certain values.

Returns true if successful, or nil, error_msg, address if not.

	dfhack.internal.memmove(dest,src,count)

Wraps the standard memmove function. Accepts both numbers and refs as pointers.

	dfhack.internal.memcmp(ptr1,ptr2,count)

Wraps the standard memcmp function.

	dfhack.internal.memscan(haystack,count,step,needle,nsize)

Searches for needle of nsize bytes in haystack,
using count steps of step bytes.
Returns: step_idx, sum_idx, found_ptr, or nil if not found.

	dfhack.internal.diffscan(old_data, new_data, start_idx, end_idx, eltsize[, oldval, newval, delta])

Searches for differences between buffers at ptr1 and ptr2, as integers of size eltsize.
The oldval, newval or delta arguments may be used to specify additional constraints.
Returns: found_index, or nil if end reached.

	dfhack.internal.getDir(path)

Lists files/directories in a directory.
Returns: file_names or empty table if not found. Identical to dfhack.filesystem.listdir(path).

	dfhack.internal.strerror(errno)

Wraps strerror() - returns a string describing a platform-specific error code

	dfhack.internal.addScriptPath(path, search_before)

Adds path to the list of paths searched for scripts (both in Lua and Ruby).
If search_before is passed and true, the path will be searched before
the default paths (e.g. raw/scripts, hack/scripts); otherwise, it will
be searched after.

Returns true if successful or false otherwise (e.g. if the path does
not exist or has already been registered).

	dfhack.internal.removeScriptPath(path)

Removes path from the script search paths and returns true if successful.

	dfhack.internal.getScriptPaths()

Returns the list of script paths in the order they are searched, including defaults.
(This can change if a world is loaded.)

	dfhack.internal.findScript(name)

Searches script paths for the script name and returns the path of the first
file found, or nil on failure.

Note

This requires an extension to be specified (.lua or .rb) - use
dfhack.findScript() to include the .lua extension automatically.

Core interpreter context

While plugins can create any number of interpreter instances,
there is one special context managed by dfhack core. It is the
only context that can receive events from DF and plugins.

Core context specific functions:

	dfhack.is_core_context

Boolean value; true in the core context.

	dfhack.timeout(time,mode,callback)

Arranges for the callback to be called once the specified
period of time passes. The mode argument specifies the
unit of time used, and may be one of 'frames' (raw FPS),
'ticks' (unpaused FPS), 'days', 'months',
'years' (in-game time). All timers other than
'frames' are cancelled when the world is unloaded,
and cannot be queued until it is loaded again.
Returns the timer id, or nil if unsuccessful due to
world being unloaded.

	dfhack.timeout_active(id[,new_callback])

Returns the active callback with the given id, or nil
if inactive or nil id. If called with 2 arguments, replaces
the current callback with the given value, if still active.
Using timeout_active(id,nil) cancels the timer.

	dfhack.onStateChange.foo = function(code)

Event. Receives the same codes as plugin_onstatechange in C++.

Event type

An event is a native object transparently wrapping a lua table,
and implementing a __call metamethod. When it is invoked, it loops
through the table with next and calls all contained values.
This is intended as an extensible way to add listeners.

This type itself is available in any context, but only the
core context has the actual events defined by C++ code.

Features:

	dfhack.event.new()

Creates a new instance of an event.

	event[key] = function

Sets the function as one of the listeners. Assign nil to remove it.

Note

The df.NULL key is reserved for the use by
the C++ owner of the event; it is an error to try setting it.

	#event

Returns the number of non-nil listeners.

	pairs(event)

Iterates over all listeners in the table.

	event(args...)

Invokes all listeners contained in the event in an arbitrary
order using dfhack.safecall.

Lua Modules

	Global environment

	utils

	dumper

	class

DFHack sets up the lua interpreter so that the built-in require
function can be used to load shared lua code from hack/lua/.
The dfhack namespace reference itself may be obtained via
require('dfhack'), although it is initially created as a
global by C++ bootstrap code.

The following module management functions are provided:

	mkmodule(name)

Creates an environment table for the module. Intended to be used as:

local _ENV = mkmodule('foo')
...
return _ENV

If called the second time, returns the same table; thus providing reload support.

	reload(name)

Reloads a previously require-d module “name” from the file.
Intended as a help for module development.

	dfhack.BASE_G

This variable contains the root global environment table, which is
used as a base for all module and script environments. Its contents
should be kept limited to the standard Lua library and API described
in this document.

Global environment

A number of variables and functions are provided in the base global
environment by the mandatory init file dfhack.lua:

	Color constants

These are applicable both for dfhack.color() and color fields
in DF functions or structures:

COLOR_RESET, COLOR_BLACK, COLOR_BLUE, COLOR_GREEN, COLOR_CYAN,
COLOR_RED, COLOR_MAGENTA, COLOR_BROWN, COLOR_GREY, COLOR_DARKGREY,
COLOR_LIGHTBLUE, COLOR_LIGHTGREEN, COLOR_LIGHTCYAN, COLOR_LIGHTRED,
COLOR_LIGHTMAGENTA, COLOR_YELLOW, COLOR_WHITE

	dfhack.onStateChange event codes

Available only in the core context, as is the event itself:

SC_WORLD_LOADED, SC_WORLD_UNLOADED, SC_MAP_LOADED,
SC_MAP_UNLOADED, SC_VIEWSCREEN_CHANGED, SC_CORE_INITIALIZED

	Functions already described above

safecall, qerror, mkmodule, reload

	Miscellaneous constants

	NEWLINE, COMMA, PERIOD

	evaluate to the relevant character strings.

	DEFAULT_NIL

	is an unspecified unique token used by the class module below.

	printall(obj)

If the argument is a lua table or DF object reference, prints all fields.

	copyall(obj)

Returns a shallow copy of the table or reference as a lua table.

	pos2xyz(obj)

The object must have fields x, y and z. Returns them as 3 values.
If obj is nil, or x is -30000 (the usual marker for undefined
coordinates), returns nil.

	xyz2pos(x,y,z)

Returns a table with x, y and z as fields.

	same_xyz(a,b)

Checks if a and b have the same x, y and z fields.

	get_path_xyz(path,i)

Returns path.x[i], path.y[i], path.z[i].

	pos2xy(obj), xy2pos(x,y), same_xy(a,b), get_path_xy(a,b)

Same as above, but for 2D coordinates.

	safe_index(obj,index...)

Walks a sequence of dereferences, which may be represented by numbers or strings.
Returns nil if any of obj or indices is nil, or a numeric index is out of array bounds.

utils

	utils.compare(a,b)

Comparator function; returns -1 if a<b, 1 if a>b, 0 otherwise.

	utils.compare_name(a,b)

Comparator for names; compares empty string last.

	utils.is_container(obj)

Checks if obj is a container ref.

	utils.make_index_sequence(start,end)

Returns a lua sequence of numbers in start..end.

	utils.make_sort_order(data, ordering)

Computes a sorted permutation of objects in data, as a table of integer
indices into the data sequence. Uses data.n as input length
if present.

The ordering argument is a sequence of ordering specs, represented
as lua tables with following possible fields:

	ord.key = function(value)

	Computes comparison key from input data value. Not called on nil.
If omitted, the comparison key is the value itself.

	ord.key_table = function(data)

	Computes a key table from the data table in one go.

	ord.compare = function(a,b)

	Comparison function. Defaults to utils.compare above.
Called on non-nil keys; nil sorts last.

	ord.nil_first = true/false

	If true, nil keys are sorted first instead of last.

	ord.reverse = true/false

	If true, sort non-nil keys in descending order.

For every comparison during sorting the specs are applied in
order until an unambiguous decision is reached. Sorting is stable.

Example of sorting a sequence by field foo:

local spec = { key = function(v) return v.foo end }
local order = utils.make_sort_order(data, { spec })
local output = {}
for i = 1,#order do output[i] = data[order[i]] end

Separating the actual reordering of the sequence in this
way enables applying the same permutation to multiple arrays.
This function is used by the sort plugin.

	for link,item in utils.listpairs(list)

Iterates a df-list structure, for example df.global.world.job_list.

	utils.assign(tgt, src)

Does a recursive assignment of src into tgt.
Uses df.assign if tgt is a native object ref; otherwise
recurses into lua tables.

	utils.clone(obj, deep)

Performs a shallow, or semi-deep copy of the object as a lua table tree.
The deep mode recurses into lua tables and subobjects, except pointers
to other heap objects.
Null pointers are represented as df.NULL. Zero-based native containers
are converted to 1-based lua sequences.

	utils.clone_with_default(obj, default, force)

Copies the object, using the default lua table tree
as a guide to which values should be skipped as uninteresting.
The force argument makes it always return a non-nil value.

	utils.parse_bitfield_int(value, type_ref)

Given an int value, and a bitfield type in the df tree,
it returns a lua table mapping the enabled bit keys to true,
unless value is 0, in which case it returns nil.

	utils.list_bitfield_flags(bitfield[, list])

Adds all enabled bitfield keys to list or a newly-allocated
empty sequence, and returns it. The bitfield argument may
be nil.

	utils.sort_vector(vector,field,cmpfun)

Sorts a native vector or lua sequence using the comparator function.
If field is not nil, applies the comparator to the field instead
of the whole object.

	utils.linear_index(vector,key[,field])

Searches for key in the vector, and returns index, found_value,
or nil if none found.

	utils.binsearch(vector,key,field,cmpfun,min,max)

Does a binary search in a native vector or lua sequence for
key, using cmpfun and field like sort_vector.
If min and max are specified, they are used as the
search subrange bounds.

If found, returns item, true, idx. Otherwise returns
nil, false, insert_idx, where insert_idx is the correct
insertion point.

	utils.insert_sorted(vector,item,field,cmpfun)

Does a binary search, and inserts item if not found.
Returns did_insert, vector[idx], idx.

	utils.insert_or_update(vector,item,field,cmpfun)

Like insert_sorted, but also assigns the item into
the vector cell if insertion didn’t happen.

As an example, you can use this to set skill values:

utils.insert_or_update(soul.skills, {new=true, id=..., rating=...}, 'id')

(For an explanation of new=true, see Recursive table assignment)

	utils.erase_sorted_key(vector,key,field,cmpfun)

Removes the item with the given key from the list. Returns: did_erase, vector[idx], idx.

	utils.erase_sorted(vector,item,field,cmpfun)

Exactly like erase_sorted_key, but if field is specified, takes the key from item[field].

	utils.call_with_string(obj,methodname,...)

Allocates a temporary string object, calls obj:method(tmp,...), and
returns the value written into the temporary after deleting it.

	utils.getBuildingName(building)

Returns the string description of the given building.

	utils.getBuildingCenter(building)

Returns an x/y/z table pointing at the building center.

	utils.split_string(string, delimiter)

Splits the string by the given delimiter, and returns a sequence of results.

	utils.prompt_yes_no(prompt, default)

Presents a yes/no prompt to the user. If default is not nil,
allows just pressing Enter to submit the default choice.
If the user enters 'abort', throws an error.

	utils.prompt_input(prompt, checkfun, quit_str)

Presents a prompt to input data, until a valid string is entered.
Once checkfun(input) returns true, ..., passes the values
through. If the user enters the quit_str (defaults to '~~~'),
throws an error.

	utils.check_number(text)

A prompt_input checkfun that verifies a number input.

dumper

A third-party lua table dumper module from
http://lua-users.org/wiki/DataDumper. Defines one
function:

	dumper.DataDumper(value, varname, fastmode, ident, indent_step)

Returns value converted to a string. The indent_step
argument specifies the indentation step size in spaces. For
the other arguments see the original documentation link above.

class

Implements a trivial single-inheritance class system.

	Foo = defclass(Foo[, ParentClass])

Defines or updates class Foo. The Foo = defclass(Foo) syntax
is needed so that when the module or script is reloaded, the
class identity will be preserved through the preservation of
global variable values.

The defclass function is defined as a stub in the global
namespace, and using it will auto-load the class module.

	Class.super

This class field is set by defclass to the parent class, and
allows a readable Class.super.method(self, ...) syntax for
calling superclass methods.

	Class.ATTRS { foo = xxx, bar = yyy }

Declares certain instance fields to be attributes, i.e. auto-initialized
from fields in the table used as the constructor argument. If omitted,
they are initialized with the default values specified in this declaration.

If the default value should be nil, use ATTRS { foo = DEFAULT_NIL }.

Declaring an attribute is mostly the same as defining your init method like this:

function Class.init(args)
 self.attr1 = args.attr1 or default1
 self.attr2 = args.attr2 or default2
 ...
end

The main difference is that attributes are processed as a separate
initialization step, before any init methods are called. They
also make the directy relation between instance fields and constructor
arguments more explicit.

	new_obj = Class{ foo = arg, bar = arg, ... }

Calling the class as a function creates and initializes a new instance.
Initialization happens in this order:

	An empty instance table is created, and its metatable set.

	The preinit methods are called via invoke_before (see below)
with the table used as argument to the class. These methods are intended
for validating and tweaking that argument table.

	Declared ATTRS are initialized from the argument table or their default values.

	The init methods are called via invoke_after with the argument table.
This is the main constructor method.

	The postinit methods are called via invoke_after with the argument table.
Place code that should be called after the object is fully constructed here.

Predefined instance methods:

	instance:assign{ foo = xxx }

Assigns all values in the input table to the matching instance fields.

	instance:callback(method_name, [args...])

Returns a closure that invokes the specified method of the class,
properly passing in self, and optionally a number of initial arguments too.
The arguments given to the closure are appended to these.

	instance:cb_getfield(field_name)

Returns a closure that returns the specified field of the object when called.

	instance:cb_setfield(field_name)

Returns a closure that sets the specified field to its argument when called.

	instance:invoke_before(method_name, args...)

Navigates the inheritance chain of the instance starting from the most specific
class, and invokes the specified method with the arguments if it is defined in
that specific class. Equivalent to the following definition in every class:

function Class:invoke_before(method, ...)
 if rawget(Class, method) then
 rawget(Class, method)(self, ...)
 end
 Class.super.invoke_before(method, ...)
end

	instance:invoke_after(method_name, args...)

Like invoke_before, only the method is called after the recursive call to super,
i.e. invocations happen in the parent to child order.

These two methods are inspired by the Common Lisp before and after methods, and
are intended for implementing similar protocols for certain things. The class
library itself uses them for constructors.

To avoid confusion, these methods cannot be redefined.

In-game UI Library

	gui
	Misc

	ViewRect class

	Painter class

	View class

	Screen class

	FramedScreen class

	gui.widgets
	Widget class

	Panel class

	Pages class

	EditField class

	Label class

	List class

	FilteredList class

A number of lua modules with names starting with gui are dedicated
to wrapping the natives of the dfhack.screen module in a way that
is easy to use. This allows relatively easily and naturally creating
dialogs that integrate in the main game UI window.

These modules make extensive use of the class module, and define
things ranging from the basic Painter, View and Screen
classes, to fully functional predefined dialogs.

gui

This module defines the most important classes and functions for
implementing interfaces. This documents those of them that are
considered stable.

Misc

	USE_GRAPHICS

Contains the value of dfhack.screen.inGraphicsMode(), which cannot be
changed without restarting the game and thus is constant during the session.

	CLEAR_PEN

The black pen used to clear the screen.

	simulateInput(screen, keys...)

This function wraps an undocumented native function that passes a set of
keycodes to a screen, and is the official way to do that.

Every argument after the initial screen may be nil, a numeric keycode,
a string keycode, a sequence of numeric or string keycodes, or a mapping
of keycodes to true or false. For instance, it is possible to use the
table passed as argument to onInput.

	mkdims_xy(x1,y1,x2,y2)

Returns a table containing the arguments as fields, and also width and
height that contains the rectangle dimensions.

	mkdims_wh(x1,y1,width,height)

Returns the same kind of table as mkdims_xy, only this time it computes
x2 and y2.

	is_in_rect(rect,x,y)

Checks if the given point is within a rectangle, represented by a table produced
by one of the mkdims functions.

	blink_visible(delay)

Returns true or false, with the value switching to the opposite every delay
msec. This is intended for rendering blinking interface objects.

	getKeyDisplay(keycode)

Wraps dfhack.screen.getKeyDisplay in order to allow using strings for the keycode argument.

ViewRect class

This class represents an on-screen rectangle with an associated independent
clip area rectangle. It is the base of the Painter class, and is used by
Views to track their client area.

	ViewRect{ rect = ..., clip_rect = ..., view_rect = ..., clip_view = ... }

The constructor has the following arguments:

	rect:	The mkdims rectangle in screen coordinates of the logical viewport.
Defaults to the whole screen.

	clip_rect:	The clip rectangle in screen coordinates. Defaults to rect.

	view_rect:	A ViewRect object to copy from; overrides both rect and clip_rect.

	clip_view:	A ViewRect object to intersect the specified clip area with.

	rect:isDefunct()

Returns true if the clip area is empty, i.e. no painting is possible.

	rect:inClipGlobalXY(x,y)

Checks if these global coordinates are within the clip rectangle.

	rect:inClipLocalXY(x,y)

Checks if these coordinates (specified relative to x1,y1) are within the clip rectangle.

	rect:localXY(x,y)

Converts a pair of global coordinates to local; returns x_local,y_local.

	rect:globalXY(x,y)

Converts a pair of local coordinates to global; returns x_global,y_global.

	rect:viewport(x,y,w,h) or rect:viewport(subrect)

Returns a ViewRect representing a sub-rectangle of the current one.
The arguments are specified in local coordinates; the subrect
argument must be a mkdims table. The returned object consists of
the exact specified rectangle, and a clip area produced by intersecting
it with the clip area of the original object.

Painter class

The painting natives in dfhack.screen apply to the whole screen, are
completely stateless and don’t implement clipping.

The Painter class inherits from ViewRect to provide clipping and local
coordinates, and tracks current cursor position and current pen.

	Painter{ ..., pen = ..., key_pen = ... }

In addition to ViewRect arguments, Painter accepts a suggestion of
the initial value for the main pen, and the keybinding pen. They
default to COLOR_GREY and COLOR_LIGHTGREEN otherwise.

There are also some convenience functions that wrap this constructor:

	Painter.new(rect,pen)

	Painter.new_view(view_rect,pen)

	Painter.new_xy(x1,y1,x2,y2,pen)

	Painter.new_wh(x1,y1,width,height,pen)

	painter:isValidPos()

Checks if the current cursor position is within the clip area.

	painter:viewport(x,y,w,h)

Like the superclass method, but returns a Painter object.

	painter:cursor()

Returns the current cursor x,y in local coordinates.

	painter:seek(x,y)

Sets the current cursor position, and returns self.
Either of the arguments may be nil to keep the current value.

	painter:advance(dx,dy)

Adds the given offsets to the cursor position, and returns self.
Either of the arguments may be nil to keep the current value.

	painter:newline([dx])

Advances the cursor to the start of the next line plus the given x offset, and returns self.

	painter:pen(...)

Sets the current pen to dfhack.pen.parse(old_pen,...), and returns self.

	painter:key_pen(...)

Sets the current keybinding pen to dfhack.pen.parse(old_pen,...), and returns self.

	painter:clear()

Fills the whole clip rectangle with CLEAR_PEN, and returns self.

	painter:fill(x1,y1,x2,y2[,...]) or painter:fill(rect[,...])

Fills the specified local coordinate rectangle with dfhack.pen.parse(cur_pen,...),
and returns self.

	painter:char([char[, ...]])

Paints one character using char and dfhack.pen.parse(cur_pen,...); returns self.
The char argument, if not nil, is used to override the ch property of the pen.

	painter:tile([char, tile[, ...]])

Like above, but also allows overriding the tile property on ad-hoc basis.

	painter:string(text[, ...])

Paints the string with dfhack.pen.parse(cur_pen,...); returns self.

	painter:key(keycode[, ...])

Paints the description of the keycode using dfhack.pen.parse(cur_key_pen,...); returns self.

As noted above, all painting methods return self, in order to allow chaining them like this:

painter:pen(foo):seek(x,y):char(1):advance(1):string('bar')...

View class

This class is the common abstract base of both the stand-alone screens
and common widgets to be used inside them. It defines the basic layout,
rendering and event handling framework.

The class defines the following attributes:

	visible:	Specifies that the view should be painted.

	active:	Specifies that the view should receive events, if also visible.

	view_id:	Specifies an identifier to easily identify the view among subviews.
This is reserved for implementation of top-level views, and should
not be used by widgets for their internal subviews.

It also always has the following fields:

	subviews:	Contains a table of all subviews. The sequence part of the
table is used for iteration. In addition, subviews are also
indexed under their view_id, if any; see addviews() below.

These fields are computed by the layout process:

	frame_parent_rect:

	 	The ViewRect represeting the client area of the parent view.

	frame_rect:	The mkdims rect of the outer frame in parent-local coordinates.

	frame_body:	The ViewRect representing the body part of the View’s own frame.

The class has the following methods:

	view:addviews(list)

Adds the views in the list to the subviews sequence. If any of the views
in the list have view_id attributes that don’t conflict with existing keys
in subviews, also stores them under the string keys. Finally, copies any
non-conflicting string keys from the subviews tables of the listed views.

Thus, doing something like this:

self:addviews{
 Panel{
 view_id = 'panel',
 subviews = {
 Label{ view_id = 'label' }
 }
 }
}

Would make the label accessible as both self.subviews.label and
self.subviews.panel.subviews.label.

	view:getWindowSize()

Returns the dimensions of the frame_body rectangle.

	view:getMousePos()

Returns the mouse x,y in coordinates local to the frame_body
rectangle if it is within its clip area, or nothing otherwise.

	view:updateLayout([parent_rect])

Recomputes layout of the view and its subviews. If no argument is
given, re-uses the previous parent rect. The process goes as follows:

	Calls preUpdateLayout(parent_rect) via invoke_before.

	Uses computeFrame(parent_rect) to compute the desired frame.

	Calls postComputeFrame(frame_body) via invoke_after.

	Calls updateSubviewLayout(frame_body) to update children.

	Calls postUpdateLayout(frame_body) via invoke_after.

	view:computeFrame(parent_rect) (for overriding)

Called by updateLayout in order to compute the frame rectangle(s).
Should return the mkdims rectangle for the outer frame, and optionally
also for the body frame. If only one rectangle is returned, it is used
for both frames, and the margin becomes zero.

	view:updateSubviewLayout(frame_body)

Calls updateLayout on all children.

	view:render(painter)

Given the parent’s painter, renders the view via the following process:

	Calls onRenderFrame(painter, frame_rect) to paint the outer frame.

	Creates a new painter using the frame_body rect.

	Calls onRenderBody(new_painter) to paint the client area.

	Calls renderSubviews(new_painter) to paint visible children.

	view:renderSubviews(painter)

Calls render on all visible subviews in the order they
appear in the subviews sequence.

	view:onRenderFrame(painter, rect) (for overriding)

Called by render to paint the outer frame; by default does nothing.

	view:onRenderBody(painter) (for overriding)

Called by render to paint the client area; by default does nothing.

	view:onInput(keys) (for overriding)

Override this to handle events. By default directly calls inputToSubviews.
Return a true value from this method to signal that the event has been handled
and should not be passed on to more views.

	view:inputToSubviews(keys)

Calls onInput on all visible active subviews, iterating the subviews
sequence in reverse order, so that topmost subviews get events first.
Returns true if any of the subviews handled the event.

Screen class

This is a View subclass intended for use as a stand-alone dialog or screen.
It adds the following methods:

	screen:isShown()

Returns true if the screen is currently in the game engine’s display stack.

	screen:isDismissed()

Returns true if the screen is dismissed.

	screen:isActive()

Returns true if the screen is shown and not dismissed.

	screen:invalidate()

Requests a repaint. Note that currently using it is not necessary, because
repaints are constantly requested automatically, due to issues with native
screens happening otherwise.

	screen:renderParent()

Asks the parent native screen to render itself, or clears the screen if impossible.

	screen:sendInputToParent(...)

Uses simulateInput to send keypresses to the native parent screen.

	screen:show([parent])

Adds the screen to the display stack with the given screen as the parent;
if parent is not specified, places this one one topmost. Before calling
dfhack.screen.show, calls self:onAboutToShow(parent).

	screen:onAboutToShow(parent) (for overriding)

Called when dfhack.screen.show is about to be called.

	screen:onShow()

Called by dfhack.screen.show once the screen is successfully shown.

	screen:dismiss()

Dismisses the screen. A dismissed screen does not receive any more
events or paint requests, but may remain in the display stack for
a short time until the game removes it.

	screen:onDismiss() (for overriding)

Called by dfhack.screen.dismiss().

	screen:onDestroy() (for overriding)

Called by the native code when the screen is fully destroyed and removed
from the display stack. Place code that absolutely must be called whenever
the screen is removed by any means here.

	screen:onResize, screen:onRender

Defined as callbacks for native code.

FramedScreen class

A Screen subclass that paints a visible frame around its body.
Most dialogs should inherit from this class.

A framed screen has the following attributes:

	frame_style:	A table that defines a set of pens to draw various parts of the frame.

	frame_title:	A string to display in the middle of the top of the frame.

	frame_width:	Desired width of the client area. If nil, the screen will occupy the whole width.

	frame_height:	Likewise, for height.

	frame_inset:	The gap between the frame and the client area. Defaults to 0.

	frame_background:

	 	The pen to fill in the frame with. Defaults to CLEAR_PEN.

There are the following predefined frame style tables:

	GREY_FRAME

A plain grey-colored frame.

	BOUNDARY_FRAME

The same frame as used by the usual full-screen DF views, like dwarfmode.

	GREY_LINE_FRAME

A frame consisting of grey lines, similar to the one used by titan announcements.

gui.widgets

This module implements some basic widgets based on the View infrastructure.

Widget class

Base of all the widgets. Inherits from View and has the following attributes:

	frame = {...}

Specifies the constraints on the outer frame of the widget.
If omitted, the widget will occupy the whole parent rectangle.

The frame is specified as a table with the following possible fields:

	l:	gap between the left edges of the frame and the parent.

	t:	gap between the top edges of the frame and the parent.

	r:	gap between the right edges of the frame and the parent.

	b:	gap between the bottom edges of the frame and the parent.

	w:	maximum width of the frame.

	h:	maximum heigth of the frame.

	xalign:	X alignment of the frame.

	yalign:	Y alignment of the frame.

First the l,t,r,b fields restrict the available area for
placing the frame. If w and h are not specified or
larger then the computed area, it becomes the frame. Otherwise
the smaller frame is placed within the are based on the
xalign/yalign fields. If the align hints are omitted, they
are assumed to be 0, 1, or 0.5 based on which of the l/r/t/b
fields are set.

	frame_inset = {...}

Specifies the gap between the outer frame, and the client area.
The attribute may be a simple integer value to specify a uniform
inset, or a table with the following fields:

	l:	left margin.

	t:	top margin.

	r:	right margin.

	b:	bottom margin.

	x:	left/right margin, if l and/or r are omitted.

	y:	top/bottom margin, if t and/or b are omitted.

	frame_background = pen

The pen to fill the outer frame with. Defaults to no fill.

Panel class

Inherits from Widget, and intended for grouping a number of subviews.

Has attributes:

	subviews = {}

Used to initialize the subview list in the constructor.

	on_render = function(painter)

Called from onRenderBody.

Pages class

Subclass of Panel; keeps exactly one child visible.

	Pages{ ..., selected = ... }

Specifies which child to select initially; defaults to the first one.

	pages:getSelected()

Returns the selected index, child.

	pages:setSelected(index)

Selects the specified child, hiding the previous selected one.
It is permitted to use the subview object, or its view_id as index.

EditField class

Subclass of Widget; implements a simple edit field.

Attributes:

	text:	The current contents of the field.

	text_pen:	The pen to draw the text with.

	on_char:	Input validation callback; used as on_char(new_char,text).
If it returns false, the character is ignored.

	on_change:	Change notification callback; used as on_change(new_text,old_text).

	on_submit:	Enter key callback; if set the field will handle the key and call on_submit(text).

Label class

This Widget subclass implements flowing semi-static text.

It has the following attributes:

	text_pen:	Specifies the pen for active text.

	text_dpen:	Specifies the pen for disabled text.

	text_hpen:	Specifies the pen for text hovered over by the mouse, if a click handler is registered.

	disabled:	Boolean or a callback; if true, the label is disabled.

	enabled:	Boolean or a callback; if false, the label is disabled.

	auto_height:	Sets self.frame.h from the text height.

	auto_width:	Sets self.frame.w from the text width.

	on_click:	A callback called when the label is clicked (optional)

	on_rclick:	A callback called when the label is right-clicked (optional)

The text itself is represented as a complex structure, and passed
to the object via the text argument of the constructor, or via
the setText method, as one of:

	A simple string, possibly containing newlines.

	A sequence of tokens.

Every token in the sequence in turn may be either a string, possibly
containing newlines, or a table with the following possible fields:

	token.text = ...

Specifies the main text content of a token, and may be a string, or
a callback returning a string.

	token.gap = ...

Specifies the number of character positions to advance on the line
before rendering the token.

	token.tile = pen

Specifies a pen to paint as one tile before the main part of the token.

	token.width = ...

If specified either as a value or a callback, the text field is padded
or truncated to the specified number.

	token.pad_char = '?'

If specified together with width, the padding area is filled with
this character instead of just being skipped over.

	token.key = '...'

Specifies the keycode associated with the token. The string description
of the key binding is added to the text content of the token.

	token.key_sep = '...'

Specifies the separator to place between the keybinding label produced
by token.key, and the main text of the token. If the separator is
‘()’, the token is formatted as text..' ('..binding..')'. Otherwise
it is simply binding..sep..text.

	token.enabled, token.disabled

Same as the attributes of the label itself, but applies only to the token.

	token.pen, token.dpen

Specify the pen and disabled pen to be used for the token’s text.
The field may be either the pen itself, or a callback that returns it.

	token.on_activate

If this field is not nil, and token.key is set, the token will actually
respond to that key binding unless disabled, and call this callback. Eventually
this may be extended with mouse click support.

	token.id

Specifies a unique identifier for the token.

	token.line, token.x1, token.x2

Reserved for internal use.

The Label widget implements the following methods:

	label:setText(new_text)

Replaces the text currently contained in the widget.

	label:itemById(id)

Finds a token by its id field.

	label:getTextHeight()

Computes the height of the text.

	label:getTextWidth()

Computes the width of the text.

List class

The List widget implements a simple list with paging.

It has the following attributes:

	text_pen:	Specifies the pen for deselected list entries.

	cursor_pen:	Specifies the pen for the selected entry.

	inactive_pen:	If specified, used for the cursor when the widget is not active.

	icon_pen:	Default pen for icons.

	on_select:	Selection change callback; called as on_select(index,choice).
This is also called with nil arguments if setChoices is called
with an empty list.

	on_submit:	Enter key callback; if specified, the list reacts to the key
and calls it as on_submit(index,choice).

	on_submit2:	Shift-Enter key callback; if specified, the list reacts to the key
and calls it as on_submit2(index,choice).

	row_height:	Height of every row in text lines.

	icon_width:	If not nil, the specified number of character columns
are reserved to the left of the list item for the icons.

	scroll_keys:	Specifies which keys the list should react to as a table.

Every list item may be specified either as a string, or as a lua table
with the following fields:

	text:	Specifies the label text in the same format as the Label text.

	caption, [1]:	Deprecated legacy aliases for text.

	text_*:	Reserved for internal use.

	key:	Specifies a keybinding that acts as a shortcut for the specified item.

	icon:	Specifies an icon string, or a pen to paint a single character. May be a callback.

	icon_pen:	When the icon is a string, used to paint it.

The list supports the following methods:

	List{ ..., choices = ..., selected = ... }

Same as calling setChoices after construction.

	list:setChoices(choices[, selected])

Replaces the list of choices, possibly also setting the currently selected index.

	list:setSelected(selected)

Sets the currently selected index. Returns the index after validation.

	list:getChoices()

Returns the list of choices.

	list:getSelected()

Returns the selected index, choice, or nothing if the list is empty.

	list:getContentWidth()

Returns the minimal width to draw all choices without clipping.

	list:getContentHeight()

Returns the minimal width to draw all choices without scrolling.

	list:submit()

Call the on_submit callback, as if the Enter key was handled.

	list:submit2()

Call the on_submit2 callback, as if the Shift-Enter key was handled.

FilteredList class

This widget combines List, EditField and Label into a combo-box like
construction that allows filtering the list by subwords of its items.

In addition to passing through all attributes supported by List, it
supports:

	edit_pen:	If specified, used instead of cursor_pen for the edit field.

	edit_below:	If true, the edit field is placed below the list instead of above.

	not_found_label:

	 	Specifies the text of the label shown when no items match the filter.

The list choices may include the following attributes:

	search_key:	If specified, used instead of text to match against the filter.

The widget implements:

	list:setChoices(choices[, selected])

Resets the filter, and passes through to the inner list.

	list:getChoices()

Returns the list of all choices.

	list:getFilter()

Returns the current filter string, and the filtered list of choices.

	list:setFilter(filter[,pos])

Sets the new filter string, filters the list, and selects the item at
index pos in the unfiltered list if possible.

	list:canSubmit()

Checks if there are currently any choices in the filtered list.

	list:getSelected(), list:getContentWidth(), list:getContentHeight(), list:submit()

Same as with an ordinary list.

Plugins

	burrows

	sort

	Eventful
	List of events

	Events from EventManager

	Functions

	Examples

	Building-hacks
	Functions

	Examples

	Luasocket
	Socket class

	Client class

	Server class

	Tcp class

DFHack plugins may export native functions and events
to lua contexts. They are automatically imported by
mkmodule('plugins.<name>'); this means that a lua
module file is still necessary for require to read.

The following plugins have lua support.

burrows

Implements extended burrow manipulations.

Events:

	onBurrowRename.foo = function(burrow)

Emitted when a burrow might have been renamed either through
the game UI, or renameBurrow().

	onDigComplete.foo = function(job_type,pos,old_tiletype,new_tiletype,worker)

Emitted when a tile might have been dug out. Only tracked if the
auto-growing burrows feature is enabled.

Native functions:

	renameBurrow(burrow,name)

Renames the burrow, emitting onBurrowRename and updating auto-grow state properly.

	findByName(burrow,name)

Finds a burrow by name, using the same rules as the plugin command line interface.
Namely, trailing '+' characters marking auto-grow burrows are ignored.

	copyUnits(target,source,enable)

Applies units from source burrow to target. The enable
parameter specifies if they are to be added or removed.

	copyTiles(target,source,enable)

Applies tiles from source burrow to target. The enable
parameter specifies if they are to be added or removed.

	setTilesByKeyword(target,keyword,enable)

Adds or removes tiles matching a predefined keyword. The keyword
set is the same as used by the command line.

The lua module file also re-exports functions from dfhack.burrows.

sort

Does not export any native functions as of now. Instead, it
calls lua code to perform the actual ordering of list items.

Eventful

This plugin exports some events to lua thus allowing to run lua functions
on DF world events.

List of events

	onReactionComplete(reaction,reaction_product,unit,input_items,input_reagents,output_items,call_native)

Auto activates if detects reactions starting with LUA_HOOK_. Is called when reaction finishes.

	onItemContaminateWound(item,unit,wound,number1,number2)

Is called when item tries to contaminate wound (e.g. stuck in).

	onProjItemCheckMovement(projectile)

Is called when projectile moves.

	onProjItemCheckImpact(projectile,somebool)

Is called when projectile hits something.

	onProjUnitCheckMovement(projectile)

Is called when projectile moves.

	onProjUnitCheckImpact(projectile,somebool)

Is called when projectile hits something.

	onWorkshopFillSidebarMenu(workshop,callnative)

Is called when viewing a workshop in ‘q’ mode, to populate reactions, useful for custom viewscreens for shops.

	postWorkshopFillSidebarMenu(workshop)

Is called after calling (or not) native fillSidebarMenu(). Useful for job button
tweaking (e.g. adding custom reactions)

Events from EventManager

These events are straight from EventManager module. Each of them first needs to be enabled. See functions for more info. If you register a listener before the game is loaded, be aware that no events will be triggered immediately after loading, so you might need to add another event listener for when the game first loads in some cases.

	onBuildingCreatedDestroyed(building_id)

Gets called when building is created or destroyed.

	onConstructionCreatedDestroyed(building_id)

Gets called when construction is created or destroyed.

	onJobInitiated(job)

Gets called when job is issued.

	onJobCompleted(job)

Gets called when job is finished. The job that is passed to this function is a copy. Requires a frequency of 0 in order to distinguish between workshop jobs that were cancelled by the user and workshop jobs that completed successfully.

	onUnitDeath(unit_id)

Gets called on unit death.

	onItemCreated(item_id)

Gets called when item is created (except due to traders, migrants, invaders and spider webs).

	onSyndrome(unit_id,syndrome_index)

Gets called when new syndrome appears on a unit.

	onInvasion(invasion_id)

Gets called when new invasion happens.

	onInventoryChange(unit_id,item_id,old_equip,new_equip)

Gets called when someone picks up an item, puts one down, or changes the way they are holding it. If an item is picked up, old_equip will be null. If an item is dropped, new_equip will be null. If an item is re-equipped in a new way, then neither will be null. You absolutely must NOT alter either old_equip or new_equip or you might break other plugins.

	onReport(reportId)

Gets called when a report happens. This happens more often than you probably think, even if it doesn’t show up in the announcements.

	onUnitAttack(attackerId, defenderId, woundId)

Called when a unit wounds another with a weapon. Is NOT called if blocked, dodged, deflected, or parried.

	onUnload()

A convenience event in case you don’t want to register for every onStateChange event.

	onInteraction(attackVerb, defendVerb, attackerId, defenderId, attackReportId, defendReportId)

Called when a unit uses an interaction on another.

Functions

	registerReaction(reaction_name,callback)

Simplified way of using onReactionComplete; the callback is function (same params as event).

	removeNative(shop_name)

Removes native choice list from the building.

	addReactionToShop(reaction_name,shop_name)

Add a custom reaction to the building.

	enableEvent(evType,frequency)

Enable event checking for EventManager events. For event types use eventType table. Note that different types of events require different frequencies to be effective. The frequency is how many ticks EventManager will wait before checking if that type of event has happened. If multiple scripts or plugins use the same event type, the smallest frequency is the one that is used, so you might get events triggered more often than the frequency you use here.

	registerSidebar(shop_name,callback)

Enable callback when sidebar for shop_name is drawn. Usefull for custom workshop views e.g. using gui.dwarfmode lib. Also accepts a class instead of function
as callback. Best used with gui.dwarfmode class WorkshopOverlay.

Examples

Spawn dragon breath on each item attempt to contaminate wound:

b=require "plugins.eventful"
b.onItemContaminateWound.one=function(item,unit,un_wound,x,y)
 local flw=dfhack.maps.spawnFlow(unit.pos,6,0,0,50000)
end

Reaction complete example:

b=require "plugins.eventful"

b.registerReaction("LUA_HOOK_LAY_BOMB",function(reaction,unit,in_items,in_reag,out_items,call_native)
 local pos=copyall(unit.pos)
 -- spawn dragonbreath after 100 ticks
 dfhack.timeout(100,"ticks",function() dfhack.maps.spawnFlow(pos,6,0,0,50000) end)
 --do not call real item creation code
 call_native.value=false
end)

Grenade example:

b=require "plugins.eventful"
b.onProjItemCheckImpact.one=function(projectile)
 -- you can check if projectile.item e.g. has correct material
 dfhack.maps.spawnFlow(projectile.cur_pos,6,0,0,50000)
end

Integrated tannery:

b=require "plugins.eventful"
b.addReactionToShop("TAN_A_HIDE","LEATHERWORKS")

Building-hacks

This plugin overwrites some methods in workshop df class so that mechanical workshops are possible. Although
plugin export a function it’s recommended to use lua decorated function.

Functions

registerBuilding(table) where table must contain name, as a workshop raw name, the rest are optional:

	name:	custom workshop id e.g. SOAPMAKER

Note

this is the only mandatory field.

	fix_impassible:	if true make impassible tiles impassible to liquids too

	consume:	how much machine power is needed to work.
Disables reactions if not supplied enough and needs_power==1

	produce:	how much machine power is produced.

	needs_power:	if produced in network < consumed stop working, default true

	gears:	a table or {x=?,y=?} of connection points for machines.

	action:	a table of number (how much ticks to skip) and a function which
gets called on shop update

	animate:	a table of frames which can be a table of:

	tables of 4 numbers {tile,fore,back,bright} OR

	empty table (tile not modified) OR

	{x=<number> y=<number> + 4 numbers like in first case},
this generates full frame useful for animations that change little (1-2 tiles)

	canBeRoomSubset:

	 	a flag if this building can be counted in room. 1 means it can, 0 means it can’t and -1 default building behaviour

	auto_gears:	a flag that automatically fills up gears and animate. It looks over building definition for gear icons and maps them.

Animate table also might contain:

	frameLength:	how many ticks does one frame take OR

	isMechanical:	a bool that says to try to match to mechanical system (i.e. how gears are turning)

getPower(building) returns two number - produced and consumed power if building can be modified and returns nothing otherwise

setPower(building,produced,consumed) sets current productiona and consumption for a building.

Examples

Simple mechanical workshop:

require('plugins.building-hacks').registerBuilding{name="BONE_GRINDER",
 consume=15,
 gears={x=0,y=0}, --connection point
 animate={
 isMechanical=true, --animate the same conn. point as vanilla gear
 frames={
 {{x=0,y=0,42,7,0,0}}, --first frame, 1 changed tile
 {{x=0,y=0,15,7,0,0}} -- second frame, same
 }
 }

Or with auto_gears:

require('plugins.building-hacks').registerBuilding{name="BONE_GRINDER",
 consume=15,
 auto_gears=true
 }

Luasocket

A way to access csocket from lua. The usage is made similar to luasocket in vanilla lua distributions. Currently
only subset of functions exist and only tcp mode is implemented.

Socket class

This is a base class for client and server sockets. You can not create it - it’s like a virtual
base class in c++.

	socket:close()

Closes the connection.

	socket:setTimeout(sec,msec)

Sets the operation timeout for this socket. It’s possible to set timeout to 0. Then it performs like
a non-blocking socket.

Client class

Client is a connection socket to a server. You can get this object either from tcp:connect(address,port) or
from server:accept(). It’s a subclass of socket.

	client:receive(pattern)

Receives data. Pattern is one of:

	*l:	read one line (default, if pattern is nil)

	<number>:	read specified number of bytes

	*a:	read all available data

	client:send(data)

Sends data. Data is a string.

Server class

Server is a socket that is waiting for clients.
You can get this object from tcp:bind(address,port).

	server:accept()

Accepts an incoming connection if it exists.
Returns a client object representing that socket.

Tcp class

A class with all the tcp functionality.

	tcp:bind(address,port)

Starts listening on that port for incoming connections. Returns server object.

	tcp:connect(address,port)

Tries connecting to that address and port. Returns client object.

Scripts

	Enabling and disabling scripts

	Save init script

Any files with the .lua extension placed into hack/scripts/*
are automatically used by the DFHack core as commands. The
matching command name consists of the name of the file without
the extension. First DFHack searches for the script in the <save_folder>/raw/scripts/ folder. If it is not found there, it searches in the <DF>/raw/scripts/ folder. If it is not there, it searches in
<DF>/hack/scripts/. If it is not there, it gives up.

If the first line of the script is a one-line comment, it is
used by the built-in ls and help commands.
Such a comment is required for every script in the official DFHack repository.

Note

Scripts placed in subdirectories still can be accessed, but
do not clutter the ls command list (unless ls -a; thus it is preferred
for obscure developer-oriented scripts and scripts used by tools.
When calling such scripts, always use ‘/’ as the separator for
directories, e.g. devel/lua-example.

Scripts are re-read from disk if they have changed since the last time they were read.
Global variable values persist in memory between calls, unless the file has changed.
Every script gets its own separate environment for global
variables.

Arguments are passed in to the scripts via the ... built-in
quasi-variable; when the script is called by the DFHack core,
they are all guaranteed to be non-nil strings.

DFHack core invokes the scripts in the core context (see above);
however it is possible to call them from any lua code (including
from other scripts) in any context, via the same function the core uses:

	dfhack.run_script(name[,args...])

Run a lua script in hack/scripts/, as if it was started from dfhack command-line.
The name argument should be the name stem, as would be used on the command line.

Note that this function lets errors propagate to the caller.

	dfhack.script_environment(name)

Run an Lua script and return its environment.
This command allows you to use scripts like modules for increased portability.
It is highly recommended that if you are a modder you put your custom modules in raw/scripts and use script_environment instead of require so that saves with your mod installed will be self-contained and can be transferred to people who do have DFHack but do not have your mod installed.

You can say dfhack.script_environment('add-thought').addEmotionToUnit([arguments go here]) and it will have the desired effect.
It will call the script in question with the global moduleMode set to true so that the script can return early.
This is useful because if the script is called from the console it should deal with its console arguments and if it is called by script_environment it should only create its global functions and return.
You can also access global variables with, for example print(dfhack.script_environment('add-thought').validArgs)

The function script_environment is fast enough that it is recommended that you not store its result in a nonlocal variable, because your script might need to load a different version of that script if the save is unloaded and a save with a different mod that overrides the same script with a slightly different functionality is loaded.
This will not be an issue in most cases.

This function also permits circular dependencies of scripts.

	dfhack.reqscript(name) or reqscript(name)

Nearly identical to script_environment() but requires scripts being loaded to
include a line similar to:

--@ module = true

This is intended to only allow scripts that take appropriate action when used
as a module to be loaded.

Enabling and disabling scripts

Scripts can choose to recognize the built-in enable and disable commands
by including the following line anywhere in their file:

--@ enable = true

When the enable and disable commands are invoked, a dfhack_flags
table will be passed to the script with the following fields set:

	enable: Always true if the script is being enabled or disabled

	enable_state: True if the script is being enabled, false otherwise

Save init script

If a save directory contains a file called raw/init.lua, it is
automatically loaded and executed every time the save is loaded.
The same applies to any files called raw/init.d/*.lua. Every
such script can define the following functions to be called by dfhack:

	function onStateChange(op) ... end

Automatically called from the regular onStateChange event as long
as the save is still loaded. This avoids the need to install a hook
into the global dfhack.onStateChange table, with associated
cleanup concerns.

	function onUnload() ... end

Called when the save containing the script is unloaded. This function
should clean up any global hooks installed by the script. Note that
when this is called, the world is already completely unloaded.

Within the init script, the path to the save directory is available as SAVE_PATH.

Data Structure Definition Syntax

Contents

	Data Structure Definition Syntax
	General Background

	XML file format
	Enum type definition
	Enum item attributes

	Bitfield type definition

	Structure type definition
	Common field properties

	Primitive fields

	Substructure fields

	Enum fields

	Nested bitfields

	Container fields
	Abstract container

	Pointer fields

	Abstract sequence

	Standard containers

	DF-specific containers

	Class type definition
	Virtual method definition

	Global object definition

	Symbol table definition

	Lisp Integration
	Reference expressions
	Dereference syntax

	Basic properties

	Reference objects
	Primitive types

	Enums

	Pointers

	Compounds

	Sequences

	Code helpers

	Examples

This document documents the XML syntax used to define
DF data structures for use in dfhack.

General Background

Originally dfhack used a file called Memory.xml
to describe data structures of the game. It explicitly
listed addresses of known global variables, and offsets
within structures to fields, not unlike the ini files
used by Dwarf Therapist.

This format is a good choice when only a small number
of fields and objects need to be accessed, and allows
a program to work with many different versions of DF,
provided that the relevant fields and objects work
in the same way.

However, as the number of known fields and objects grow,
maintaining the explicit offset lists quickly becomes
difficult and error prone. Also, even when almost all
fields of a structure become known, the format fails to
represent and exploit their relative position, which in
practice is actually more stable than the specific offset
values.

This format instead represents data structure layout
purely via listing all fields in the correct order,
exactly like a structure definition does in the C++
language itself; in fact, these XML definitions are
translated into C++ headers in a mostly straightforward
way (the more tricky bits are things like correctly
processing circular references, or generating metadata
for lua). There is still a file with numeric data,
but it only contains absolute addresses of global
objects.

As a downside, dfhack now needs to be recompiled
every time layout of some data structure changes;
on the other hand, accessing DF structures from C++
plugins now has no overhead compared with DF’s
own code. Also, practice shows that the more fields
are known in a structure, the easier it is to spot
what exactly has changed, and fix the exact area.

XML file format

All XML files use <data-definition> as their root tag.

They should be indented using 4 spaces per level, without tabs.

Unless noted otherwise, all non-root tags allow using a
comment attribute, or a <comment>...</comment> subtag.
It may be used to include a comment string that can be used
by tools processing the xml.

Excluding content of tags like <comment> or <code-helper>,
all plain text inside tag bodies is ignored and may be freely
used instead of XML comments.

NOTE: Using XML tags and/or attributes not defined in this document
is not allowed.

Enum type definition

Global enum types are defined as follows:

<enum-type type-name='name' [base-type='int32_t']>
 <enum-item [name='key1'] [value='0']/>
 <enum-item [name='key2'] [value='1']/>
 ...
</enum-type>

Every enum has an integer base type, which defaults to int32_t if omitted.

Like in C++, enum items may either explicitly specify an integer value, or
rely on auto-increment behavior.

NOTE: Due to a codegen limitation, specifying value on any item other
than the first one prevents using the attribute feature described below.

As in most cases, the name attribute may be omitted if unknown; the code
generator would produce a random identifier to satisfy C++ language requirements.

Enum item attributes

The XML syntax allows associating attributes with enum items,
thus embedding lookup tables for use in C++ or lua code.

Every attribute must be declared at the top level of the enum:

<enum-attr name='attr'
 [type-name='primitive-or-enum']
 [default-value='...']
 [use-key-name='true/false']
 [is-list='true/false']/>

The declaration allows specifying a numeric, or other enum type for the
attribute, overriding the default const char* string type.

An explicit default value may also be specified; otherwise the attribute
defaults to NULL or 0. If use-key-name is true, the corresponding
enum-item‘s name is used as the default value.

Alternatively, an attribute may be declared to be a list, instead of a scalar.
In this case, the default is an empty list.

NOTE: Attribute name 'key' is reserved for a built-in string attribute
representing the enum item key.

For every declared attribute, every enum-item tag may contain an attribute
value definition:

<enum-item name='key'>
 <item-attr name='attr' value='...'/>
 ...
</enum-item>

For list attributes, multiple item-attr entries may be used to define the
list contents.

Bitfield type definition

Global bitfield types are defined as follows:

<bitfield-type type-name='name' [base-type='uint32_t']>
 <flag-bit [name='bit1'] [count='1'] [type-name='enum']/>
 <flag-bit [name='bit2'] [count='1'] [type-name='enum']/>
 ...
</bitfield-type>

Like enums, bitfields have an integer base type, which defaults to uint32_t.
The total number of bits in the bitfield must not exceed the base type size.

A bitfield item may be defined to occupy multiple bits via the count attribute.
It also may have an enum type; due to compiler limitations, the base-type of the
enum must be exactly the same as the bitfield itself.

Structure type definition

Structures without virtual methods are defined as follows:

<struct-type type-name='name'
 [is-union='true/false']
 [inherits-from='struct_type']
 [instance-vector='expr']
 [key-field='identifier']>
 ...
 fields
 ...
</struct-type>

The instance-vector attribute may be used to specify a global
vector that canonically contains all instances of the structure.
Code generation uses it to produce a find static method.
If key-field is specified, this method uses binary search
by the referred field; otherwise it just indexes the vector
with its integer argument.

Common field properties

All fields support the following attributes:

	name

	Specifies the identifier naming the field.

This attribute may be omitted, in which case
the code generator produces a random identifier. As
follows from the word random, such identifiers aren’t
stable, and shouldn’t be used to access the field.

	init-value

	Specifies the value that should be assigned to
the field by the constructor. By default the following
values are used:

	For enums: the first element of the enum.

	For signed integer fields with ref-target or refers-to: -1.

	For other numeric fields, pointers and bitfields: 0.

	offset, size, alignment

	Specifies the offset, size and alignment in bytes.

WARNING: Although allowed for any field by the XML syntax,
and supported by the lisp GUI tool, code generation will fail
with these attributes except in cases specifically shown below.

With the above caveat, size and alignment may also
be used on the struct-type tag itself.

Primitive fields

Primitive fields can be classified as following:

	Unmarked area:

<padding name='id' size='bytes' [alignment='1/2/4'] .../>

This tag defines an area of raw bytes with unknown contents.

	Numbers:

<int32_t name='id'.../>

Supported number types are: int8_t, uint8_t, int16_t,
uint16_t, int32_t, uint32_t, int64_t, uint64_t,
s-float (single float), d-float (double float).

	Boolean:

<bool name='id'.../>

	String:

<static-string name='id' size='bytes'.../>
<ptr-string name='id'.../>
<stl-string name='id'.../>

These tags correspond to char[bytes], char*, and std::string.

	File Stream:

<stl-fstream name='id'/>

This is not really a primitive type, but classified as such since it is
treated as a predefined opaque object (a-la padding).

Primitives support the following attributes:

refers-to='expr'

Specifies a GUI hyperlink to an object returned by an arbitrary expression.

The expression receives the value of the field as $, and the reference
to the field as $$.

ref-target='type'

Specifies a hyperlink to an instance of type, identified by the value of the field.
The instance is retrieved via instance-vector and key-field, or
a <code-helper name='find-instance'> in the target type definition.

aux-value='expr'

Specifies an additional value for use in the find-instance code helper.

Unlike refers-to, the expression receives the reference to the field
as $, and a reference to the containing structure as $$; i.e. the
arguments are shifted one step toward parent. This is because the value
of the field is already implicitly passed to find-instance.

The find-instance helper receives the field value as $, and aux-value as $$.

Substructure fields

Nested structures are defined via the compound tag:

<compound name='id' type-name='struct_type'/>

<compound [name='id'] [is-union='true/false'] [key-field='id']>
 ...
 field
 ...
</compound>

As seen above, a nested structure may either use a global type
defined elsewhere, or define an ad-hoc structure in-place.
In the in-place case, omitting name has a special meaning
of defining an anonymous nested struct or union.

Enum fields

Fields of enum types are defined as follows:

<enum name='id' type-name='enum_type' [base-type='int32_t']/>

<enum name='id' [base-type='int32_t']>
 <enum-item name='key1'.../>
 ...
</enum>

Like with substructures, enums may be either referenced globals, or ad-hoc definitions.

In the former case, when base-type of the field and the enum differ,
a special wrapper is added to coerce the size, or, if impossible,
the enum type is completely replaced with the base-type. The net
effect is that the field always has the expected size and alignment.

If no base-type is specified on the field, the one in the global type
definition has complete precedence. This is not recommended.

Nested bitfields

Ad-hoc bitfields are defined as follows:

<bitfield name='id' [base-type='uint32_t']>
 <flag-bit name='key1'.../>
 ...
</bitfield>

In order to reference a global type, use <compound>.

Container fields

A number of tags fall under the ‘container’ abstraction.
The common element is that the fields they define reference
objects of another type. This includes things like pointers,
arrays or vectors.

Abstract container

The basic syntactic property of a container is that it requires
exactly one nested field tag in order to specify the contained item:

<container>
 <field .../>
</container>

NOTE: The container tag is used here as a placeholder for any real
tag following the container syntax.

For convenience, the following automatic rewrite rules are applied:

	The type-name attribute:

<container type-name='foo' .../>

is rewritten into:

<container ...>
 <compound type-name='foo' .../>
</container>

or, if foo is a primitive type:

<container ...>
 <foo .../>
</container>

	The pointer-type attribute:

<container pointer-type='foo' .../>

is rewritten into:

<container ...>
 <pointer type-name='foo' .../>
</container>

	Multiple nested fields:

<container ...>
 <field1 .../>
 <field2 .../>
</container>

are aggregated together:

<container ...>
 <compound ...>
 <field1 .../>
 <field2 .../>
 </compound>
</container>

	If no item is specified, padding is assumed:

<container>
 <padding size='4'/>
</container>

NOTE: These rules are mutually exclusive, and it is an error
to specify both of the attributes (unless it is type-name='pointer'),
or combine nested fields with any of them.

When the above rewrites are applied and result in creation of a new tag,
the following attributes are copied to it from the container tag, if
applicable: key-field, refers-to, ref-target, aux-value.
They otherwise have no effect on the container itself.

This means that:

<container pointer-type='int32_t' ref-target='foo'/>

eventually rewrites to:

<container pointer-type='int32_t' ref-target='foo'>
 <pointer type-name='int32_t' ref-target='foo'>
 <int32_t ref-target='foo'/>
 </pointer>
</container>

Abstract containers allow the following attributes:

has-bad-pointers='true'

Tells the GUI tool to ignore this field in some of its memory
scans, because this container may contain invalid pointers,
which can confuse the analysis code.

Pointer fields

As seen above, the pointer tag is a subtype of abstract container.

If the pointer refers to an array of objects, instead of one instance,
the is-array attribute should be used:

<pointer type-name=’foo’ is-array=’true’/>

Currently this attribute is ignored by C++ code generation, but
the GUI tool properly displays such fields as arrays.

Abstract sequence

Containers that actually contain a sequence of objects support these
additional attributes:

index-refers-to='expr'

Specifies a GUI hyperlink from any item in the container to the
object returned by the expression.

The expression receives the index of the item in the container
as $, and a reference to the container as $$.

index-enum='enum_type'

Associates an enum with the indices of the container. The GUI
tries to use enum item names instead of numbers when displaying
the items, and lua may allow using strings as indices.

Standard containers

<static-array name='id' count='123' .../>

Defines a simple C++ array of the specified length.

<stl-vector name='id'.../>

Defines an std::vector<item> field.

<stl-deque name='id'.../>

Defines an std::deque<item> field.

<stl-set name='id'.../>

Defines an std::set<item> field.

<stl-bit-vector name='id'.../>

Defines an std::vector<bool> field.

STL defines vector<bool> as a special type that actually contains bits.
These XML definitions use a separate tag for it; <stl-vector type-name='bool'/>
is rendered into C++ as vector<char>.

DF-specific containers

These are defined in df-code.lisp:

<df-flagarray name='id' index-enum='enum'/>

Defines a BitArray<enum> field.

<df-static-flagarray name='id' index-enum='enum' count='numbytes'/>

Defines a StaticBitArray<numbytes,enum> field.

<df-array name='id' .../>

Defines a DfArray<item> field.

<df-linked-list name='id' type-name='foo_link'/>

Defines an ad-hoc DF-style linked list. In C++ actually equivalent to:

<compound type-name='foo_link'/>

but allows the GUI to display it as a list.

Class type definition

In the context of these XML definitions, class denotes types with virtual methods:

<class-type type-name='name'
 [inherits-from='class_type']
 [original-name='vtable_name']
 ...>
 ...
 fields
 ...
 <virtual-methods>
 ...
 vmethods
 ...
 </virtual-methods>
</class-type>

Classes are generally the same as <struct-type>, including support for instance-vector.
Unlike <struct-type> however, they don’t allow is-union='true'.

There may only be one table of virtual methods per class-type. In subclasses it
should only contain items added to the table of the superclass.

Virtual method definition

Virtual method definitions are placed within the <virtual-methods>
section of a class type. No other tag may be placed within that section,
including comment.

A virtual destructor is defined as follows:

<vmethod is-destructor='true'/>

Ordinary virtual methods use the following syntax:

<vmethod [name='id'] [ret-type='type']>
 [<ret-type .../>]
 <field1.../>
 <field2.../>
 ...
</vmethod>

The return type may be specified either as an attribute, or via a ret-type sub-tag.
The subtag syntax follows the abstract container model outlined above. The attribute is
exactly equivalent to <ret-type type-name='type'/> as subtag. If the return type is
completely omitted, it is taken to be void.

Ordinary field definition tags within the vmethod tag are treated as method parameters.

If the name attribute is omitted, the vmethod is named randomly and made protected,
so that calling it is impossible. This is the intended way of providing placeholders
for completely unknown slots in the vtable.

Global object definition

Global objects are global pointers that are initialized from symbols.xml at runtime.
Therefore, the tag itself is identical in syntax to <pointer>, except that it
doesn’t allow is-array:

<global-object name='id' type-name='...'/>

<global-object name='id'>
 <field.../>
</global-object>

C++ generation places them in the df::global namespace.

The offset attribute of the global-object tag represents the absolute
address. As noted above, it may only be used in files intended for the GUI.

Symbol table definition

Symbol tables are defined in symbols.xml and loaded at runtime.
They define locations of global objects and virtual tables.

The definition syntax is as follows:

<symbol-table name='...' os-type='...'>
 <md5-hash value='...'/>
 <binary-timestamp value='0x...'/>
 ...

 <global-address name='...' [value='0x...']/>
 ...

 <vtable-address name='...' [value='0x...']/>
 ...
</symbol-table>

The name attribute specifies an unique name of the symbol table.
os-type specifies the applicable OS type, and must be one of
windows, linux, darwin.

The <md5-hash> tag specifies the MD5 hash that is used to match
the executable on Linux and OS/X. It will be ignored if used in a
windows symbol table. Likewise, <binary-timestamp> is valid only
for matching EXE files. A symbol table may contain multiple tags
in order to match several executables; this is especially useful with
MD5 hashes, which change with patching.

Global object addresses are specified with <global-address> tags.
Virtual method table addresses may be pre-initialized with <vtable-address> tags.

It is allowed to specify addresses for objects and vtables that are otherwise
not defined. Obviously, such values can only be used by directly quering the
VersionInfo object in dfhack.

Lisp Integration

This XML file format was designed together with the cl-linux-debug
Lisp tool, and has a number of aspects that closely integrate with
its internals.

For instance, when loaded by that tool, all XML tags are converted
directly into instances of classes that exactly match the name of
the tag, and when the documentation above mentions expressions, that
refers to Lisp expressions within the context of that library.

Reference expressions

In order to facilitate compact representation for long chains of
dereferences that are commonly required when dealing with the data
structures, cl-linux-debug defines a reader macro (i.e. basically
a parser plugin) that adds a custom syntax for them. This syntax is
triggered by special characters $ and @.

Expressions written in that syntax expand into nested chains of
calls to two generic functions named $ and @, which implement
correspondingly r-value and l-value dereference of their first
argument using the second.

Dereference syntax

The reader macro understands the following syntactic patterns:

	@, $, $$, $$$, ...

Lone @ and sequences of $ are parsed just as the ordinary lisp
parser would. This allows referring to the $ and @ functions,
and using sequences of $ characters as implicit argument names.

	$foo

A case-sensitive identifier preceeded by the $ character
is interned in the cl-linux-debug.field-names package as-is,
and returned as the parsing result. The identifier may consist
of letters, numbers, and - or _ characters.

The symbol is exported from its package and defined as a symbol
macro expanding to '$foo, and thus behaves as a case-sensitive
keyword (which however can be used as a lexical variable name).
All field & type names and other identifiers in the XML definitions
are loaded into memory as such symbols.

	$foo:bar

This expands into '($foo . $bar); such pairs of identifiers
are used in some special contexts.

	$foo.bar, @foo.bar

These expressions expand to correspondingly ($ foo '$bar) and
(@ foo '$bar), representing thus r-value or l-value dereference
of variable foo with literal key $bar.

The name foo may only contain characters listed above, but is
otherwise separated and parsed with the regular lisp parser.

	$foo.*, $foo[*], $foo.@, $foo[@], @foo.* ...

These expand to ($ foo '*), ($ foo '@) etc, thus effectively
being a special case of dereference via a literal field name.

	$foo[expr], @foo[expr]

These expressions expand to correspondingly ($ foo expr) and (@ foo expr),
and are useful for accessing array elements.

	$foo.xxx[yyy].zzz

When dereference clauses are chained, they expand into nested calls to $ and @,
with the outermost depending on the first character, and all the inner ones being @.

This example expands to: ($ (@ (@ foo '$xxx) yyy) '$zzz).

	@$$foo.bar, $$$foo.bar

When the expression contains multiple initial $ characters, all but the first one
are prepended to the initial variable name.

These examples expand to (@ $$foo '$bar) and ($ $$foo '$bar)

NOTE: Only the $ character may be used in this way; $@@foo.bar is invalid.

	$.foo, @$[bar], ...

If the expression contains no initial identifier, the initial $ sequence is used
as one instead (after replacing @ with $ if necessary).

These examples expand to: ($ $ '$foo), (@ $$ bar).

NOTE: Unlike the previous syntax pattern, this one uses all of the initial
$ and @ characters.

	$(func arg arg...).bar

If one initial $ or @ is immediately followed by parentheses, the contents of said
parentheses are parsed as ordinary lisp code and used instead of the initial variable.

The example expands to: ($ (func arg arg...) '$bar)

	@$(foo bar baz)

If an initial @ is followed by one or more $ characters and then parentheses,
it is parsed as a lambda expression (anonymous function) with one argument consisting
of those $ characters.

This example expands to: (lambda ($) (foo bar baz))

NOTE: it is an error to use multiple initial $ characters without @ like
this: $$$(...)...

Basic properties

As described above, dereference is actually implemented by two generic functions,
@ and $, which implement l-value and r-value dereference.

They are defined as such:

(defgeneric @ (obj key))
(defgeneric $ (obj key))
(defgeneric (setf $) (obj key))

Generally, l-value dereference returns an object that can be dereferenced further.
R-value dereference with the same arguments may return the same object as l-value,
or a simple scalar value, depending on the context.

Perhaps oppositely to the used terms, only the r-value dereference function may be
used as the syntactic target of assignment; this is because you can’t actually change
the (conceptual) address of an object, only its contents; and l-value dereference
returns an address. I.e. in C++ you can write *a = ..., but can’t do &a =

Any of the dereference functions may return a list to represent multiple possible
values. Array objects often define (@ foo '*) to return all of the elements.

If either the obj or key argument of any of the functions is a list (including NIL
as empty list), the functions loop over the list, and return a concatenation of the
resulting return value lists. This allows using $array.*.field to get a list of
all values of a field within array elements.

($ obj t) is defined as the natural value of an object; e.g. if obj is a
reference to a numeric field, this will be its value. By default it is equal to
the object itself. ($ obj key) for any other key would fall back to
($ (@ obj key) t) if no special handler for $ with that key and
object was defined.

Reference objects

The cl-linux-debug library represents typed pointers to objects in memory
as objects of the memory-object-ref type.

Along with the expected address and type of the pointer, these objects also
retain a history of dereferences that have led to this particular pointer,
and define virtual fields to access this information. This history is similar
to what the Back button in a browser uses.

All references by default have the following properties:

	@ref.value

By default returns ref itself. May be hidden by struct fields and index-enum keys.

	@ref[integer]

Returns a reference to address + size*int, i.e. offsets the pointer.

	@ref.*

Returns a list of contained collection elements. By default empty.

	@ref.@

Returns a list of subfields. By default empty.

	@ref._parent

Returns the previous reference in the “back” chain.

	@ref._global

Returns the nearest reference in the “back” chain that has a globally
named type, i.e. one defined by a struct-type, class-type etc,
and not by any nested substructures. This may return the ref itself.

	@ref._upglobal

Exactly equivalent to @ref._parent._global.

	$ref._address

Returns the numeric address embedded in the ref.

	$ref._size

Returns the size of the object pointed to.

	$ref._key

Returns the key that was used to get this ref from the parent.
This is not guaranteed to be precisely accurate, but e.g. for
array elements this will be the array index.

	$ref._type

For globally named types, returns their type name.

Primitive types

Primitive types define the following methods:

	$ref[t]

The natural value of a primitive field is the scalar non-reference value it contains.

NOTE: When you write $struct.field, it will evaluate via ($ @struct.field t).

	@ref.refers-to, @ref.ref-target

If the field has the relevant attributes, they can be dereferenced to retrieve the target objects.

Enums

Enum fields return their value as symbols, and allow access to attributes:

	$ref[t]

Returns the symbol matching the value, unless there is none. May be assigned both as symbol or number.

	$ref.attribute

If the enum has an attribute with that name, retrieves its value for the current value of the field.

Pointers

	$ref[t], @ref[t], $ref._target, @ref._target

These all return the value of the pointer, i.e. a reference to the target object.

	($ ref key) -> ($ (@ ref t) key)

	(@ ref key) -> (@ (@ ref t) key)

All dereferences not explicitly supported are delegated to the target object.
This means that for most properties pointers are completely transparent; notable
exceptions are pointers to pointers, and pointers to primitive fields where you
have to use e.g. $struct.ptrfield.value.

Compounds

	@ref.field, @ref._fields.field

Returns a reference to the given field.

	@ref.*, @ref.@

Returns a list of references to all fields. Note that if the object is both an
implicit compound and a sequence, @ref.* will returns the sequence items as
described below.

Sequences

	@ref[int]

Returns a reference to the Nth item of the sequence.

	@ref[symbol]

If the sequence has an index-enum, its items can be accessed by symbolic names.

	@ref.*

Returns a list of all items of the sequence.

	@ref._items

Returns the items of the sequence as a special lazy object, intended to optimize
some things in the GUI.

	@ref.index-refers-to[int]

If the sequence has the relevant attribute, returns the target for the given index.

	$ref.count

Returns the number of items in the sequence.

	$ref.has-items

Checks if the sequence has any items, and returns T or NIL.

Code helpers

The <code-helper> tag may be used to add lisp code fragments
to the objects defined in the xml. The refers-to, index-refers-to
and ref-target tags are also converted to code helpers internally,
and you can use e.g. <code-helper name='refers-to'>...</code-helper>
instead of the attribute if your expression is too long for it.

There are two features that can only be implemented via explicit
<code-helper> tags:

	<code-helper name='describe'> ... </code-helper>

This specifies a piece of code that is called to supply additional
informational items for the rightmost column of the table in the GUI
tool. The code should return a string, or a list of strings.

As with refers-to, the code receives the value of the object
as $, and the reference to the object in $$ (i.e. $ is
equal to $$[t]).

The (describe-obj object) function can be used to call the same
describe mechanism on another object, e.g.:

<code-helper name='describe'> (describe-obj $.name) </code-helper>

	<code-helper name='find-instance'> ... </code-helper>

If the instance-vector and key-field attributes are not descriptive
enough to specify how to find an instance of the object by id, you can explicitly
define this helper to be used by ref-target links elsewhere.

It receives the value of the ref-target bearing field as $,
and its aux-value as $$.

Other than via ref-target, you can invoke this mechanism explicitly using
the (find-instance class key aux-key) function, even from a find-instance
helper for another type:

<code-helper name='find-instance'>$(find-instance $art_image_chunk $$).images[$]</code-helper>

This finds an instance of the art_image_chunk type using the aux-value $$,
and then returns an element of its images sub-array using the main value $.

Examples

	@global.*

The global variable ‘global’ contains a special compound that contains
all known global objects. This expressions retrieves a list of refs to
all of them.

Using $global.* would return values for the primitive ones instead
of refs, and is not that useful.

	$global.world.units.all[0].id

This expression is syntactically parsed into the following sequence:

tmp = global
tmp = @tmp.world ; the world global ref
tmp = @tmp.units ; the units field ref
tmp = @tmp.all ; the all vector ref
tmp = @tmp[0] ; the first unit object pointer ref
$tmp.id

The only non-trivial step here is the last one. The last value of
tmp is a reference to a pointer, and as described above, it delegates
anything it does not directly understand to its target, adding an
implicit step at runtime:

unit = @tmp._target
$unit.id

A unit object does not define $unit.id directly either, so the
final step falls back to:

idref = @unit.id
($ idref t)

which retrieves a reference to the id field, and then evaluates
its natural value.

The result is that the expression returns the id value of the first
unit in the vector as would be naturally expected.

Using @global.world.units.all[0].id would have used @tmp.id as
the last step, which would have skipped the ($ idref t) call and
returned a reference to the field.

	A simple index-refers-to example:

<stl-vector name='created_weapons' type-name='int32_t'
 index-refers-to='$global.world.raws.itemdefs.weapons[$]'/>

This is used to define a vector with counts of created weapons.

When it is displayed in the GUI, the tool evaluates the index-refers-to
expression for every vector element, giving it the element index
as $, and a reference to the vector itself as $$ (here unused).

The expression straightforwardly uses that index to access another
global vector and return one of its elements. It is then used by the
GUI to add additional information to the info column.

	An example of refers-to and _parent:

<compound name='burrows'>
 <stl-vector name='list' pointer-type='burrow'/>
 <int32_t name='sel_index' refers-to='$$._parent.list[$]'/>
</compound>

This fragment of XML defines a compound with two fields, a vector and an int,
which has a refers-to attribute. When that field is displayed in the GUI,
it evaluates the expression in the attribute, giving it the integer value
as $, and a reference to the integer field as $$.

The expression parses as:

tmp = $$; reference to the int32_t field
tmp = @tmp._parent
tmp = @tmp.list
$tmp[$]

Since the only way the GUI could get a reference to the field was to evaluate
@ref-to-burrows.sel_index, that previous reference is stored in its “back”
list, and @tmp._parent retrieves it. After that everything is simple.

	An example of ref-target with aux-value:

<int32_t name='race' ref-target='creature_raw'/>
<int16_t name='caste' ref-target='caste_raw' aux-value='$$.race'/>

The race field just specifies a type as ref-target, so the
reference simply evaluates the find-instance helper of the
creature_raw, passing it the race value as $.

In order to find the caste however, you need to first find a creature,
which requires a race value. This value is supplied via the aux-value
attribute into the $$ argument to find-instance.

Since the value of the caste field will be passed through to the
helper anyway, when evaluating aux-value the $ argument is set
to a reference to the holding field, and $$ is set to its _parent.
This means that $$.race in the context of aux-value is equivalent
to $$._parent.race in the context of refers-to.

	A complex example of cross-references between arrays:

<struct-type type-name='caste_raw'>
 <compound name='body_info'>
 <stl-vector name='body_parts' pointer-type='body_part_raw'/>
 </compound>
 <compound name='bp_appearance'>
 <stl-vector name='modifiers' pointer-type='bp_appearance_modifier'/>

 <stl-vector name='modifier_idx' type-name='int32_t'
 refers-to='$$._parent._parent.modifiers[$]'
 index-refers-to='$$._parent.part_idx[$].refers-to'/>
 <stl-vector name='part_idx' type-name='int16_t'
 refers-to='$$._global.body_info.body_parts[$]'/>
 <stl-vector name='layer_idx' type-name='int16_t'
 refers-to='$$._parent._parent.part_idx[$$._key].refers-to.layers[$]'
 index-refers-to='$$._parent.part_idx[$].refers-to'/>
 </compound>
</struct-type>

In order to understand this example it is first necessary to understand
that refers-to specified on a vector is actually transplanted onto the
implicitly constructed element tag:

<stl-vector name='part_idx'>
 <int16_t refers-to='$$._global.body_info.body_parts[$]'/>
</stl-vector>

Therefore, $$ is a reference to the <int16_t> field,
$$._parent is a reference to the vector, $$._parent._parent
is a reference to the bp_appearance compound, etc.

The $$._global... works as an abbreviation that applies _parent
until it reaches a globally defined type, which in this case is the
current instance of the caste_raw struct.

NOTE: $$._global._global is the same as $$._global, i.e.
repeated _global is a no-op. The latest version supports _upglobal,
which is equivalent to _parent._global.

Thus, the refers-to link on the part_idx vector evaluates to
the element of the body_parts vector, indexed by the value of the
current part_idx vector item.

Likewise, the refers-to link on the modifier_idx vector goes
back to the bp_appearance compound, and descends into the modifiers
vector, using the value of the current item.

The index-refers-to link on the same modifier_idx vector
highlights the shared indexing relation between the bottom vectors
by linking to the part_idx vector via the current item index.
Since this attribute is hosted by the vector itself, $$ points
at the vector, and only one _parent is needed to reach
bp_appearance.

This link also demonstrates how the defined relations can be reused
in other expressions by accessing the target of the refers-to
link inside part_idx. When the part_idx vector is accessed
simply as $xxx.part_idx[foo], it evaluates as:

tmp = @xxx.part_idx
tmp = @tmp[foo]
($ tmp t)

thus returning just an integer value. However, if an additional
dereference step is added, it turns to:

tmp = @xxx.part_idx
tmp = @tmp[foo]
obj = @tmp.refers-to
($ obj t)

which follows the refers-to link and evaluates its target.

Finally, the layer_idx vector, in addition to specifying the same
index-refers-to link as modifier_idx, uses the link in part_idx
to access other objects at its end:

refers-to='$$._parent._parent.part_idx[$$._key].refers-to.layers[$]'

Note how this link has to use two _parent steps again due to being
attached to the element of the vector instead of the vector itself.
It also has to use the _key attribute of the vector element to
retrieve the current index in the vector, because here $ holds the
element value.

Updating DF-structures for a new DF version

Contents

	Updating DF-structures for a new DF version
	General Process

	Running Dwarf Fortress

	Available Scripts

	STAGE 1. Linux compound globals

	STAGE 2. Old way to find Linux compound globals

	STAGE 3. Linux primitive globals

	STAGE 4. Primary windows compound globals

	STAGE 5. Secondary windows compound globals

	STAGE 6. Windows primitive globals

General Process

Download the new versions. The scripts expect the following
directory layout:

~userhome/
 Games/
 DF/
 df_linux/ - Current DF for linux
 df_windows/ - Current DF for windows
 df_osx/ - Current DF for osx

 metasm/ - Checkout of the library for ruby scripts
 from https://github.com/jjyg/metasm
 df_misc/ - Checkout of the ruby scripts
 from https://github.com/jjyg/df_misc
 dfhack/ - DFHack checkout

	Use “new-release.pl v0.??.??” to automatically perform a number of
steps. If you get a mismatch error from match-ctors.pl, see “STAGE 1”.

	Start the linux DF version, and launch the tool.

	Execute (reset-state-annotation)

	Commit.

	Use the tool to verify that the layout of the compound globals
on linux is correct, and update xml as necessary. Check that
unit seems reasonable, etc. Compare the changes in g_src between
releases. Delete redundant entries for some linux & osx globals
in symbols.xml.

	Compile DFHack without plugins for windows and run devel/find-offsets
to find globals there.

	With the windows version in wine, run (check-struct-sizes) to see if
any objects changed their size. If nothing is obviously wrong,
use (check-struct-sizes :annotate? t) to mark correctly sized
objects ALIGNED.

	Check the rest of the document for info on finding still missing globals.

	Commit.

	Run make-csv.sh to update CSV files and verify vtable size and argument counts.

	Commit.

Running Dwarf Fortress

The lisp tool expects that the game is started in a mode where all
allocated memory is automatically filled with a certain byte value.

On linux this is achieved by simply starting the game like this:

MALLOC_PERTURB_=45 ./df

Windows requires applying a patch to a copy of the executable like this:

cp -f 'Dwarf Fortress.exe' 'Dwarf_Fortress_malloc.exe'
ruby -I ~/Games/DF/metasm ~/Games/DF/df_patchmalloc.rb 'Dwarf_Fortress_malloc.exe'

Available Scripts

new-release.pl

Takes the full v0.??.?? version number as one required parameter.

Uses md5sum for linux and winedump for windows to find
out the new hash and PE timestamp.

Use the stamps to create new sections in symbols.xml
Also paste them into make-csv inside start.lisp

Creates an empty v0.??.??.lst, and change thes open-annotations
filename in start.lisp.

Wipes linux/df.globals.xml empty of all the global definitions.

Runs make-scans.sh to find out addresses of vtables and
many linux/osx globals, and pastes them into symbols.xml

make-scans.sh

Runs ruby and perl scripts to extract data from the executables,
and writes the output to txt files in subdirectories.

make-csv.sh

Uses the lisp tool and some scripts to produce csv files with
offsets for linux and windows. These are useful for manual lookup
and some scripts.

start.sh

Starts the lisp tool. You may pass the process ID as a parameter
to avoid the prompt.

make-keybindings.pl

Used by make-scans to extract the keybinding enum from g_src
in form of df.keybindings.xml

match-ctors.pl

Used by make-scans to compare the extracted addresses of the
compound linux/osx globals with a saved copy from a previous
version and thus determine their names.

match-vtables.pl

Used by make-csv.sh to produce a file listing the addresses of
all virtual methods in a compact form. Relies on csv files and
data from make-scans.sh

STAGE 1. Linux compound globals

(done by new-release.pl normally)

Linux and OSX initalize and destruct their complex globals in
a way that allows to determine their addresses by disassembling
a small section of the executable. This is currently done by
ruby scripts called from new-release.pl; it is also possible to do
that via the lisp tool for linux.

The ruby scripts produce a raw dump of the global addresses as
linux/ctors.txt. A perl script is then used to compare it with
linux/ctors-base.txt (which is manually edited and committed into the
repository), and thus derive the names of the globals by their
order. The resulting data is written back to linux/ctors.txt,
linux/df.globals.xml and linux/cglobals.txt (which is inserted
into symbols.xml).

If the size of a global changes too much, or a new one is added
in the middle, this matching may fail. In this case it is necessary
to manually match and add the new names to ctors.txt and commit
it as ctors-base.txt. After that, run make-scans.sh to rerun
the scripts, and paste linux/cglobals.txt into symbols.xml.

OSX behaves exactly the same as linux in this respect.

STAGE 2. Old way to find Linux compound globals

(now mostly obsolete, retained as fallback and for historical interest)

Globals gps, enabler, gview and init are in the export table
for linking with libgraphics, so they are immediately available
in (browse @global.*).

Run (list-globals/linux), paste the results in linux/df.globals.xml,
and immediately compare it to the old version from source control.
The order of the globals is quite stable, so if sizes look similar,
they can be guessed immediately.

The .bss compound section should be done except for ‘announcements’.

Run (browse-dataseg). The first three -30000 are cursor. Following
group of 6 are selection_rect. After that, at 16-aligned addresses
are control_mode and game_mode. Tab the game ui to the most common
two-pane mode, scroll to the end and find 0x30200. Within this dword
ui_menu_width is byte 1, ui_area_map_width is byte 2.

(reload), (browse @global.*), look at the most important globals
for misalignment. If found, fix it and delete old tables from
symbols.xml.

STAGE 3. Linux primitive globals

Unpause the game for a moment to let various structures be initialized.

The fields can be found either by a straight memory search, or by
looking in the area they are expected to be.

[A] The ‘cur_year’ area.

Located just before ui_building_assign_type.

	cur_year / cur_year_tick

(find-changes); step with dot; Enter; step; +; step; +; step; +; done

look at values in bss, there will be cur_year_tick, and
cur_year is 32 bytes before that.

	process_jobs

Designate a building for construction.
Look after process_dig for an enabled boolean.

	process_dig

Step the game one step. Designate a tile for digging.
Look after cur_year and before process_jobs.

Note: this order because designating sometimes sets process_jobs too.

	job_next_id / ui_workshop_job_cursor

Find a workshop without jobs; (find-changes); add job; Enter;
add job; +; add job; +; done
Finds job_next_id and ui_workshop_job_cursor, the distinction is obvious.

The ui_workshop_job_cursor is expected to be after cur_year_tick.

	ui_workshop_in_add, ui_building_in_resize, ui_building_in_assign

Expected to be in the area after ui_workshop_job_cursor, in this order.
Change the relevant state in game and F5.

	ui_building_item_cursor

Find a cluttered workshop, t; (find-changes); move cursor down; Enter;
cursor down; +; cursor down; +; done

Expected to be right after ui_workshop_job_cursor.

	current_weather

Subtract 0x1c from cur_year address. Obviously, a big hack.

It is best to use a save where the contents are non-zero and known to you.

[B] The ui_look_cursor area.

Located in the area of the 124 byte global before ui.

	ui_look_cursor

Like ui_building_item_cursor, but with a cluttered tile and k.

	ui_selected_unit

Find a place with many nearby units; (find-changes); v; Enter; v; new;
...; when returned to origin, 0; 1; 2...; done

Expected to be before ui_look_cursor.

	ui_unit_view_mode

Select unit, page Gen; (find-changes); Inv; Enter; Prf; +; Wnd; +; done

Expected to be after ui_selected_unit.

	pause_state

(find-changes); toggle pause; Enter; toggle; 0; toggle; 1; etc; done

Expected to be in the area after ui_look_cursor.

[C] The window_x/y/z area.

Located right after ui_build_selector.

	window_x, window_y, window_z

Use k, move window view to upper left corner, then the cursor to bottom
right as far as it can go without moving the view.

(find-changes); Shift-RightDown; Enter; Shift-RightDown; + 10;
Shift-RightDown; + 10; done

Finds cursor and two variables in bss. Z is just after them.

[D] Random positions.

	announcements

Immediately follows d_init; starts 25 25 31 31 24 ...

STAGE 4. Primary windows compound globals

After aligning globals on linux, run (make-csv) to produce offset tables.

1. world

Set a nickname, search for it; the unit will have it at offset 0x1C.
Then trace back to the unit vector, and subtract its offset.

2. ui

Open the ‘s’quad sidebar page. Navigate to a squad in world.squads.all,
then backtrace and subtract the offset of ui.squads.list.

3. ui_build_selector

Start creating a building, up to the point of material selection.
Find the material item through world and backtrack references until .bss.

4. ui_sidebar_menus

Select a unit in ‘v’, open inventory page, backtrack from
unit_inventory_item, subtract offset of unit.inv_items.

5. ui_look_list

Put a ‘k’ cursor over a unit, backtrack to a 0x10 bytes object
with pointer at offset 0xC, then to the global vector.

6. ui_advmode

In adventure mode, open the ‘c’ompanions menu, then backtrack from
world.units.active[0] (i.e. the player) via ui_advmode.companions.unit

Alternatively, look before ui_look_list for “0, 15” coming from the string.

7. enabler

(find-changes), resize the window, enter; resize width by +1 char,
+; repeat until few candidates left; then done, select the renderer
heap object and backtrack to enabler.renderer.

Alternatively, look before ui for clocks changing every frame.

8. map_renderer

Put a ‘v’ cursor exactly above a unit; backtrack from the unit object.

Alternatively, look before ui_advmode for the unit pointer list.

9. texture

Load the game with [GRAPHICS:YES] in init.txt, and example set.
Then search for string “example/dwarves.bmp” and backtrack.

Alternatively, look between ui_build_selector and init.

STAGE 5. Secondary windows compound globals

These are too difficult to find by backtracking or search, so try
looking in the expected area first:

1. timed_events

Look for a pointer vector around -0x54 before ui.

2. ui_building_assign_*

2a. ui_building_assign_is_marked

Assign to zone, (find-changes), toggle 1st unit, enter; toggle 1st,
0; toggle 1st, 1; toggle 2nd, new; done

The vector is expected to be just before ui.

2b. ui_building_assign_items

Expected to be immediately before ui_building_assign_is_marked.

2c. ui_building_assign_units

Start assigning units to a pasture, backtrack from one of the units.

The vector is expected to be immediately before world.

2d. ui_building_assign_type

The vector is expected to be 2nd vector immediately after ui_look_list.

3. gview

Immediately follows ui.

4. Init files

4a. d_init

Follows world after a small gap (starts with flagarray).

4b. init

Follows ui_build_selector after a small gap.

5. gps

Look at around offset ui_area_map_width+0x470 for pointers.

6. created_item_*

6a. created_item_type

Expected to be at around -0x40 before world.

6b. created_item_subtype

The first vector immediately after ui_look_list.

6c. created_item_mattype

Immediately before ui_sidebar_menus.

6d. created_item_matindex

Before ui, after timed_events.

6e. created_item_count

Immediately before timed_events.

STAGE 6. Windows primitive globals

Like linux primitives, except the ordering is completely different.

This section only describes the ordering heuristics; for memory search
instructions see linux primitive globals.

[A] formation_next_id

Followed by ui_building_item_cursor, cur_year.

[B] interaction_instance_next_id...hist_figure_next_id

Contains window_x, ui_workshop_in_add.

[C] machine_next_id

Followed by ui_look_cursor, window_y.

[D] crime_next_id

Followed by, in this order (but with some gaps):

	ui_workshop_job_cursor

	current_weather (immediately after ui_workshop_job_cursor)

	process_dig

	process_jobs

	ui_building_in_resize

	ui_building_in_assign

	pause_state

[E] Random positions.

	cur_year_tick

Look immediately before artifact_next_id.

	window_z

Look before proj_next_id.

	ui_selected_unit

Look just after squad_next_id.

	ui_unit_view_mode

Look just before hist_event_collection_next_id.

	announcements

Immediately follows d_init; starts 25 25 31 31 24 ...

Patching the DF binary

Writing scripts and plugins for DFHack is not the only way to modify Dwarf
Fortress. Before DFHack, it was common for tools to manually patch the
binary to change behaviour, and DFHack still contains tools to do this via
the binpatch command.

Warning

We recommend using a script or plugin instead of a raw patch if
at all possible - that way your work will work for many versions
across multiple operating systems. There’s a reason nobody has
written patches since 0.34.11!

Contents

	Patching the DF binary
	Getting a patch

	Using a patch
	Patching at runtime

	Patching on disk

	Tools reliant on binpatches
	fix-armory

	gui/assign-rack

Getting a patch

There are no binary patches available for Dwarf Fortress versions after 0.34.11

This system is kept for the chance that someone will find it useful, so some
hints on how to write your own follow. This will require disassembly and
decent skill in memory research.

	The patches are expected to be encoded in text format used by IDA.

	See Commit 8a9e3d1a728 [https://github.com/DFHack/dfhack/commit/8a9e3d1a728] for examples.

	Issue 546 [https://github.com/DFHack/dfhack/issues/546] is about the future of the binpatches, and may be useful reading.

If you want to write a patch, the armory patches discussed here and documented
below would probably be the best place to start.

Using a patch

There are two methods to apply a patch.

Patching at runtime

The binpatch script checks, applies or removes binary patches
directly in memory at runtime:

binpatch [check|apply|remove] <patchname>

If the name of the patch has no extension or directory separators, the
script uses hack/patches/<df-version>/<name>.dif, thus auto-selecting
the version appropriate for the currently loaded executable.

This is the preferred method; it’s easier to debug, does not cause persistent
problems, and leaves file checksums alone. As with many other commands, users
can simply add it to dfhack*.init to reapply the patch every time DF is run.

Patching on disk

Warning

This method of patching is deprecated, and may be removed without notice.
You should use the runtime patching option above.

DFHack includes a small stand-alone utility for applying and removing
binary patches from the game executable. Use it from the regular operating
system console:

	binpatch check "Dwarf Fortress.exe" patch.dif

	Checks and prints if the patch is currently applied.

	binpatch apply "Dwarf Fortress.exe" patch.dif

	Applies the patch, unless it is already applied or in conflict.

	binpatch remove "Dwarf Fortress.exe" patch.dif

	Removes the patch, unless it is already removed.

If you use a permanent patch under OSX or Linux, you must update
symbols.xml with the new checksum of the executable. Find the relevant
section, and add a new line:

<md5-hash value='????????????????????????????????'/>

In order to find the correct value of the hash, look into stderr.log;
DFHack prints an error there if it does not recognize the hash.

Tools reliant on binpatches

Some DFHack tools require the game to be patched to work. As no patches
are currently available, the full description of each is included here.

fix-armory

Enables a fix for storage of squad equipment in barracks.

Specifically, it prevents your haulers from moving squad equipment
to stockpiles, and instead queues jobs to store it on weapon racks,
armor stands, and in containers.

Note

In order to actually be used, weapon racks have to be patched and
manually assigned to a squad. See gui/assign-rack.

Note that the buildings in the armory are used as follows:

	Weapon racks (when patched) are used to store any assigned weapons.
Each rack belongs to a specific squad, and can store up to 5 weapons.

	Armor stands belong to specific squad members and are used for
armor and shields.

	Cabinets are used to store assigned clothing for a specific squad member.
They are never used to store owned clothing.

	Chests (boxes, etc) are used for a flask, backpack or quiver assigned
to the squad member. Due to a probable bug, food is dropped out of the
backpack when it is stored.

Warning

Although armor stands, cabinets and chests properly belong only to one
squad member, the owner of the building used to create the barracks will
randomly use any containers inside the room. Thus, it is recommended to
always create the armory from a weapon rack.

Contrary to the common misconception, all these uses are controlled by the
Individual Equipment usage flag. The Squad Equipment flag is actually
intended for ammo, but the game does even less in that area than for armor
and weapons. This plugin implements the following rules almost from scratch:

	Combat ammo is stored in chests inside rooms with Squad Equipment enabled.

	If a chest is assigned to a squad member due to Individual Equipment also
being set, it is only used for that squad’s ammo; otherwise, any squads
with Squad Equipment on the room will use all of the chests at random.

	Training ammo is stored in chests inside archery ranges designated from
archery targets, and controlled by the same Train flag as archery training
itself. This is inspired by some defunct code for weapon racks.

There are some minor traces in the game code to suggest that the first of
these rules is intended by Toady; the rest are invented by this plugin.

gui/assign-rack

Bind to a key (the example config uses P), and activate when viewing a weapon
rack in the q mode.

[image: ../_images/assign-rack.png]
This script is part of a group of related fixes to make the armory storage
work again. The existing issues are:

	Weapon racks have to each be assigned to a specific squad, like with
beds/boxes/armor stands and individual squad members, but nothing in
the game does this. This issue is what this script addresses.

	Even if assigned by the script, the game will unassign the racks again
without a binary patch. This patch is called weaponrack-unassign,
and has not been updated since 0.34.11. See Bug 1445 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=1445] for more info.

	Haulers still take equipment stored in the armory away to the stockpiles,
unless fix-armory is used.

The script interface simply lets you designate one of the squads that
are assigned to the barracks/armory containing the selected stand as
the intended user. In order to aid in the choice, it shows the number
of currently assigned racks for every valid squad.

HISTORY - old changelogs

This file is where old changelogs live, so the current Changelog
in NEWS.rst doesn’t get too long.

Contents

	HISTORY - old changelogs
	DFHack 0.40.23-r1

	DFHack 0.40.19-r1

	DFHack 0.40.16-r1

	DFHack 0.40.15-r1

	DFHack 0.40.14-r1

	DFHack 0.40.13-r1

	DFHack 0.40.12-r1

	DFHack 0.40.11-r1

	DFHack v0.40.10-r1

	DFHack v0.40.08-r2

	DFHack v0.40.08-r1

	DFHack v0.34.11-r5

	DFHack v0.34.11-r4

	DFHack v0.34.11-r3

	DFHack v0.34.11-r2

DFHack 0.40.23-r1

Internals
- plugins will not be loaded if globals they specify as required are not located (should prevent some crashes)

Fixes

	Fixed numerous (mostly Lua-related) crashes on OS X by including a more up-to-date libstdc++

	Alt should no longer get stuck on Windows (and perhaps other platforms as well)

	gui/advfort works again

	autobutcher: takes sexualities into account

	devel/export-dt-ini: Updated for 0.40.20+

	digfort: now checks file type and existence

	exportlegends: Fixed map export

	full-heal: Fixed a problem with selecting units in the GUI

	gui/hack-wish: Fixed restrictive material filters

	mousequery: Changed box-select key to Alt+M

	dwarfmonitor: correct date display (month index, separator)

	putontable: added to the readme

	siren should work again

	stderr.log: removed excessive debug output on OS X

	trackstop: No longer prevents cancelling the removal of a track stop or roller.

	Fixed a display issue with PRINT_MODE:TEXT

	Fixed a symbol error (MapExtras::BiomeInfo::MAX_LAYERS) when compiling DFHack in Debug mode

New Plugins

	fortplan: designate construction of (limited) buildings from .csv file, quickfort-style

New Scripts

	gui/stockpiles: an in-game interface for saving and loading stockpile settings files.

	position: Reports the current date, time, month, and season, plus some location info. Port/update of position.py

	hfs-pit: Digs a hole to hell under the cursor. Replaces needs_porting/hellhole.cpp

Removed

	embark.lua: Obsolete, use embark-tools

New tweaks

	eggs-fertile: Displays an egg fertility indicator on nestboxes

	max-wheelbarrow: Allows assigning more than 3 wheelbarrows to a stockpile

Misc Improvements

	embark-tools: Added basic mouse support on the local map

	Made some adventure mode keybindings in dfhack.init-example only work in adventure mode

	gui/companion-order: added a default keybinding

	further work on needs_porting

DFHack 0.40.19-r1

Fixes

	modtools/reaction-trigger: fixed typo

	modtools/item-trigger: should now work with item types

New plugins

	savestock, loadstock: save and load stockpile settings across worlds and saves

New scripts

	remove-stress: set selected or all units unit to -1,000,000 stress (this script replaces removebadthoughts)

Misc improvements

	command-prompt: can now access selected items, units, and buildings

	autolabor: add an optional talent pool parameter

DFHack 0.40.16-r1

Internals

	Events from EventManager should handle INTERACTION triggers a little better. It still can get confused about who did what but only rarely.

	Events from EventManager should no longer trigger REPORT events for old reports after loading a save.

	lua/persist-table: a convenient way of using persistent tables of arbitrary structure and dimension in Lua

Fixes

	mousequery: Disabled when linking levers

	stocks: Melting should work now

	full-heal: Updated with proper argument handling

	modtools/reaction-trigger-transition: should produce the correct syntax now

	superdwarf: should work better now

	forum-dwarves: update for new df-structures changes

New Scripts

	adaptation: view or set the cavern adaptation level of your citizens

	add-thought: allows the user to add thoughts to creatures.

	gaydar: detect the sexual orientation of units on the map

	markdown: Save a copy of a text screen in markdown (for reddit among others).

	devel/all-bob: renames everyone Bob to help test interaction-trigger

Misc Improvements

	autodump: Can now mark a stockpile for auto-dumping (similar to automelt and autotrade)

	buildingplan: Can now auto-allocate rooms to dwarves with specific positions (e.g. expedition leader, mayor)

	dwarfmonitor: now displays a weather indicator and date

	lua/syndrome-util, modtools/add-syndrome: now you can remove syndromes by SYN_CLASS

	No longer write empty .history files

DFHack 0.40.15-r1

Fixes

	mousequery: Fixed behavior when selecting a tile on the lowest z-level

Misc Improvements

	Events from EventManager: deals with frame_counter getting reset properly now.

	modtools/item-trigger: fixed equip/unequip bug and corrected minor documentation error

	teleport: Updated with proper argument handling and proper unit-at-destination handling.

	autotrade: Removed the newly obsolete Mark all functionality.

	search: Adapts to the new trade screen column width

	tweak fast-trade: Switching the fast-trade keybinding to Shift-Up/Shift-Down, due to Select All conflict

DFHack 0.40.14-r1

Internals

	The DFHack console can now be disabled by setting the DFHACK_DISABLE_CONSOLE environment variable: DFHACK_DISABLE_CONSOLE=1 ./dfhack

Fixes

	Stopped duplicate load/unload events when unloading a world

	Stopped -e from being echoed when DFHack quits on Linux

	automelt: now uses a faster method to locate items

	autotrade: “Mark all” no longer double-marks bin contents

	drain-aquifer: new script replaces the buggy plugin

	embark-tools: no longer conflicts with keys on the notes screen

	fastdwarf: Fixed problems with combat/attacks

	forum-dwarves: should work now

	manipulator: now uses a stable sort, allowing sorting by multiple categories

	rendermax: updated to work with 0.40

New Plugins

	trackstop: Shows track stop friction and dump direction in its q menu

New Tweaks

	farm-plot-select: Adds “Select all” and “Deselect all” options to farm plot menus

	import-priority-category: Allows changing the priority of all goods in a category when discussing an import agreement with the liaison

	manager-quantity: Removes the limit of 30 jobs per manager order

	civ-view-agreement: Fixes overlapping text on the “view agreement” screen

	nestbox-color: Fixes the color of built nestboxes

Misc Improvements

	exportlegends: can now handle site maps

DFHack 0.40.13-r1

Internals

	unified spatter structs

	added ruby df.print_color(color, string) method for dfhack console

Fixes

	no more -e after terminating

	fixed superdwarf

DFHack 0.40.12-r1

Internals

	support for global onLoad*.init and onUnload*.init files, called when loading and unloading a world

	Close file after loading a binary patch.

New Plugins

	hotkeys: Shows ingame viewscreen with all dfhack keybindings active in current mode.

	automelt: allows marking stockpiles so any items placed in them will be designated for melting

Fixes

	possible crash fixed for gui/hack-wish

	search: updated to not conflict with BUILDJOB_SUSPEND

	workflow: job_material_category -> dfhack_material_category

Misc Improvements

	now you can use @ to print things in interactive Lua with subtley different semantics

	optimizations for stockpiles for autotrade and stockflow

	updated exportlegends to work with new maps, dfhack 40.11 r1+

DFHack 0.40.11-r1

Internals

	Plugins on OS X now use .plug.dylib as an extension instead of .plug.so

Fixes

	3dveins: should no longer hang/crash on specific maps

	autotrade, search: fixed some layout issues

	deathcause: updated

	gui/hack-wish: should work now

	reveal: no longer allocates data for nonexistent map blocks

	Various documentation fixes and updates

DFHack v0.40.10-r1

A few bugfixes.

DFHack v0.40.08-r2

Internals

	supported per save script folders

	Items module: added createItem function

	Sorted CMakeList for plugins and plugins/devel

	diggingInvaders no longer builds if plugin building is disabled

	Events from EventManager: EQUIPMENT_CHANGE now triggers for new units. New events:

ON_REPORT
UNIT_ATTACK
UNLOAD
INTERACTION

New Scripts

	lua/repeat-util: makes it easier to make things repeat indefinitely

	lua/syndrome-util: makes it easier to deal with unit syndromes

	forum-dwarves: helps copy df viewscreens to a file

	full-heal: fully heal a unit

	remove-wear: removes wear from all items in the fort

	repeat: repeatedly calls a script or a plugin

	ShowUnitSyndromes: shows syndromes affecting units and other relevant info

	teleport: teleports units

	devel/print-args

	fix/blood-del: makes it so civs don’t bring barrels full of blood ichor or goo

	fix/feeding-timers: reset the feeding timers of all units

	gui/hack-wish: creates items out of any material

	gui/unit-info-viewer: displays information about units

	modtools/add-syndrome: add a syndrome to a unit or remove one

	modtools/anonymous-script: execute an lua script defined by a string. Useful for the *-trigger scripts.

	modtools/force: forces events: caravan, migrants, diplomat, megabeast, curiousbeast, mischievousbeast, flier, siege, nightcreature

	modtools/item-trigger: triggers commands based on equipping, unequipping, and wounding units with items

	modtools/interaction-trigger: triggers commands when interactions happen

	modtools/invader-item-destroyer: destroys invaders’ items when they die

	modtools/moddable-gods: standardized version of Putnam’s moddable gods script

	modtools/projectile-trigger: standardized version of projectileExpansion

	modtools/reaction-trigger: trigger commands when custom reactions complete; replaces autoSyndrome

	modtools/reaction-trigger-transition: a tool for converting mods from autoSyndrome to reaction-trigger

	modtools/random-trigger: triggers random scripts that you register

	modtools/skill-change: for incrementing and setting skills

	modtools/spawn-flow: creates flows, like mist or dragonfire

	modtools/syndrome-trigger: trigger commands when syndromes happen

	modtools/transform-unit: shapeshifts a unit, possibly permanently

Misc improvements

	new function in utils.lua for standardized argument processing

Removed

	digmat.rb: digFlood does the same functionality with less FPS impact

	invasionNow: modtools/force does it better

	autoSyndrome replaced with modtools/reaction-trigger

	syndromeTrigger replaced with modtools/syndrome-trigger

	devel/printArgs plugin converted to devel/print-args

	outsideOnly plugin replaced by modtools/outside-only

DFHack v0.40.08-r1

Was a mistake. Don’t use it.

DFHack v0.34.11-r5

Internals

	support for calling a lua function via a protobuf request (demonstrated by dfhack-run –lua).

	support for basic filesystem operations (e.g. chdir, mkdir, rmdir, stat) in C++ and Lua

	Lua API for listing files in directory. Needed for gui/mod-manager

	Lua API for creating unit combat reports and writing to gamelog.

	Lua API for running arbitrary DFHack commands

	support for multiple raw/init.d/*.lua init scripts in one save.

	eventful now has a more friendly way of making custom sidebars

	on Linux and OS X the console now supports moving the cursor back and forward by a whole word.

New scripts

	gui/mod-manager: allows installing/uninstalling mods into df from df/mods directory.

	gui/clone-uniform: duplicates the currently selected uniform in the military screen.

	fix/build-location: partial work-around for Bug 5991 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=5991] (trying to build wall while standing on it)

	undump-buildings: removes dump designation from materials used in buildings.

	exportlegends: exports data from legends mode, allowing a set-and-forget export of large worlds.

	log-region: each time a fort is loaded identifying information will be written to the gamelog.

	dfstatus: show an overview of critical stock quantities, including food, drinks, wood, and bars.

	command-prompt: a dfhack command prompt in df.

New plugins

	rendermax: replace the renderer with something else, eg rendermax light- a lighting engine

	automelt: allows marking stockpiles for automelt (i.e. any items placed in stocpile will be designated for melting)

	embark-tools: implementations of Embark Anywhere, Nano Embark, and a few other embark-related utilities

	Building-hacks: Allows to add custom functionality and/or animations to buildings.

	petcapRemover: triggers pregnancies in creatures so that you can effectively raise the default pet population cap

	plant create: spawn a new shrub under the cursor

New tweaks

	craft-age-wear: make crafted items wear out with time like in old versions (Bug 6003 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6003])

	adamantine-cloth-wear: stop adamantine clothing from wearing out (Bug 6481 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6481])

	confirm-embark: adds a prompt before embarking (on the “prepare carefully” screen)

Misc improvements

	plant: move the ‘grow’, ‘extirpate’ and ‘immolate’ commands as ‘plant’ subcommands

	digfort: improved csv parsing, add start() comment handling

	exterminate: allow specifying a caste (exterminate gob:male)

	createitem: in adventure mode it now defaults to the controlled unit as maker.

	autotrade: adds “(Un)mark All” options to both panes of trade screen.

	mousequery: several usability improvements; show live overlay (in menu area) of what’s on the tile under the mouse cursor.

	Search Page: workshop profile search added.

	dwarfmonitor: add screen to summarise preferences of fortress dwarfs.

	getplants: add autochop function to automate woodcutting.

	stocks: added more filtering and display options.

	siege-engine:

	engine quality and distance to target now affect accuracy

	firing the siege engine at a target produces a combat report

	improved movement speed computation for meandering units

	operators in Prepare To Fire mode are released from duty once hungry/thirsty if there is a free replacement

DFHack v0.34.11-r4

New commands

	diggingInvaders - allows invaders to dig and/or deconstruct walls and buildings in order to get at your dwarves.

	digFlood - automatically dig out specified veins as they are revealed

	enable, disable - Built-in commands that can be used to enable/disable many plugins.

	restrictice - Restrict traffic on squares above visible ice.

	restrictliquids - Restrict traffic on every visible square with liquid.

	treefarm - automatically chop trees and dig obsidian

New Scripts

	autobutcher: A GUI front-end for the autobutcher plugin.

	invasionNow: trigger an invasion, or many

	locate-ore: scan the map for unmined ore veins

	masspit: designate caged creatures in a zone for pitting

	multicmd: run a sequence of dfhack commands, separated by ‘;’

	startdwarf: change the number of dwarves for a new embark

	digmat: dig veins/layers tile by tile, as discovered

Misc improvements

	autoSyndrome:

	disable by default

	reorganized special tags

	minimized error spam

	reset policies: if the target already has an instance of the syndrome you can skip,
add another instance, reset the timer, or add the full duration to the time remaining

	core: fix SC_WORLD_(UN)LOADED event for arena mode

	exterminate: renamed from slayrace, add help message, add butcher mode

	fastdwarf: fixed bug involving fastdwarf and teledwarf being on at the same time

	magmasource: rename to source, allow water/magma sources/drains

	Add df.dfhack_run “somecommand” to Ruby

	syndromeTrigger: replaces and extends trueTransformation. Can trigger things when syndromes are added for any reason.

	tiletypes: support changing tile material to arbitrary stone.

	workNow: can optionally look for jobs when jobs are completed

New tweaks

	hive-crash: Prevent crash if bees die in a hive with ungathered products (Bug 6368 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=6368]).

New plugins

	3dveins: Reshapes all veins on the map in a way that flows between Z levels. May be unstable. Backup before using.

	autotrade: Automatically send items in marked stockpiles to trade depot, when trading is possible.

	buildingplan: Place furniture before it’s built

	dwarfmonitor: Records dwarf activity to measure fort efficiency

	mousequery: Look and poke at the map elements with the mouse.

	outsideOnly: make raw-specified buildings impossible to build inside

	resume: A plugin to help display and resume suspended constructions conveniently

	stocks: An improved stocks display screen.

Internals

	Core: there is now a per-save dfhack.init file for when the save is loaded, and another for when it is unloaded

	EventManager: fixed job completion detection, fixed removal of TICK events, added EQUIPMENT_CHANGE event

	Lua API for a better random number generator and perlin noise functions.

	Once: easy way to make sure something happens once per run of DF, such as an error message

DFHack v0.34.11-r3

Internals

	support for displaying active keybindings properly.

	support for reusable widgets in lua screen library.

	Maps::canStepBetween: returns whether you can walk between two tiles in one step.

	EventManager: monitors various in game events centrally so that individual plugins
don’t have to monitor the same things redundantly.

	Now works with OS X 10.6.8

Notable bugfixes

	autobutcher can be re-enabled again after being stopped.

	stopped Dwarf Manipulator from unmasking vampires.

	Stonesense is now fixed on OS X

Misc improvements

	fastdwarf: new mode using debug flags, and some internal consistency fixes.

	added a small stand-alone utility for applying and removing binary patches.

	removebadthoughts: add –dry-run option

	superdwarf: work in adventure mode too

	tweak stable-cursor: carries cursor location from/to Build menu.

	deathcause: allow selection from the unitlist screen

	slayrace: allow targetting undeads

	workflow plugin:

	properly considers minecarts assigned to routes busy.

	code for deducing job outputs rewritten in lua for flexibility.

	logic fix: collecting webs produces silk, and ungathered webs are not thread.

	items assigned to squads are considered busy, even if not in inventory.

	shearing and milking jobs are supported, but only with generic MILK or YARN outputs.

	workflow announces when the stock level gets very low once a season.

	Auto syndrome plugin: A way of automatically applying boiling rock syndromes and calling dfhack commands controlled by raws.

	infiniteSky plugin: Create new z-levels automatically or on request.

	True transformation plugin: A better way of doing permanent transformations that allows later transformations.

	workNow plugin: Makes the game assign jobs every time you pause.

New tweaks

	tweak military-training: speed up melee squad training up to 10x (normally 3-5x).

New scripts

	binpatch: the same as the stand-alone binpatch.exe, but works at runtime.

	region-pops: displays animal populations of the region and allows tweaking them.

	lua: lua interpreter front-end converted to a script from a native command.

	dfusion: misc scripts with a text based menu.

	embark: lets you embark anywhere.

	lever: list and pull fort levers from the dfhack console.

	stripcaged: mark items inside cages for dumping, eg caged goblin weapons.

	soundsense-season: writes the correct season to gamelog.txt on world load.

	create-items: spawn items

	fix/cloth-stockpile: fixes Bug 5739 [http://www.bay12games.com/dwarves/mantisbt/view.php?id=5739]; needs to be run after savegame load every time.

New GUI scripts

	gui/guide-path: displays the cached path for minecart Guide orders.

	gui/workshop-job: displays inputs of a workshop job and allows tweaking them.

	gui/workflow: a front-end for the workflow plugin (part inspired by falconne).

	gui/assign-rack: works together with a binary patch to fix weapon racks.

	gui/gm-editor: an universal editor for lots of dfhack things.

	gui/companion-order: a adventure mode command interface for your companions.

	gui/advfort: a way to do jobs with your adventurer (e.g. build fort).

New binary patches

(for use with binpatch)

	armorstand-capacity: doubles the capacity of armor stands.

	custom-reagent-size: lets custom reactions use small amounts of inputs.

	deconstruct-heapfall: stops some items still falling on head when deconstructing.

	deconstruct-teleport: stops items from 16x16 block teleporting when deconstructing.

	hospital-overstocking: stops hospital overstocking with supplies.

	training-ammo: lets dwarves with quiver full of combat-only ammo train.

	weaponrack-unassign: fixes bug that negates work done by gui/assign-rack.

New Plugins

	fix-armory: Together with a couple of binary patches and the gui/assign-rack script, this plugin makes weapon racks, armor stands, chests and cabinets in properly designated barracks be used again for storage of squad equipment.

	Search Page: Adds an incremental search function to the Stocks, Trading, Stockpile and Unit List screens.

	automaterial: Makes building constructions (walls, floors, fortifications, etc) a little bit easier by saving you from having to trawl through long lists of materials each time you place one.

	Dfusion: Reworked to make use of lua modules, now all the scripts can be used from other scripts.

	Eventful: A collection of lua events, that will allow new ways to interact with df world.

DFHack v0.34.11-r2

Internals

	full support for Mac OS X.

	a plugin that adds scripting in ruby.

	support for interposing virtual methods in DF from C++ plugins.

	support for creating new interface screens from C++ and lua.

	added various other API functions.

Notable bugfixes

	better terminal reset after exit on linux.

	seedwatch now works on reclaim.

	the sort plugin won’t crash on cages anymore.

Misc improvements

	autodump: can move items to any walkable tile, not just floors.

	stripcaged: by default keep armor, new dumparmor option.

	zone: allow non-domesticated birds in nestboxes.

	workflow: quality range in constraints.

	cleanplants: new command to remove rain water from plants.

	liquids: can paint permaflow, i.e. what makes rivers power water wheels.

	prospect: pre-embark prospector accounts for caves & magma sea in its estimate.

	rename: supports renaming stockpiles, workshops, traps, siege engines.

	fastdwarf: now has an additional option to make dwarves teleport to their destination.

	autolabor:

	can set nonidle hauler percentage.

	broker excluded from all labors when needed at depot.

	likewise, anybody with a scheduled diplomat meeting.

New commands

	misery: multiplies every negative thought gained (2x by default).

	digtype: designates every tile of the same type of vein on the map for ‘digging’ (any dig designation).

New tweaks

	tweak stable-cursor: keeps exact cursor position between d/k/t/q/v etc menus.

	tweak patrol-duty: makes Train orders reduce patrol timer, like the binary patch does.

	tweak readable-build-plate: fix unreadable truncation in unit pressure plate build ui.

	tweak stable-temp: fixes bug 6012; may improve FPS by 50-100% on a slow item-heavy fort.

	tweak fast-heat: speeds up item heating & cooling, thus making stable-temp act faster.

	tweak fix-dimensions: fixes subtracting small amounts from stacked liquids etc.

	tweak advmode-contained: fixes UI bug in custom reactions with container inputs in advmode.

	tweak fast-trade: Shift-Enter for selecting items quckly in Trade and Move to Depot screens.

	tweak military-stable-assign: Stop rightmost list of military->Positions from jumping to top.

	tweak military-color-assigned: In same list, color already assigned units in brown & green.

New scripts

	fixnaked: removes thoughts about nakedness.

	setfps: set FPS cap at runtime, in case you want slow motion or speed-up.

	siren: wakes up units, stops breaks and parties - but causes bad thoughts.

	fix/population-cap: run after every migrant wave to prevent exceeding the cap.

	fix/stable-temp: counts items with temperature updates; does instant one-shot stable-temp.

	fix/loyaltycascade: fix units allegiance, eg after ordering a dwarf merchant kill.

	deathcause: shows the circumstances of death for a given body.

	digfort: designate areas to dig from a csv file.

	drain-aquifer: remove aquifers from the map.

	growcrops: cheat to make farm crops instantly grow.

	magmasource: continuously spawn magma from any map tile.

	removebadthoughts: delete all negative thoughts from your dwarves.

	slayrace: instakill all units of a given race, optionally with magma.

	superdwarf: per-creature fastdwarf.

	gui/mechanisms: browse mechanism links of the current building.

	gui/room-list: browse other rooms owned by the unit when assigning one.

	gui/liquids: a GUI front-end for the liquids plugin.

	gui/rename: renaming stockpiles, workshops and units via an in-game dialog.

	gui/power-meter: front-end for the Power Meter plugin.

	gui/siege-engine: front-end for the Siege Engine plugin.

	gui/choose-weapons: auto-choose matching weapons in the military equip screen.

New Plugins

	manipulator: a Dwarf Therapist like UI in the game (ul)

	steam-engine: an alternative to Water Reactors which make more sense.
See hack/raw/*_steam_engine.txt for the necessary raw definitions.

	power-meter: a pressure plate modification to detect powered gear
boxes on adjacent tiles. gui/power-meter implements
the build configuration UI.

	siege-engine: massive overhaul for siege engines, configured via gui/siege-engine

	add-spatter: allows poison coatings via raw reactions, among other things.

Stonesense

Stonesense is an isometric visualizer for Dwarf Fortress,
implemented as a DFHack plugin.

Useful links:

	Official Stonesense thread [http://www.bay12forums.com/smf/index.php?topic=106497] for feedback,
questions, requests or bug reports

	Screenshots thread [http://www.bay12forums.com/smf/index.php?topic=48172]

	Main wiki page [http://dwarffortresswiki.org/Utility:Stonesense]

	How to add content [http://dwarffortresswiki.org/Utility:Stonesense/Adding_Content]

	Stonesense on Github [https://github.com/DFHack/stonesense]

Usage

The DFHack command stonesense (or ssense) opens Stonesense
in a new window. This viewer window has read-only access to the game,
and can follow the game view, or be moved independently.

stonesense overlay replaces the map section of your DF window.
Note that it’s not (yet) suitable for use as your only interface.
Use DF’s [PRINT_MODE:2D] init option for stability.
For best results, edit [segmentsize_z:2] in init.txt, and if
you are unable to see the edges of the map with the overlay active
try decreasing the [segmentsize_XY] - normal values are 50 to 80
depending on your screen resolution.

[image: ../../../_images/ssense-roadtruss.jpg]
 [http://www.bay12forums.com/smf/index.php?topic=48172.msg3198664#msg3198664]The above-ground part of the fortress Roadtruss.

Configuration options are documented and can be pre-set in
../resources/init.txt.

Controls

Mouse controls are hard-coded and cannot be changed.

	Left click:	Move debug cursor (if available)

	Right click:	Recenter screen

	Scrollwheel:	Move up and down

	Ctrl-Scroll:	Increase/decrease Z depth shown

Follow mode makes the Stonesense view follow the location of the DF
window. The offset can be adjusted by holding Ctrl while using the
keyboard window movement keys. When you turn on cursor follow mode, the
Stonesense debug cursor will follow the DF cursor when the latter exists.

You can take screenshots with F5, larger screenshots with
CtrlF5, and screenshot the whole map at full resolution with
CtrlShiftF5. Screenshots are saved to the DF directory.
Note that feedback is printed to the DFHack console, and you may need
to zoom out before taking very large screenshots.

See ../resources/keybinds.txt to learn or set keybindings,
including zooming, changing the dimensions of the rendered area, toggling
various views, fog, and rotation. Here’s the important section:

INSTRUCTIONS:

This document specifies the keys and associated actions stonesense
can recognize. The syntax is:
 [<action name>:<action key 1>:<action key 2> ...]
If the closing brace is preceeded by an asterisk:
 [<stuff>*]
then the keys specified will repeat each frame until released,
otherwise it will occur exactly once each time the character is
registered.

It is possible to specify the same action on multiple lines, or
to leave action names out of the list completely.

Listing multiple actions on the same line is not supported.
Likewise listing the same key for multiple actions will result
in only the last action listed being the one taken when the key is
pressed. Currently only keyboard events are supported;
stonesense's mouse events are all hardcoded.

A complete listing of valid actions and key values can be found at
the bottom of this file.

KEYBINDINGS:

[ROTATE:KEYS_ENTER]
[RELOAD_SEGMENT:KEY_R]
[TOGGLE_DESIGNATIONS:KEY_D]
[TOGGLE_STOCKS:KEY_I]
[TOGGLE_ZONES:KEY_U]
[TOGGLE_OCCLUSION:KEY_O]
[TOGGLE_CREATURE_MOODS:KEY_M]
[TOGGLE_CREATURE_PROFS:KEY_P]
[TOGGLE_CREATURE_JOBS:KEY_J]
[TOGGLE_CREATURE_NAMES:KEY_N]
[CHOP_WALLS:KEY_C]
[CYCLE_TRACKING_MODE:KEY_F]
[RESET_VIEW_OFFSET:KEY_Z]
[DECR_SEGMENT_Z:KEY_1]
[INCR_SEGMENT_Z:KEY_2]
[TOGGLE_SINGLE_LAYER:KEY_S]
[TOGGLE_SHADE_HIDDEN_TILES:KEY_B]
[TOGGLE_SHOW_HIDDEN_TILES:KEY_H]
[TOGGLE_OSD:KEYF_2]
[TOGGLE_KEYBINDS:KEYS_SLASH]
[INCR_ZOOM:KEYS_FULLSTOP]
[DECR_ZOOM:KEYS_COMMA]
[SCREENSHOT:KEYF_5]
[INCR_RELOAD_TIME:KEYPAD_PLUS]
[DECR_RELOAD_TIME:KEYPAD_MINUS]
[CREDITS:KEYF_9]

[DECR_Y:KEYS_UP*]
[INCR_Y:KEYS_DOWN*]
[DECR_X:KEYS_LEFT*]
[INCR_X:KEYS_RIGHT*]
[DECR_Z:KEYS_PGDN:KEY_9]
[INCR_Z:KEYS_PGUP:KEY_0]

Known Issues

If Stonesense gives an error saying that it can’t load
creatures/large_256/*.png, your video card cannot handle the high
detail sprites used. Either open creatures/init.txt and remove the
line containing that folder, or use these smaller sprites [http://dffd.bay12games.com/file.php?id=6096].

Stonesense requires working graphics acceleration, and we recomend
at least a dual core CPU to avoid slowing down your game of DF.

 _images/family-affairs.png
Zasit Bomreklisid has a spouse (Inod Avuzilul>
She is pregnant. The father is Inod Avuzilul.
Select action:

Remove romantic relationships Cif any)
[Assign a new spousel

_static/comment-bright.png

_images/workflow-new1.png
UL SN L d R IR

% Workflow Constraints

15-20 items C(now 19)
bars
lead

Add linit

Select one of the possible outputs:

bars
bars
bars
bars

of
of
of
of

lead
silver

any metal
any material

Shift+Enter: Advanced: DFHack:

i I: Count items Range
ex: Min 15 df: Max 20
Az Add limit, ¥: Delete

ESC: Back s: Status

_images/manipulator.png
1
1
1
2
1
1
1
1
1
1
1
1
1
1

Name Profession

Zon Zulbanfeh Miner
Tden Cattenonrel

Datan Sdkzulesht Miner
Cerol Storlutduc Miner
Doren Rinalnil = Miner
Inod Cogginon Miner
Rakust Dumattali

Fath Kolsigun Miner
Ciloh Zasobok Miner
Al&th Tumamkol Miner
Sigun Stinthaddo Miner
Uaip Liketidash

Kaddl Olinanam Miner
ds Isethdoddk

PPN e
IREAREERERRNEN]

N rmamouNRISeen ©

n Bannerarrou. Miner:

Toggle labor, Shift+Enter: Toggle Group, v
©: Toggle Uiew. +—: Sort by Skill, x

e
a5

_images/power-meter.png
Dwarf Fortress
Pouer Meter

Placement

Excess power range:
as: Min Canyd
2x: Max Canyd

Not inverted

_static/comment-close.png

_images/automaterial-mat.png
Duarf Fortress
Floor

Item
diorite hlocks
gabbro
granite
pyrolusite
oxthoclase
shale
icrocline
diorite
hornblende

guartzite

irch logs
willow logs
bronze hars

u: Uiew Item

Enter: Select

Shift+Enter: Se
Expand/Contrac

ESC: Cancel Z: Desel All

Autoselect Disabled

_images/mechanisms.png
Dwarf Fortress
Mechanism Links

¢ diorite Bridge
¢ Inlall Brg West (diorite Le|

ESC: Back, Enter: Switch

_images/hotkeys.png
Key Binding Help
Ale-1 i/uni i An improved stocks display screen
ALE-M
Cerl-F Auarfnonitor stats
Cerl-T getplants autochop
fuaterlol
Shife Lsave

Forunduarves
guisrenane
Shift-Ctrl-T gui/renane unit-profession

Shift-Ctrl-Z stocks show

Context: dvarfmode/Default
Esc: Leave Enter ox Hotkey: Invoke Show Usage: Disabled

_static/minus.png

_images/workshop-job-material.png
Dwarf Fortress
[l 1}

Select Material

Please select a new material for input 2

Category: fAny material

any material
inorganic
creature
plant

rock

amber

coral

green glass
clear glass

Enter: Select

1

ot applicable
cookahle. solid
1
a1
cookable

1

a1

_static/comment.png

_images/guide-path.png
2040

e et EORLEESS

IWH

R

%

Reset path
c: Zoom cur.

At cursor:

Zoon

next

_images/ssense-roadtruss.jpg

_images/search-stockpile.png
Aninals
Food

Furniture/Siege Anmmo
Corpses

Refuse

Stone

Anno

Coins

Bars/Blocks

Gems

Finished Goods
Leather

Cloth

ood

Usapons/Trap Conpe
Additional Options

Enable Allow
Disable Block
Enter: Toggle

a11
11

Meat
Fish

Unprepared Fish
Egg

Plants

Drink (Plant)
Drink <Animald
Cheese (Plant)
Cheese CAnimald
Seeds

Leaves

Milled Plant
Bone Meal

Fat

Paste

Pressed Material
Extract (Plant>

Permit Fats
£: Forbid Fats
8293463 Seroll

toad tallow
wornm tallow

crow tallow

crow man tallow

giant crow tallow
raven tallow

raven man tallow

giant raven tallow
cassowary tallow
cassowary man tallow
giant cassowary tallow
kea tallow

kea man tallow

giant kea tallow

snowy ouwl tallow

snowy owl man tallow
giant snowy owl tallow

u: Prepared Food

: Search: tallow_

_images/rename-bld.png
Dwarf Fortress
Barrels (Stockpile)

s: Change Settings
crER: Max Barrel —
cuCU: Max Bin - @

Max WUheelbarrou — @

Will Take From Anyuhere

rom A Pile/Workshop

o A Pile/Workshop
Selected

0p Barrel Dump Out (St
Barrels Deep (Stockpil
still

Kitchen

_images/rendermax.png
Dwarf Fortress
[+ +7002000700000000000000000000000220200072+4++

1 ISSTES Y

........§...

_images/liquids.png
Duart Fortress
Paint Liquids Cheat
stone floor
Static. No Flow

Rectangle
Water Cu>

Amount: 7 <—+>

S: Set Exactly

Enable Updates
Keep Permaflow

ESC: Back, Enter: Paint

_static/ajax-loader.gif

_images/automaterial-pos.png
Duarf Fortress

hange Height
hange Width

Enable Auto Type—Select

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to DFHack's documentation!

 		Introduction and Overview

 		Installing DFHack

 		Getting started

 		Troubleshooting

 		DFHack Core

 		Command Implementation

 		Using DFHack Commands

 		The DFHack Console

 		Using an OS terminal

 		Built-in Commands

 		cls

 		die

 		enable

 		fpause

 		help

 		hide

 		keybinding

 		kill-lua

 		load

 		ls

 		plug

 		sc-script

 		script

 		show

 		type

 		Other Commands

 		Init Files

 		dfhack*.init

 		onLoad*.init

 		onUnload*.init

 		Other init files

 		Miscellaneous Notes

 		DFHack Plugins

 		Data inspection and visualizers

 		stonesense

 		blueprint

 		remotefortressreader

 		cursecheck

 		flows

 		probe

 		prospect

 		reveal

 		showmood

 		Bugfixes

 		fix-unit-occupancy

 		fixveins

 		petcapRemover

 		tweak

 		fix-armory

 		UI Upgrades

 		automelt

 		autotrade

 		command-prompt

 		hotkeys

 		ruby

 		manipulator

 		search

 		nopause

 		embark-tools

 		automaterial

 		buildingplan

 		confirm

 		follow

 		mousequery

 		resume

 		title-folder

 		title-version

 		trackstop

 		sort-items

 		sort-units

 		stocks

 		stocksettings

 		rename

 		rendermax

 		Job and Fortress management

 		autolabor

 		labormanager

 		autohauler

 		job

 		job-material

 		job-duplicate

 		autogems

 		stockflow

 		workflow

 		clean

 		spotclean

 		autodump

 		cleanowned

 		dwarfmonitor

 		dwarfvet

 		workNow

 		seedwatch

 		zone

 		autonestbox

 		autobutcher

 		autochop

 		Map modification

 		3dveins

 		alltraffic

 		burrow

 		changelayer

 		changevein

 		changeitem

 		cleanconst

 		deramp

 		dig

 		digexp

 		digcircle

 		digtype

 		digFlood

 		filltraffic

 		fortplan

 		getplants

 		infiniteSky

 		liquids

 		plant

 		regrass

 		restrictice

 		restrictliquids

 		tiletypes

 		tubefill

 		Mods and Cheating

 		add-spatter

 		adv-bodyswap

 		createitem

 		diggingInvaders

 		fastdwarf

 		forceequip

 		generated-creature-renamer

 		lair

 		misery

 		mode

 		strangemood

 		siege-engine

 		power-meter

 		steam-engine

 		DFHack Scripts

 		Basic Scripts

 		adaptation

 		add-thought

 		adv-max-skills

 		adv-rumors

 		armoks-blessing

 		autofarm

 		autolabor-artisans

 		autounsuspend

 		ban-cooking

 		binpatch

 		brainwash

 		burial

 		catsplosion

 		colonies

 		combine-drinks

 		combine-plants

 		create-items

 		deathcause

 		deteriorateclothes

 		deterioratecorpses

 		deterioratefood

 		digfort

 		drain-aquifer

 		elevate-mental

 		elevate-physical

 		embark-skills

 		emigration

 		exportlegends

 		exterminate

 		feature

 		fix-ster

 		fixnaked

 		force

 		forum-dwarves

 		full-heal

 		gaydar

 		growcrops

 		hfs-pit

 		hotkey-notes

 		install-info

 		item-descriptions

 		launch

 		lever

 		load-save

 		locate-ore

 		lua

 		make-legendary

 		make-monarch

 		markdown

 		masspit

 		migrants-now

 		multicmd

 		names

 		open-legends

 		points

 		position

 		pref-adjust

 		prefchange

 		putontable

 		quicksave

 		region-pops

 		rejuvenate

 		remove-stress

 		remove-wear

 		repeat

 		season-palette

 		setfps

 		show-unit-syndromes

 		siren

 		source

 		spawnunit

 		startdwarf

 		starvingdead

 		stripcaged

 		superdwarf

 		teleport

 		tidlers

 		troubleshoot-item

 		twaterlvl

 		undump-buildings

 		unforbid

 		unsuspend

 		view-item-info

 		warn-starving

 		weather

 		Development Scripts

 		devel/all-bob

 		devel/annc-monitor

 		devel/check-release

 		devel/clear-script-env

 		devel/click-monitor

 		devel/cmptiles

 		devel/export-dt-ini

 		devel/find-offsets

 		devel/inject-raws

 		devel/inspect-screen

 		devel/light

 		devel/list-filters

 		devel/lsmem

 		devel/lua-example

 		devel/modstate-monitor

 		devel/nuke-items

 		devel/pop-screen

 		devel/prepare-save

 		devel/print-args

 		devel/print-args2

 		devel/save-version

 		devel/scanitemother

 		devel/send-key

 		devel/spawn-unit-helper

 		devel/test-perlin

 		devel/unforbidall

 		devel/unit-path

 		devel/watch-minecarts

 		Bugfixing Scripts

 		fix/blood-del

 		fix/build-location

 		fix/dead-units

 		fix/diplomats

 		fix/dry-buckets

 		fix/fat-dwarves

 		fix/feeding-timers

 		fix/item-occupancy

 		fix/loyaltycascade

 		fix/merchants

 		fix/population-cap

 		fix/stable-temp

 		fix/stuckdoors

 		fix/tile-occupancy

 		GUI Scripts

 		gui/advfort

 		gui/advfort_items

 		gui/assign-rack

 		gui/autobutcher

 		gui/choose-weapons

 		gui/clone-uniform

 		gui/companion-order

 		gui/confirm-opts

 		gui/create-item

 		gui/dfstatus

 		gui/extended-status

 		gui/family-affairs

 		gui/gm-editor

 		gui/gm-unit

 		gui/guide-path

 		gui/hack-wish

 		gui/hello-world

 		gui/liquids

 		gui/load-screen

 		gui/manager-quantity

 		gui/mechanisms

 		gui/mod-manager

 		gui/no-dfhack-init

 		gui/power-meter

 		gui/prerelease-warning

 		gui/quickcmd

 		gui/rename

 		gui/room-list

 		gui/settings-manager

 		gui/siege-engine

 		gui/stockpiles

 		gui/unit-info-viewer

 		gui/workflow

 		gui/workshop-job

 		Scripts for Modders

 		modtools/add-syndrome

 		modtools/anonymous-script

 		modtools/change-build-menu

 		modtools/create-item

 		modtools/create-unit

 		modtools/equip-item

 		modtools/extra-gamelog

 		modtools/force

 		modtools/if-entity

 		modtools/interaction-trigger

 		modtools/invader-item-destroyer

 		modtools/item-trigger

 		modtools/moddable-gods

 		modtools/outside-only

 		modtools/projectile-trigger

 		modtools/random-trigger

 		modtools/raw-lint

 		modtools/reaction-product-trigger

 		modtools/reaction-trigger

 		modtools/reaction-trigger-transition

 		modtools/skill-change

 		modtools/spawn-flow

 		modtools/syndrome-trigger

 		modtools/transform-unit

 		List of Authors

 		Licenses

 		Zlib License

 		MIT License

 		BSD Licenses

 		Changelog

 		DFHack 0.43.05-r1

 		Internals

 		Lua

 		Ruby

 		New Plugins

 		New Scripts

 		New Tweaks

 		Fixes

 		Misc Improvements

 		DFHack 0.43.03-r1

 		Lua

 		New Features

 		Fixes

 		Misc Improvements

 		Removed

 		DFHack 0.42.06-r1

 		Internals

 		Lua

 		New Plugins

 		New Scripts

 		New Features

 		Fixes

 		Misc Improvements

 		Removed

 		DFHack 0.40.24-r5

 		New Features

 		Fixes

 		Misc Improvements

 		DFHack 0.40.24-r4

 		Internals

 		Lua

 		New internal commands

 		New plugins

 		New scripts

 		New tweaks

 		Fixes

 		Misc Improvements

 		Removed

 		DFHack 0.40.24-r3

 		Internals

 		Lua

 		New Internal Commands

 		New Plugins

 		New Scripts

 		New Tweaks

 		Fixes

 		Misc Improvements

 		DFHack 0.40.24-r2

 		Internals

 		Fixes

 		Misc Improvements

 		DFHack 0.40.24-r1

 		Internals

 		DFHack 0.40.24-r0

 		Internals

 		Fixes

 		New Plugins

 		New Scripts

 		Removed

 		Misc Improvements

 		Older Changelogs

 		How to contribute to DFHack

 		Contributing Code

 		Code Format

 		How to get new code into DFHack

 		Memory research

 		Using the library as a developer

 		DF data structure definitions

 		Remote access interface

 		Documentation Standards

 		Other ways to help

 		Compiling DFHack

 		How to get the code

 		Contributing to DFHack

 		Build settings

 		Build type

 		Target architecture (32-bit vs. 64-bit)

 		Other settings

 		Linux

 		Dependencies

 		Multilib dependencies

 		Build

 		Mac OS X

 		Notes for GCC 4.9+ or OS X 10.10+ users

 		Dependencies and system set-up

 		Building

 		Windows

 		Dependencies

 		Build

 		Building the documentation

 		Enabling documentation building

 		Required dependencies

 		Linux

 		Mac OS X

 		Windows

 		Misc. Notes

 		Note on building DFHack offline

 		Note on using very old git versions with pre-0.43.03 DFHack versions

 		Development Changelog

 		DFHack 0.43.05-beta2

 		Fixes

 		Structures

 		API Changes

 		Additions/Removals:

 		Other Changes

 		DFHack 0.43.05-beta1

 		Fixes

 		Structures

 		Additions/Removals

 		Other Changes

 		DFHack 0.43.05-alpha4

 		Fixes

 		Structures

 		Additions/Removals

 		Other Changes

 		DFHack 0.43.05-alpha3

 		Fixes

 		Structures

 		API Changes

 		Additions/Removals

 		Other changes

 		DFHack Lua API

 		DF data structure wrapper

 		Typed object references

 		Named types

 		Global functions

 		Recursive table assignment

 		DFHack API

 		Native utilities

 		C++ function wrappers

 		Core interpreter context

 		Lua Modules

 		Global environment

 		utils

 		dumper

 		class

 		In-game UI Library

 		gui

 		gui.widgets

 		Plugins

 		burrows

 		sort

 		Eventful

 		Building-hacks

 		Luasocket

 		Scripts

 		Enabling and disabling scripts

 		Save init script

 		Data Structure Definition Syntax

 		General Background

 		XML file format

 		Enum type definition

 		Bitfield type definition

 		Structure type definition

 		Class type definition

 		Global object definition

 		Symbol table definition

 		Lisp Integration

 		Reference expressions

 		Reference objects

 		Code helpers

 		Examples

 		Updating DF-structures for a new DF version

 		General Process

 		Running Dwarf Fortress

 		Available Scripts

 		new-release.pl

 		make-scans.sh

 		make-csv.sh

 		start.sh

 		make-keybindings.pl

 		match-ctors.pl

 		match-vtables.pl

 		STAGE 1. Linux compound globals

 		STAGE 2. Old way to find Linux compound globals

 		STAGE 3. Linux primitive globals

 		[A] The 'cur_year' area.

 		[B] The ui_look_cursor area.

 		[C] The window_x/y/z area.

 		[D] Random positions.

 		STAGE 4. Primary windows compound globals

 		1. world

 		2. ui

 		3. ui_build_selector

 		4. ui_sidebar_menus

 		5. ui_look_list

 		6. ui_advmode

 		7. enabler

 		8. map_renderer

 		9. texture

 		STAGE 5. Secondary windows compound globals

 		1. timed_events

 		2. ui_building_assign_*

 		3. gview

 		4. Init files

 		5. gps

 		6. created_item_*

 		STAGE 6. Windows primitive globals

 		Patching the DF binary

 		Getting a patch

 		Using a patch

 		Patching at runtime

 		Patching on disk

 		Tools reliant on binpatches

 		fix-armory

 		gui/assign-rack

_static/file.png

_static/plus.png

_images/room-list.png
Dwarf Fortress

w Throne Room

¢ Ustuth Basentulon, Thresher|

ESC: Back, Enter: Unassign

_static/up-pressed.png

_images/tweak-mil-color.png
Urvad Tiristtizet. MM-03 Spear Squad: Meleel
Not Marksdwarf Schedule: Train
Enter: Assign to squad

SQUADSZLEADERS SQUAD _POSITIONS: CANDIDATES

captain of the guard Stukos Hosothsolz. HR-01 Rigoth Nishroder, Manager
Rangedi Onul Asendesor. MR-82 Bembul Ledbasen. Breuwer
Ranged2 t Noramingsh., MR-83 Ustuth Nelasoddom. Miner
Ranged3 Oncl Oddonken., Miner
Ranged4 Reg Sakzuludar, Artisan
Meleel

Melee2 Urvad Tiristtizt, MM-83 Spr

Tulon Kabshorast, Carpenter

Positions a: Alerts o Supplies Anmunition
Schedule

Done 234689 Move selector

_images/manipulator3.png
Name rxucapbnolkaitiifferhodetiobraceuinnnlse

[Asnel Zarethatis]
Zasit Shethathil

Monon Mengberdan
Zas dkildodék

Shorast Dishmabt
Meng Tdkéshshak
Sigun Zomenkos

Catten Ushatfike
Udib Zefonkikros
Ducin Amostrimta
Nish Eshtanostat
Udib Berokosh Et
Kulet Lemisurvad
Zasit &maldth &r

Xos Sooox

8 Asmel Desertstake. militia captain:
Squad: Axe Squad

Engeri Tougle labor. ShifteEncey: Toggle Group, vi UieuGre, ci Zgom—Gre
ESC: Done. Toggle Uiew. +—: Sort by Skill, %/: Sort by (Iab) Sguad

_static/down.png

_images/workflow.png
UL SN L d R IR

%

Workflow Constraints

15-20 items C(now 19)
bars
lead

15-20 items
bars
silver

I: Count items Range
ex: Min 15 df: Max 20
Az Add limit, ¥: Delete

ESC: Back s: Status

_static/up.png

_images/workflow-status.png
Workflow Status

Item Material ete ini Currently 18 (88 in use)

any craft iren
armor stand any material
barrel any material
bars any soap

bed any wood

bin any material
bolt any bone
box/bag any cloth
bucket any wood

cap any leather
cloak any cloth
coffin any material
dress any cloth
glove any leather
hood any cloth
leaves any material

I: Count items Range
/% Min § Max 18

vossnsoRossanan

any_

Az Add, %: Delete. 0: Severity

_images/siege-engine.png

_images/workflow-new2.png
Dwarf Fortress
New workflow constraint

Items matching:

Type: bars
©: Select. C: Crafts

Material: any metal
p: Specific

Ordinary quality

Include foreign

Desired range: 5-18 itens

I: Count items Range
ex: Min § af: Max 1@

ESC: Cancel. y: Create new

nstraints

Chou 19>

_images/mod-manager.png
Mods:
Stean Engine
Bulletin Board
Display Case
Mechanical Workshop
Enbalmer workshop
Duarven games

slab sign

Spatter

working stean engines. One powered hy magma.
uel. Both need water to function.
connecting machines must he built AFTER
steam engine

Author:angavrilov

Install ¢i)
Uninstall <u>
Settings ()
Exit CESC)

_images/search.png
Dwarf Fortress

Pets/Livestock (81> Others (19> Dead/Miss

Nelasoddon
Onol Oddonken.
Binm Kellogen,
Litast Olinrir.

Ablel Thimshurzefon,

Store ltem in Stockpile
Construct Building
Sleep

No Job

Drink

Make cloth trousers/R

Blacksmith Store Item in Bin

Bonrek Lorgikut,
Astesh Uirtulon.

Ueaponsmith

Zogm—Cre.
Manage iabors (DFHack)

Drink
No Job

Zoom-B1ld. n: Manager. »: Remy Cre
Search: Mi

_images/assign-rack.png
puart rortress

Assign Weapon Rack

¥ Rangedt
1 combat, © training

+-

TRt e RRR

[aeeeet i

LELeestitd
SrraRRR L eer

B e g e
TrrRRK e

JESSSEI0MM vas

EREL L+ AT

L LR]

LTI

_images/rename-prof.png
Dwarf Fortress

“Zuglar Basementdrinks"
Pet of Urdim Bomrekrah.

_images/workshop-job-item.png
Please select a new item type for input 1
? any item n. n: Material
Flask
cage 1
barrel
bucket ot applicable
. aninal trap cookable, solid
N hox/hag 1
| meat
- fish a1
o rau fish cookable
| vernin 1
i seeds
;7 plant a1
. leaves cookable
B pouder
- cheese
“: glob
DFHac k-

_images/advfort.png
d
f
d 1

Gulgud Disenmpuja Speed: 938

iron pick
The Infinite Prairie

_images/command-prompt.png
aar sar Rardvark 1 000008000000000080008
.y p QREANONRRAE00/770
.y o [QEENHQNRENNO0

.y p [

1 e 0708887200

1 PSSt I 0008888000000

1 Garaereares I 0+-88880+=200

. [RESSSSSS M 07708887700

FeriRersess

M e QIR EO0
[

o
o
o
o
o
o
o
o
QiiiON T e00e O
o
8
8
8
8
8

JROSSSSSSSY 000000000008800000
s [RESSSESS o 000008000008XB888!
. [RESSSESS M ~08868888;
e [RSSSSS I 0808888
1 JROSSSSY I 0808888
1 LA I 8

8

8

@ooo0000
o
o
o
o

_images/gm-editor.png
<unit: @xBche?6h8> Help

custon_profession
profession
profession2

pos

idle_area

idle area_threshold
idle_area_unk_af
unknouni

path

Flagst

flags?

flags3

meeting

caste

id
unk_108
training_level

>
<language_name: BxBche?6h8>

95
102
466
<coord: BxBche?748)>
Seoord: Oxbohe?7de

-1

Cunit.T_unknounl: BxBche??5a>
Sunit T path: OxBche??68>
Cunit #Tagsi: BxBche??98)
Cunit”flagsZ: BxBche??9c)
Cunit”flags3: BxBche??aB)

<unit T_meeting: BxBche??ad>

922

DFHac k-

_images/companion-order.png

_images/manipulator2.png
WAMHS GRBBPLBS KMFARSDLISDGOGEE N L1 COEGEN T Gs
Name Profession rxBcaphnolkaitiigerhodetiohraceuinnnlscorihiiy

ook Us tuthedcu IIRLEELTELY
Meng Idkéshshak Grcucr
Endok Isondoddk Feacant
Solon Otungkulet

Udib Liketidash

Rakust Metulbomr Brcucr
Zulban Ducimnora Flanter
Uvash Bsustastes Arnorer
Udil Goyosdishma Flanter
Stakud Ceroltang Engraver
Solon Ulzestzugl Gen Scttex
Doren Rinalnil = Miner
Dodék Ralukatir Carpenter
Datan Sikzulesht Miner

k Fencegrooved, Engraver:
The Emancipated Armors

Togsle labor. ShifteEnter: Toggle Group. u: UieuGre, cf Zoon—Cre
Toggle Uiew. +—: Sort hy Skill. x/: Sort b

_images/workshop-job.png
Dwarf Fortress

Prepare Meal

Input item.

Item 1: 8 of 1
egg
material not applicable
unrotten. cookable, solid
Item 2: 8 of 1
barrel
any material
unrgtten. cookable
Item 0 of 1
any itenm
any material
unrotten, cookable

ESC: Back

